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Symmetry Fractionalization

1 Introduction

This lecture is based on review article ‘Symmetry Fractionalization in Two Dimensional Topological
Phases’, arXiv: 1606.07569.

One of the most amazing predictions of topological phases is the existence of fractional excita-
tions. Such excitations can have fractional braiding and fusion statistics when moving around each
other. That’s where the name ‘anyon’ came from. However, in experiment, it turns out that these
fractional phase factors resulting from braiding are not so easy to observe. Instead, a much more
accessible way to see fractionalization is through the fractional quantum number they carry. In,
for example, the ν = 1/3 fractional quantum Hall states, the quasi-particles are expected to carry
1/3 of an electron charge. Theoretically, we can imagine threading a 2π flux through a particular
point in the 2D electron liquid and a charge of e−/3 will accumulate around that point.
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Figure 1: Accumulation of fractional charge e−/3 around a 2π flux in ν = 1/3 fractional quantum
Hall state.

And experimentally, this is pretty much what we see [32]. A scan under a single-electron-transistor,
as shown in Fig.2, shows three time charing events in the localized states of a ν = 1/3 fractional
quantum Hall system as compared to the integer quantum Hall system over the same range of
charge density change, therefore confirming the existence of fractional charges.

The 1/3 charge carried by the quasi-particles in the fractional quantum Hall system is a prototypical
example of what we call symmetry fractionalization. Another example of symmetry fractionaliza-
tion appears in frustrated magnets. In the triangular lattice anti-ferromagnetic Heisenberg model
with one spin 1/2 per lattice site, fractionalization happens due to the frustration of the Heisen-
berg interaction on different edges. Instead of forming a magnetic or crystal order, the ground
state takes the ‘resonating valence bond’ (RVB) structure, with nearest neighbor pairs of spins
forming spin singlets and the ground state wave function being a superposition of all possible
pairing configurations.

An excitation in the resonating valence bond state can take the form of an isolated unpaired spin
1/2’s, each costing a finite amount of energy. The unpairing of certain spins necessarily leads to
the reorganization of the pairing of all other spins. However, such a reorganization cannot be
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Figure 2: Single electron transistor scan of localized states in integer quantum Hall ((a), (b)) and
fractional quantum Hall ((c), (d)) samples with varying charge density and at different positions.

seen locally by looking at the singlet configurations away from the excitations. This is because we
started from a superpositions of all possible singlet pairing configurations. When isolated spin 1/2
excitations are created, away from the excitation, locally we still see all possible singlet pairing
configurations. Therefore, each isolated spin 1/2 costs only finite energy and can be separated far
away from each other.

There are the fractional ‘spinon’ excitations of the resonating valence bond state and, similar to
the quasi-particles in fractional quantum Hall state, they also carry ‘fractional quantum numbers’
under certain symmetry. In order to talk about fractional quantum number, first we need to say
what the ‘integer quantum numbers’ are. That is, we need to specify what the fundamental degrees
of freedom are and how they transform under global symmetry. For the resonating valence bond
state, there are two possible descriptions: we can either think of the system as composed of electrons
which carry charge e− and spin 1/2 and be in a Mott-insulating state of one electron per unit cell;
or we can think of the system as composed of spin 1/2s on each lattice site. In both cases, the
spinon excitation carries ‘fractional quantum numbers’.

If we think of the system as composed of electrons and has both charge conservation and spin
rotation symmetry, the charge and spin quantum numbers are correlated for any eigenstate of the
system. If the state has an odd charge, it then has a half integer spin; if the state has an even
charge, it has an integer spin. Therefore, the spin and charge quantum number of any global
excitation is also correlated: odd charge half integer spin or even charge integer spin. Compared
to the quantum number of the global excitations, the spinons hence carry ‘fractional’ quantum
numbers. In particular, the spinons carry spin 1/2 but no charge (the state with spinon excitation
is still a Mott insulating state). This is also called the spin charge separation in strongly correlated
electron systems.

On the other hand, if we think of the system as a spin system with spin rotation symmetry, the
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Figure 3: (a) The resonating valence bond wave function is a superposition of all possible singlet
pairing configurations. (b) Isolated unpaired spin 1/2’s (orange dots) form the spinon excitations
of the RVB state.

quantum number carried by the spinon is still fractionalized. This might seem strange because the
fundamental degrees of freedoms in the system are spin 1/2’s, which carry the same spin quantum
number as the spinons. However, if we think about the quantum number of global excitations in
the systems, it is always integer spin. No matter whether we have an even or odd number of spin
1/2 in the system, the difference in the representation of different eigenstates is always an integer
spin. Therefore, the spin 1/2 representation carried by individual spinons are fractionalized.

This example clearly illustrates the notion of symmetry fractionalization: in 2D topological phases,
if the symmetry representation carried by the anyonic excitations is a fraction of that carried by
global excitations, then we say there is symmetry fractionalization. Note that SF on anyons is
with respect to the symmetry representation carried by global excitations, not that carried by the
fundamental degrees of freedom. Even though in some cases, these two coincide.

From the fractional quantum Hall and resonating valence bond state examples we can see that
symmetry fractionalization happens in all kinds of topological phases and provides a unique way
to probe the nontrivial nature of the system. The question we want to discuss in these lectures
is to understand what patterns of symmetry fractionalization can exist and where to find them.
As a preparation to answer these questions, we first discuss the important concept of gauging in
section 2, which is fundamental to our following discussion of symmetry fractionalization. Section
3 provides the first application of the gauging procedure where interesting SF patterns are obtained
by gauging models with global symmetry. With this preparation, we go on to discuss in section 4,
a simple consistency condition all SF patterns have to satisfy. That is, they have to be consistent
with the fusion rules of the anyons. We are going to explain the meaning of this condition and
how this leads to a complete –in some sense over-complete– list of possible SF patterns. It is
over complete because, surprisingly, not all consistent SF patterns can be realized in strictly 2D
systems. Such SF patterns are called ‘anomalous’. If two dimensional models can be constructed
to realize a particular SF pattern, as illustrated in section 5 using lattice model or Chern Simon
field theory, then the SF pattern is not anomalous. Of course, it is not always obvious how to
construct such models or if it is possible at all! In section 6, we discuss examples of anomalous
SF patterns which are in principle not possible in 2D and various methods devised to detect such
anomalies. With the preparation in section 4 and 6, one can then perform a systematic study of
SF patterns that can be realized in 2D topological phases with symmetry, the so-called Symmetry
Enriched Topological phases. We discuss in section 7 the case of spin liquids, i.e. frustrated spin
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models with certain topological order and various symmetries like spin rotation, time reversal and
lattice symmetries. A list of potentially realization SF patterns can be obtained by excluding the
anomalous SF patterns from all consistent ones. It is then interesting to ask which one of them
is realized in simple physical models, e.g. the Kagome lattice Heisenberg model. Numerical and
experimental probe methods have been proposed which we also review in section 7. On the other
hand, the anomalous SF patterns are not completely impossible. While they cannot be realized in
strictly 2D systems, they can appear on the 2D surface of a 3D system. The anomaly in the SF
pattern is tightly connected to the nontrivial order in the 3D bulk and we discuss various examples
of such connections in section 8.

2 Gauging

Before we start to discuss symmetry fractionalization in general, I want to first explain in detail
the idea of ‘gauging’. This will not only lead to some simple examples of SF patterns, but also
provide a powerful tool throughout the study of all SF patterns.

In our discussion, ‘gauging’ means coupling a quantum mechanical system with certain global
symmetry to the corresponding dynamical gauge field in the deconfined phase. For example, we
can consider an Ising paramagnet (at zero temperature) with global Z2 symmetry and couple it to
a Z2 gauge field.

In the transverse field Ising model, the Hamiltonian at the paramagnetic limit (no spontaneous
symmetry breaking) takes the simple form of

H = −
∑
i

σxi (1)

where σx acts on the spin 1/2 degrees of freedom on each lattice site (blue dots in Fig.4) as

(
0 1
1 0

)
.

The system has a global Z2 symmetry of U =
∏
i σ

x
i and the ground state is invariant under this

symmetry

|ψ〉 = ⊗ 1√
2

(| ↑〉+ | ↓〉) (2)

where | ↑〉 and | ↓〉 are eigenstates of σz =

(
1 0
0 −1

)
.

One result of gauging is to take a system with global symmetry and turn it into a system with
local symmetry. That is, the symmetry group will be generated not by just one global symmetry
operation, but by symmetry operations at all spatial locations (on each lattice site). To do this,
first we introduce the gauge field degrees of freedom on each link of the lattice (yellow diamonds
in Fig.4). For a Z2 gauge field, the degrees of freedom are again two level spin 1/2’s and we label
them as τ spins. The local Z2 symmetry acts as Ui = σxi

∏
i∈e τ

x
e where the product is over all

edges with i as one end point.

This local symmetry can be interpreted as enforcing the Gauss law on the gauge field. Using
the terminology in electromagnetism, the τ z operator corresponds to the vector potential A of
the gauge field, actually the exponential of it eiA. As this is a Z2 gauge field, A only takes
discrete value of nπ, n ∈ Z. The operator τx on the other hand corresponds to the exponential
of the electric field eiE . Similarly, the electric field takes only discrete value. The quantum-ness
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of the gauge field is manifested in the fact that the electric field and the vector potential do not
commute. As σxi measures the amount of Z2 charge on each lattice site, the local symmetry operator
Ui = σxi

∏
i∈e τ

x
e = σxi e

i
∑

i∈e Ee is equivalent to the Gauss law which says that the amount of charge
at each site is equal to the integral of the electric field on a surrounding surface.

Next, we write down a new Hamiltonian which is invariant under the local symmetry transfor-
mations and also captures the dynamics of the gauge field. For the Ising paramagnetic model
above, the Hamiltonian terms σxi are already invariant under the local symmetries, so we do not
need to do anything about them and just include them in the new Hamiltonian. Generically, this
is not the case. For example, if (small) nearest neighbor Ising coupling terms σzi σ

z
j are in the

Hamiltonian, they need to be modified as σzi τ
z
ijσ

z
j in order to be invariant under all local symmetry

transformations.

Av Bp

⌧z ⌧z

⌧z

⌧z

⌧x

⌧x

⌧x ⌧x

Figure 4:

Besides that we add the term Av = σxv
∏
v∈e τ

x
e at every vertex v to enforce gauge symmetry (Gauss

law) and Bp =
∏
e∈p τ

z
e , where the product is over all edges around a plaquette p, to enforce zero

flux constraint on every plaquette. The total Hamiltonian then reads

Hg = −
∑
i

σxi −
∑
v

Av −
∑
p

Bp = −
∑
i

σxi −
∑
v

σxv
∏
v∈e

τxe −
∑
p

∏
e∈p

τ ze (3)

In a pure gauge theory, Av is enforced as a constraint, or equivalently the weight of this term is
taken to be +∞. In this limit, the Hamiltonian can be simplified into

Hg = −
∑
v

∏
v∈e

τxe −
∑
p

∏
e∈p

τ ze (4)

which is exactly the toric code Hamiltonian.

There are two types of excitations in the gauged Hamiltonian: a charge excitation e and a flux
excitation m. A charge excitation e is a violation of the Av term, which is equivalent to a violation
of the σx term which measures onsite symmetry charges, and a flux excitation m is a violation
of the Bp term. These two types of excitations can be generated in pairs using string operators∏
e∈S σ

z
e and

∏
e∈S̃ σ

x
e , as shown in Fig.4, where S and S̃ are paths on the lattice and dual lattice

respectively. The gauge charge is a bosonic anyon, corresponding to the spin flip of the σ spins.
The gauge flux is is also a bosonic anyon. They braid with each other with a phase factor of −1
which is the Aharonov-Bohm phase factor in the Z2 case (eiπ). The composite of e and m is hence
a fermion, usually denoted as f .

This gauging procedure can be generalized to all kinds of global internal unitary symmetries of
group G in the following steps:
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1. Take a system with global unitary internal symmetry of group G with degrees of freedom on
the sites of a lattice and with global symmetry acting as a tensor product of operator on each
lattice site.

2. Introduce gauge field degrees of freedom onto the links of the lattice and define gauge sym-
metry transformation as acting on each lattice site and the links around it.

3. Modify the terms in the original Hamiltonian, by coupling the original degrees of freedom
with the gauge field, such that each term is invariant under all local gauge symmetry trans-
formations.

4. Add vertex terms to the Hamiltonian to enforce gauge symmetry and add plaquette terms to
enforce the zero flux constraint.

By doing so, we obtain a gauge theory of group G with gauge charge and gauge flux excitations.
There are a few things we can learn from the gauging procedure:

1. The gauge charge comes from the symmetry charge. They are labeled by the representation
of the group, are either a bosonic or a fermionic anyon, depending on whether the symmetry
charges in the original system are bosonic or fermionic.

2. The gauge flux comes from the symmetry flux and are labeled by the group elements of G
(conjugacy classes if G is nonabelian). The statistics of the gauge flux is more complicated.
It depends on the particular order (symmetry protected / symmetry enriched topological
order) of the original Hamiltonian. If the original Hamiltonian does not have nontrivial order
(ground state can be a total product state), the gauge fluxes are bosonic.

3. The braiding statistics between a gauge charge and a gauge flux is independent of the original
order. It is given by the Aharonov-Bohm phase factor.

We are going to explain more about the second point on the connection between gauge flux and
symmetry flux in section 6.

3 SF pattern from gauging

Using this gauging procedure, we can find simple symmetry fractionalization patterns for a gauge
theory. Consider for example the Ising paramagnet discussed above. We can think of the σ degrees
of freedom as representing the Hilbert space of a hard core boson. 1√

2
(| ↑〉+ | ↓〉) corresponds to no

boson and 1√
2

(| ↑〉 − | ↓〉) corresponds to one boson. The Z2 symmetry of U =
∏
i σ

x
i then measures

the boson number parity. The bosons are then symmetry charges under the Z2 symmetry and
upon gauging, they become the gauge charges. Now imagine that each boson has its own internal
structure in the form of a pseudo-spin degree of freedom ρ which forms a spin 1/2 representation
under pseudo-spin rotation. Correspondingly, the gauge charge in the gauged model also transforms
as a spin 1/2. With this mapping, the gauged Ising paramagnet model has the same symmetry
fractionalization pattern as the RVB model – they both have toric code type Z2 topological order
and the gauge charge transforms as a spin 1/2.

Following this construction, it is then easy to see that in a gauge theory, the gauge charge can
transform in a variety of fractional ways: carry fractional pseudo-charge, being a half integer
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pseudo-spin, transform as a Kramer doublet under time reversal (T 2 = −1), etc. All we need to
do is to start from a matter field (boson or fermion) carrying charge 1 under a U(1) symmetry
or a discrete subgroup of it (e.g. Z2). At the same time the matter field carries some fractional
quantum number / symmetry representation under pseudo-charge, pseudo-spin symmetry etc. Put
the matter field into a Mott insulator type of state and couple it to the dynamical gauge field of the
charge U(1) group (or a discrete subgroup of it). By doing so, we would obtain a gauge theory with
gauge charge transforming in a fractional way under pseudo-charge or pseudo-spin symmetries. In
this case, the gauge flux always transforms in a trivial (non-fractional) way.

Can gauge flux also transform in a fractional way? In order to achieve that, the matter field has to
have some nontrivial gapped symmetric order (as compared to a Mott insulator). Let’s consider the
example of gauging the fermion parity symmetry in a topological superconductor. The topological
superconductor can be thought of as composed of a p+ ip superconductor of spin up and a p− ip
superconductor of spin down. It is invariant under both the fermion parity symmetry Pf and the
time reversal symmetry T and T 2 = Pf . If the fermion parity symmetry, as a unitary global Z2

symmetry, is gauged, we obtain a Z2 gauge theory with time reversal symmetry and we want to
know how the gauge charge and gauge flux transform under time reversal.

The gauge charge f , which follows from the symmetry charge in the topological superconductor, is
a fermion. It transforms under time reversal as T 2 = −1. The gauge flux e transforms in a more
nontrivial way. First, let’s find out what kind of anyon the gauge flux is. To see this, note that
the topological superconductor is equivalent to a simple s-wave superconductor if time reversal
symmetry can be broken. That is to say, if we forget about time reversal symmetry and just ask
about the statistics of the gauged theory, topological superconductor and s-wave superconductor
should give the same result. In particular, they both have bosonic gauge fluxes. The topological
order of the gauged theory is equivalent to that of the toric code and we have already adopted the
notation for the anyons. The difference from our previous discussion of toric code as a Z2 gauge
theory is that the gauge charge in this case is a fermion, while the composite of the gauge charge
and the gauge flux e = fm is a boson.

To understand how the gauge flux transform under time reversal symmetry, we can think about
the transformation of the π flux in a topological superconductor. The π flux in the topological
superconductor is a confined defect, which upon gauging becomes the deconfined gauge flux of
the Z2 gauge theory. The transformation property under time reversal symmetry also carries
over. In a p + ip or p − ip superconductor, a π flux carries a Majorana mode. Therefore, in
a topological superconductor, a π flux carries two Majorana modes γ↑ and γ↓. γ↑ and γ↓ make
up a two dimensional Hilbert space of a complex fermion mode with fermion parity operator
being P = iγ↑γ↓. Time reversal maps γ↑ → γ↓, γ↓ → −γ↑, and i → −i and hence reverses
fermion parity P → −P . That is to say, time reversal adds / removes a fermion from the π
flux. After gauging, this is saying that time reversal maps between e and m in the Z2 gauge theory.
Therefore, the gauged topological superconductor provides a highly nontrivial example of symmetry
fractionalization where time reversal exchanges two types of anyon.

In our following discussion, we are going to focus on the simple type of symmetry fractionalization
where anyon types are not changed. With the gauged topological superconductor, we want to
discuss at least one example where symmetry does change anyon type.

Taking a system with certain global symmetry and partially gauging it can result in gauge theories
with gauge charge and gauge flux transforming in a nontrivial way. But of course, not all topo-
logical orders are gauge theories. Even for gauge theory, it is not clear if all patterns of symmetry
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fractionalization can be realized by gauging a symmetric model. Therefore, in order to understand
what SF patterns are possible and what are not, we need a more general theory.

4 Consistency Condition

Given a topological order, with its full anyon content and their fusion and braiding rules, and
certain global symmetry, what SF patterns are possible? For an SF pattern to be possible, it first
has to satisfy some consistency conditions.

To understand the consistency condition the SF patterns have to satisfy, let’s go back to the
ν = 1/3 fqH example. The elementary anyonic excitation in the system can be thought of as 1/3
of an electron. That is, if we put three of them together, they are equivalent to a single electron
excitation. Therefore, the amount of charge they each carry has to be 1/3 of an electron charge.
If they were to carry any other different fractional amount of charge (like 1/2 or 1/5), it will not
be consistent. Similarly, in the case of spin-charge separation, the combination of a spinon and a
chargon is equivalent to a single electron. This is consistent with the SF pattern on the spinons
and chargons, as the sum of their charge / spin quantum numbers equals that of a single electron.
Such a consistency condition can be readily generalized to all 2D anyon theories. To present this
consistency condition, we need to introduce the concept of projective symmetry action on the
anyons.

Consider a 2D topological phase containing anyon types a, b, c etc. and with global symmetry of
group G. The ground state, which has a finite energy gap to all the excited states, is invariant
under global symmetry action. Now imagine creating a pair of anyons a and ā and moving them to
distant locations, as shown in Fig.5. If we apply global symmetry g ∈ G to the system, everywhere
away from the anyons the system remains invariant as the state is the same as in the ground state,
while near the anyons the system may be transformed in a nontrivial way. If the symmetry g does
not change anyon types (which is the case we focus on in this lecture), then the transformation is
equivalent to some local unitaries Ua(g) and Uā(g) near the anyons, as shown in Fig.5. That is to
say, global symmetry action on a state with isolated anyons can be reduced to symmetry actions
on each anyon individually.

Topological phase

a
ā

Topological phase

a
ā

Applying global symmetry g Ua(g) Uā(g)

U(g1) U(g2) U(g1g2)B[a(g1, g2)]=

(a) (b)

Figure 5: (a) Global symmetry action on a state with isolated anyons can be reduced to symmetry
actions on each anyon individually, (b) which form a ‘projective’ representation of the group.

These local symmetry transformations are special in that they only have to satisfy the group relation
up to a phase. That is,

Ua(g1)Ua(g2) = ωa(g1, g2)Ua(g1g2) (5)

where ωa(g1, g2) is a phase factor that is not necessarily 1. Ua(g) is said to form a ‘projective’
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representation of group G.This is not contradicting to the global symmetry of the system as long
as the phase factor on ā – ωā(g1, g2) – cancels with ωa(g1, g2). On the other hand, on any global
excitation, ω has to be 1 and U(g) is said to form a ‘linear’ representation on these non-fractionalized
excitations. For example, if we apply two consecutive π rotations in the U(1) symmetry group of
charge conservation to the 1/3 electron excitation in the ν = 1/3 fqH, we get

U1/3(π)U1/3(π) = ei2π/3U1/3(0) (6)

Note that as two excitations related to each other through local operations are considered to be of
the same anyon type, two projective representations differing by a linear representation correspond
to the same SF pattern, as described by the same ω. In the fqH case, this tells us that only the
fractional part of the charge carried by the anyon matters.

The associativity condition that (Ua(g1)Ua(g2))Ua(g3) = Ua(g1) (Ua(g2)Ua(g3)) leads to the re-
quirement that

ωs(g1)
a (g2, g3)ωa(g1, g2g3) = ωa(g1, g2)ωa(g1g2, g3), (7)

which needs to be satisfied by any ω describing a projective symmetry action. Moreover we have
the freedom to change the definition of each Ua(g) by an arbitrary phase factor µa(g). Therefore,
ωa(g1, g2) and ω′a(g1, g2) related as

ω′a(g1, g2) =
µa(g1)µ

s(g1)
a (g2)

µa(g1g2)
ωa(g1, g2) (8)

are considered equivalent. Here s(g1) = 1 if g1 is unitary and s(g1) = −1 if g1 is anti-unitary
(time reversal). Eq.7 and 8 defines the equivalence classes of projective representations, which is
an essential concept in the consistency condition of SF patterns discussed below.

The consistency condition of SF patterns then states that: if c is (one of) the fusion product of
a and b, then the projective representation carried by c should be equivalent to the tensor product
of that carried by a and b. That is, if the anyons obey fusion rules a × b =

∑
cN

c
abc, then when

N c
ab 6= 0,

ωa(g1, g2)ωb(g1, g2) ∼ ωc(g1, g2) (9)

Here we are using ‘∼’ instead of ‘=’ because the ω’s only have to be equivalent as describe in Eq.8.
In the ν = 1/3 fqH case, this condition is simply saying that the fractional part of the charge
carried by three elementary excitations should sum to one.

What is the physical meaning of this projective phase factor ω? It turns out that ω relates the
local action of symmetry to anyon braiding statistics. Consider again the ν = 1/3 fqH example.
Applying two consecutive π rotations to a region D is equivalent to doing nothing up to a phase
factor. The phase factor is ei2πn/3 if we have n elementary anyons in the region D. On the other
hand, this is exactly the phase factor induced by braiding an elementary anyon around this region
D, as shown in Fig.5. Therefore, we have the following relation

U(π)U(π) = B[a1/3]U(0) (10)

where B[a1/3] denotes the braiding of the 1/3 electron around region D. Note that this relation
holds no matter what the anyon content is in the region D. In general, we have

U(g1)U(g2) = B[a(g1, g2)]U(g1g2) (11)
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where a(g1, g2) takes value in the set of abelian anyons of the system which we denote as A.
B[a(g1, g2)] denotes the braiding of a(g1, g2) around region D, such that ωb(g1, g2) is equal to the
braiding statistics between b and a(g1, g2). It is easy to check that the set of projective repre-
sentations carried by the anyons (as described by ω) generated in this way automatically satisfy
the consistency condition described above, due to the additivity of braiding statistics with abelian
anyons. Here we are discussing the local symmetry action U(g) in an abstract way. In section ??
we are going to discuss explicitly how to find the operator U(g) for a gapped symmetric state and
why they satisfy the relation in Eq. 11.

Equation 11 hence describes the SF patterns on all the anyons in the topological phase together.
We can interpret the U(g)’s in Eq.11 as a projective representation of the symmetry group G, but
not with coefficient in phase factors as in the case of Ua(g), but rather with coefficient in A, the
set of abelian anyons of the system. The conditions the abelian anyon coefficient a(g1, g2) has to
satisfy is completely analogous to that for the phase factor coefficient ωa(g1, g2). First, associativity
requires that

a(g2, g3)× a(g1, g2g3) = a(g1, g2)× a(g1g2, g3), (12)

Here ‘×’ denotes fusion of abelian anyons. Two sets of anyon coefficient are equivalent if they can
be related as

a′(g1, g2) = b(g1)× b(g2)× b̄(g1g2)× a(g1, g2) (13)

where for any choice of b(g) ∈ A. This relation comes from redefining the local symmetry action
U(g) by braiding b(g) around the region. Using Eq. 12 and 13, we can then find all possible and
distinct SF patterns. Mathematically speaking, the set of SF patterns is classified by the second
cohomology group of G with coefficient in abelian anyons A, denoted as H2(G,A). This result can
be generalized to the situation where anyon types are permuted under symmetry transformation,
as discussed in [2, 53].

Note that while the above discussion is based on internal symmetries like spin rotation or time
reversal, it can be applied to spatial symmetries as well. Consider, for example, the case of reflection
symmetry R. Imagine creating a pair of anyons a and ā. If a is the same as ā, this can be done
in a way that preserves reflection symmetry. One can then decompose the action of reflection
symmetry as spatially exchanging the position of the two a’s, together with some local unitaries
Ua(R) around each of the a’s. Ua(R) then effectively acts as a internal Z2 symmetry on a and its
possible fractionalization patterns follow from that of Z2.

Let’s see apply the above classification conclusion to the case of a Z2 spin liquid with time reversal
symmetry. A spin liquid with Z2 topological order contains four abeilan anyons {I, e,m, f}. If the
system has global time reversal symmetry, which satisfies T T = I, locally the symmetry action
may act as

U(T )U∗(T ) = B[a(T , T )], a(T , T ) = I or e or m or f (14)

Note that the second U(T ) is complex conjugated because the first symmetry action is anti-unitary.
These four cases exhaust all possible SF patterns in the Z2 spin liquid and they are not related to
each other through Eq.13. What does this mean physically? Suppose that U(T )U∗(T ) = e. This
is saying that applying time reversal twice on m or f gives −1, while applying time reversal twice
on I or e gives +1. That is, the anyons m and f transform as a Kramer doublet under time reversal
and anyon e (and the vacuum I) transform as a singlet.

One can apply this procedure to spin liquids with all kinds of symmetries and completely list
all consistent SF patterns. For example, in [14], this procedure has been carried out for Z2 spin
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liquid with square lattice space group, time reversal and SO(3) spin rotation symmetries, where
221 different types of SF patterns where identified.

So there is a huge number of SF patterns that satisfy the consistency condition. Can they all be
realized in local two dimensional systems?

5 Construction of SF patterns in 2D

If we can construct explicit 2D models to realize certain SF pattern, then of course, it is non-
anomalous. Models can be constructed either on the lattice or using field theory.

5.1 SF pattern in lattice model

Some SF patterns of the toric code model can be realized with simple lattice construction.

Av

Bp

(1) (2)

m m m

m m m

m m m
e

Figure 6: (1) Toric code Hamiltonian on the square lattice (2) Gauge charge moving in the back-
ground of π fluxes in each plaquette.

Consider the original toric code Hamiltonian on a square lattice

H = −
∑
v

∏
v∈e

τxe −
∑
p

∏
e∈p

τ ze (15)

as shown in Fig.6 (1). This model has translation symmetry in both x and y directions. The anyons
e and m transform under translation symmetry in a pretty normal way: they move from one vertex
to another vertex, or from one plaquette to another plaquette.

Now let’s switch the sign of one of the terms

H = −
∑
v

∏
v∈e

τxe +
∑
p

∏
e∈p

τ ze (16)

Because of the this, it is energetically preferable to have an m anyon in each plaquette, as shown
in Fig.6 (2). That is, each plaquette contains a gauge flux of the Z2 gauge field in the group state.
The motion of the gauge charge is then affected by this background flux. In particular, if e moves
around a plaquette, it acquires a phase factor of −1. That is to say

Te(x)Te(y)T−1
e (x)T−1

e (y) = −1 (17)
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(1) (2)

�x

�x

�z

�z

�z

�z

�z

�x

�x

e m

Figure 7: (1) A variant of Toric code on square lattice with degrees of freedom on vertices and the
same Hamiltonian term in each plaquette (2) Gauge charge and gauge flux correspond to excitations
in neighboring plaquettes.

or equivalently, translation in x direction anti-commutes with translation in y direction. This
example illustrates one of the key ideas of string-flux construction discussed in [21].

Let’s consider a different model of Z2 gauge theory where translation symmetry acts on the anyons
in a different way. Consider the square lattice as shown in Fig.7 which lattice site has a spin 1/2
degree of freedom. The Hamiltonian is a sum of terms in each plaquette

H = −
∑
<i,j>

σxi,jσ
z
i,j+1σ

z
i+1,jσ

x
i+1,j+1 (18)

As shown in Fig.7, a diagonal string of σx creates the gauge charge excitations and a diagonal
string of σz originating from a neighboring plaquette creates the gauge flux excitations. Therefore,
translation symmetry from one plaquette to another exchanges e and m.

5.2 SF pattern in Chern-Simons theory

Another useful tool in the study of symmetry fractionalization is the Chern-Simons formalism. It
provides a particularly simple framework for studying abelian topological phases and the symmetry
transformation of their anyons.

An abelian topological order is described using the Chern-Simons field theory with Lagrangian

L =
1

4π
KIJε

λµνaIλ∂µaJν (19)

of a p-component gauge field aI . The matrix K is a p×p symmetric, non-degenerate integer matrix.
Anyon excitations of the theory are described by a p-component integer vector l. The topological
spin of the anyon labeled by l is

θl = πlTK−1l (20)

The full braiding statistics between anyons labeled by l and l′ is

θll′ = 2πlTK−1l′ (21)

The ground state degeneracy on a torus, hence the total number of anyon types, is given by det(K)
and the chirality is given by the difference in the number of positive and negative eigenvalues of K.
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For example, the Z2 toric code is described by K =

(
0 2
2 0

)
. The gauge charge e corresponds to

l =
(
1, 0
)T

and the gauge flux m corresponds to l =
(
0, 1
)T

. The chiral semion theory is described
by K = 2 and the semionic anyon corresponds to l = 1.

Correspondingly, the edge of the system can be described as

Le =
1

4π
KIJ∂xφI∂tφJ (22)

where φ is a p-component field, with each component being a 2π periodic scalar field. Anyon
excitations are given by eil

Tφ.

Symmetry transformation of this topological state, and in particular symmetry transformation on
the anyons, can be conveniently described in terms of the symmetry transformation of the φ field.
Under symmetry action, the φ field transformations as

φ→W × φ+ δφ (23)

where W is a p× p integer matrix and δφ is a p-component vector. The theory is invariant under
the symmetry transformation if

W TKW = W (24)

for unitary symmetry and
W TKW = −W (25)

for anti-unitary symmetry (time reversal).

Using this formalism, we can easily write down theories with different symmetry fractionalization
patterns.

For example, consider a toric code type Z2 gauge theory with Z2 unitary symmetry. An SF pattern
with gauge charge e carrying a fractional Z2 charge and gauge flux m carrying an integer Z2 charge
can be realized as

φ1 → φ1 + π/2, φ2 → φ2 (26)

such that the anyon creation operators transform as

eiφ1
Z2−→ ieiφ1

Z2−→ −eiφ1 , eiφ2 Z2−→ eiφ2
Z2−→ eiφ2 (27)

The W matrix is the 2× 2 identity matrix and satisfies W TKW = K.

An SF pattern with gauge charge e carrying a fractional Z2 charge and gauge flux m also carrying
a fractional Z2 charge can be realized as

φ1 → φ1 + π/2, φ2 → φ2 + π/2 (28)

such that the anyon creation operators transform as

eiφ1
Z2−→ ieiφ1

Z2−→ −eiφ1 , eiφ2 Z2−→ ieiφ2
Z2−→ −eiφ2 (29)

An SF pattern with the Z2 symmetry exchanging e and m can be realized as

φ1 → φ2, φ2 → φ1 (30)

13



such that the anyon creation operators transform as

eiφ1
Z2−→ eiφ2

Z2−→ eiφ1 , eiφ2
Z2−→ eiφ1

Z2−→ eiφ2 (31)

Similar construction works for time reversal symmetry. An SF pattern with gauge charge e trans-
forming as T 2 = 1 and the gauge flux transforming as T 2 = −1 can be realized as

φ1 → −φ1, φ2 → φ2 + π/2 (32)

such that the anyon creation operators transform as

eiφ1
T−→ eiφ1

T−→ eiφ1 , eiφ2
T−→ −ie−iφ2 T−→ −eiφ2 (33)

Here W =

(
−1 0
0 1

)
and W TKW = −K.

Is it possible to have an SF pattern where both e and m transform as T 2 = −1? We can try to
assign the φ fields to transform as

φ1 → φ1 + π/2, φ2 → φ2 + π/2 (34)

such that the anyon creation operators transform as

eiφ1
T−→ −ie−iφ1 T−→ −eiφ1 , eiφ2 T−→ −ie−iφ2 T−→ −eiφ2 (35)

However, in this case the W matrix is I which commutes with K. Therefore, the above transforma-
tion actually describes a unitary Z2 symmetry, not a time reversal symmetry. Is it then possible,
at all, to have an SF pattern where both e and m transform as T 2 = −1?

Similarly, we can ask is it possible to have an SF pattern where time reversal exchanges e and m?
We can try to assign the φ fields to transform as

φ1 → −φ2, φ2 → −φ1 (36)

such that the anyon creation operators transform as

eiφ1
T−→ eiφ2 , eiφ2

T−→ eiφ1 (37)

However, in this case the W matrix is

(
0 −1
−1 0

)
which commutes with K. Therefore, the above

transformation is unitary. This is the same unitary Z2 symmetry as we discussed above which
exchanges e and m.

Instead, we can try to assign the φ fields to transform as

φ1 → φ2, φ2 → −φ1 (38)

The W matrix is now

(
0 1
−1 0

)
which satisfies W TKW = −K. However, the anyon creation

operators transform as

eiφ1
T−→ e−iφ2

T−→ e−iφ1 , eiφ2
T−→ eiφ1

T−→ e−iφ2 (39)

14



Therefore, after applying time reversal twice, each anyon is changed by adding a local excitation
e−2iφ1 or e−2iφ2 , which is not an identity operation.

Both construction fails, but in fact we already know that time reversal exchanging e and m can
happen, from our discussion of gauged topological superconductor. Therefore, the Chern-Simons
approach is powerful, but it also has its limitation. It allows us to construct a variety of SF
patterns. However, for those which the construction fails, there are two possibilities. 1. the SF
pattern is anomalous and cannot be realized in pure 2D systems; 2. the SF pattern is possible in
2D, although not covered in the simplest version of Chern-Simon theory we discussed above. To
distinguish between these cases and identify true anomaly in SF patterns, we are going to discuss
anomaly and its detection methods below in a model independent way.

6 Anomaly Detection

One important realization about symmetry fractionalization is that, among all the consistent SF
patterns, not every one can be realized in strictly 2D systems. The ones that cannot are said to
be ‘anomalous’. At first sight this may seem surprising, as the consistent SF patterns (for example
the four possibilities for time reversal in Z2 spin liquid) look very much well-behaved and there
seems to be no particular reason to suspect that one is more exotic than another. In fact, one has
to look very carefully to see the distinction. In this section, we first give some examples of how
such anomalies can occur, and then introduce a number of methods that have been developed to
detect anomalies in this situation. These methods are all based on the powerful idea of ‘gauging’.

6.1 Anomalous SF Pattern: Examples

Consider a system with Z2 topological order and charge conservation symmetry. The SF pattern is
given by the fractional charge carried by the anyons e, m and f . Note that we are always talking
about the charge amount mod 1, as the integer part of the charge does not matter. One consistent
SF pattern is that e and m carry charge 1/2 while f carries charge 0. In terms of the projective
representation formed by local symmetry operations as given in Eq.11, we have

a(θ, 2π − θ) = f, a(θ1, θ2) = I otherwise (40)

This SF pattern has a name – eCmC. This SF pattern can be realized in strictly 2D systems, as can

be seen from the Chern-Simons theory description with K =

(
0 2
2 0

)
and the φ fields transforming

under charge conservation symmetry as

φ1
α−→ φ1 + α/2, φ2

α−→ φ2 + α/2, (41)

where α labels the U(1) symmetry transformation of charge conservation. With this U(1) symmetry,
we can couple the system to external U(1) gauge field (electro-magnetic field) as

L =
1

4π
KIJε

λµνaIλ∂µaJν −
e

2π
τIε

λµνAλ∂µaIν (42)

where a1 and a2 are internal gauge fields and A is external electro-magnetic field. τ1 = τ2 = 1. The
charge carried by an anyon labeled by l can be calculated from

ql = τTK−1l (43)
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in units of e− and we can check explicitly that the e and m anyons both carry half charge with
τ = (1, 1).

eCmC

e m
e�/2

e�/2

�xy =
(e�)2

h

Figure 8: The eCmC SF pattern: in 2D Z2 topological state if both the e and m anyon carry
half charge under charge conservation symmetry, the system has nonzero Hall conductance, hence
explicitly breaks time reversal symmetry.

However, if in addition to charge conservation symmetry time reversal symmetry is also required,
this SF pattern becomes anomalous. At first sight, it is not easy to see why this is the case,
because the SF pattern seem to have no particular contradiction to time reversal symmetry. To
see the anomaly, suppose that we can realize the theory described in Eq.42 in 2D with both charge
conservation and time reversal symmetry. Imagine putting it on a disc with boundary, as shown in
Fig.8. The Hall conductivity can be calculated from

σxy = τTK−1τ (44)

in units of (e−)2/h and in this case σxy = 1. That is to say, there is a chiral edge mode going around
the boundary, which explicitly violates time reversal symmetry. Therefore, we get a contradiction
and the eCmC SF pattern is not possible in 2D systems with time reversal symmetry. That is,
with time reversal symmetry eCmC is an anomalous SF pattern, even though it is consistent.

The eCmC SF pattern provides an example where anomalies under time reversal symmetry can be
detected by looking for chiral edge modes on the boundary. Anomalies with unitary symmetries, on
the other hand, can only be revealed with more sophisticated methods. In the following sections,
we are going to discuss various anomaly detection methods which allow us to see the anomaly in

1. eCmT – Z2 topological order with U(1) spin conservation and time reversal symmetry (the
two symmetries commute); e carries half spin, m carries integer spin; e is a time reversal
singlet, m is a time reversal doublet.

2. Z2 topological order with Z2 × Z2 symmetry; e transforms as iσz, σx under the two Z2’s; m
transforms as I, iσy under the two Z2’s. (σx, σy, σz are Pauli matrices.)

3. Projective semion – chiral semion topological order with Z2 × Z2 symmetry; the semion
transforms as σx, σz under the two Z2’s.

6.2 Gauging and anomaly detection

The gauging procedure we discussed above plays an important role in detecting anomalies with
unitary symmetries. If we have an SF pattern with the anyons transforming in a potentially
fractional way under global symmetry, we can try to gauge the unitary part of the symmetry and
obtain a new topological state.
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How is this related to anomaly detection of SF patterns? If we know that certain SF pattern can
be realized by a 2D lattice model, we can apply this procedure and find the expanded topological
order starting from the original SF pattern. But of course in many case, we do not know if the
assumption is true. In fact, this is exactly what we are trying to determine. What can help us,
is a close connection between the original SF pattern and the expanded topological order if the
gauging process can be carried through. Partial information about the expanded topological order,
including its anyon types, part of their fusion rules and braiding statistics, can be determined from
the SF pattern alone, without specific knowledge about its lattice realization. From this information
one can determine if the gauging process can be carried through, resulting in a consistent expanded
topological order. In some cases, however, we can see that there are inconsistencies in the gauging
process, preventing the gauging process from completing. Such an obstruction to gauging indicates
the existence of anomaly in the original SF pattern. This is the underlying logic behind the
methods we describe in the following sections, where different methods provide different ways to
reveal inconsistencies in the gauging process.

One important piece of information about the expanded topological order that can be extracted
from the SF pattern is the fusion rules of gauge fluxes. Gauge fluxes are excitations in the gauged
theory that violate the Bp term (the zero flux rule), but to determine their fusion rules it suffices
to think in terms of the ungauged Hamiltonian H[2, 53].

To understand this relation, we can go back to the Ising paramagnet model on a square lattice.
Suppose that we have both the Ising coupling term σzi σ

z
j and the transverse field term σxi in the

Hamiltonian. In the gauged Hamiltonian, these two terms become σzi τ
z
ijσ

z
j and σxi respectively.

Now we do a ‘gauge fixing’ procedure in the ground state to remove the dynamics of the gauge field
and retain only one particular configuration satisfying the no flux constraint Bp term. One simple
choice is such that the gauge field is in the σz = 1 state (labelled by 0) on all links. The Bp terms
are satisfied on all plaquettes. The Av terms, which generate the dynamics of the gauge field, are
violated as a result of gauge fixing. With this configuration of gauge field, the gauged Hamiltonian
reduces back to the original Ising Hamiltonian with σzi σ

z
j and σxi terms.

0 0 0
0 0 0 0
0 0 0

0 0 0 0
0 0 0

0 0 0 0
0 0 0

0 0 0
0 0 0 0
0 0 0

0 1 1 0
0 0 0

0 0 0 0
0 0 0

X X

Figure 9: (left) Gauge fixing of zero flux configuration (right) Gauge fixing with a pair of fluxes
(red crosses). Hamiltonian terms across the symmetry defect line (red dotted line) are conjugated
by symmetry action on one side of the defect line.

Now suppose we create two gauge fluxes as shown in Fig.9. This can be achieved by flipping the
gauge field to the σz = −1 state (labelled by 1) along the symmetry defect line (red dotted line).
The Bp terms are satisfied everywhere except for the two end points of the symmetry defect line
where the gauge fluxes reside (red crosses). With this configuration of gauge field, the σzi τ

z
ijσ

z
j term

becomes −σzi σzj (orange circle) along the symmetry defect line and σzi σ
z
j everywhere else.

Such a change in the Hamiltonian (σzi σ
z
j to −σzi σzj along the symmetry defect line) can be induced
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by taking all Hamiltonian terms across the symmetry defect line and conjugating with symmetry
action on one side of the symmetry defect line. The σxi terms remain invariant and the σzi σ

z
j terms

get a minus sign along the symmetry defect line. The ends of the symmetry defect line are then
called the symmetry fluxes. Upon gauging, i.e. reintroducing dynamics of the gauge field, they
become deconfined anyonic gauge flux excitations of H ′.

For a general symmetry group G, by examining the symmetry fluxes Ωg of H, we will show that
they obey the ‘projective’ fusion rule

Ωg1 × Ωg2 = ag1,g2Ωg1g2 (45)

which descends into the fusion rules of the gauge fluxes upon gauging. As we are going to see, this
‘projective’ fusion rule follows from the local projective symmetry action of a SF pattern given in
Eq.11.

D 

S 

= U(g1) B[↵(g1, g2)] U(g1g2)U(g2)

X X ⌦g1

X X ⌦g2
= X X ⌦g1g2

↵(g1, g2)

(a) 

(b) 

(C) 

Figure 10: (a) A pair of symmetry fluxes (red crosses) can be created at the end of a symmetry
defect line s (solid red line) by conjugating Hamiltonian terms across s (e.g. the one in the blue
box) with symmetry on one side of s. A full braiding of the symmetry fluxes around region D is
equivalent to applying symmetry locally to D and the change in the ground state can be induced
by applying unitary U(g) along the boundary of D (grey region). (b) U(g) forms a projective
representation of the symmetry. This is the same as Fig.5 (b) except that we have made it clear
that U(g) acts only along the boundary of D. (c) The symmetry fluxes hence satisfy a projective
fusion rule as given in Eq.45.

Suppose that certain SF pattern can be realized in a lattice model as shown in Fig.10. We can
insert a symmetry defect line s of g ∈ G (solid red line in Fig.10) by taking the Hamiltonian terms
which are bisected by this line (for example the term in the blue box) and conjugate them by
symmetry operator on the lattice sites to one side of the line (the shaded blue region).

hi →
( ∏
k∈r.h.s.

Mk(g)

)
hi

( ∏
k∈r.h.s.

M−1
k (g)

)
(46)

Here r.h.s. stands for the right hand side of the defect line (or equivalently we can conjugate with
Mk(g

−1) on the left hand side of the defect line). The terms which are not bisected by the defect
line remain invariant. Near the end points – the symmetry fluxes marked by red crosses in Fig.10
– there may be terms that are only partially bisected by the defect line, so it is ambiguous how to
change them. But this ambiguity is not a problem, because we are only interested in how things
change along the middle part of the defect line. As the Hamiltonian is changed along s, the ground
state is also changed, but only within a finite width along s (the dark grey region) due to the short
range correlation in the state. Such a change in the ground state can be induced by applying a
unitary operator U s(g) to the dark grey region along s and we can think of this U s(g) as the string
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operator that creates a pair of symmetry fluxes and moves them around. An important difference
between symmetry fluxes and anyons is that the symmetry fluxes are confined, i.e. the ground
state changes along the full length of s and costs an amount of energy (in terms of the original H)
that is proportional to the length of s.

Now imagine creating a pair of symmetry fluxes, braiding them around region D while changing
the Hamiltonian along the way, and finally annihilating them (complete the circle along the dashed
red line). After this full braiding process, all the Hamiltonian terms across the boundary of D
get conjugated by symmetry on one side while the terms inside and outside of D remain invari-
ant. The same change in Hamiltonian can be induced by applying symmetry locally to region D
(
∏
k∈DMk(g)): the terms inside D remain unchanged as they are invariant under global symmetry;

the terms outside of D remain unchanged as they are not acted upon; the terms across the bound-
ary of D get conjugated by symmetry on one side. Correspondingly, the change in the ground state
can be induced by applying

∏
k∈DMk(g) to the region D. Therefore, braiding a pair of symmetry

fluxes around a region corresponds to applying symmetry locally to that region.

On the other hand, the same change can be induced by applying a unitary string operator U(g) along
the boundary of D (the grey region in Fig.10). Note that U(g) is very different from

∏
k∈DMk(g)

as it has no action deep inside D, although applying them to the ground state induces the same
change. In fact, this U(g) is exactly the local symmetry action we discussed in section 4 which
satisfies the projective composition rule as given in Eq.11, while the composition of

∏
k∈DMk(g) is

not projective (because the composition of each Mk(g) is not projective). Therefore, U(g) carries
the important information about the SF pattern while

∏
k∈DMk(g) does not. Eq.11 is saying

that applying U(g1) and U(g2) is equivalent to applying U(g1g2) up to the braiding of anyon
a(g1, g2) around the region D. This has to be the case because applying U(g1)U(g2)U−1(g1g2)
to the Hamiltonian results in the same Hamiltonian, therefore the state can change at most by a
phase factor. As U(g1)U(g2)U−1(g1g2) acts as a loop operator around region D, the phase factor
can be induced by braiding an abelian anyon around D. On the other hand, from the fact that
U(g) implements the braiding of symmetry flux Ωg around region D, we can further deduce that
the fusion of Ωg1 and Ωg2 is equivalent to Ω(g1g2) up to a(g1, g2), as shown in Eq. 45 and Fig.10
(c). Such a projective fusion rule among symmetry fluxes is the first step in several of the anomaly
detection methods described below.

6.3 Flux Fusion

The flux fusion method discussed in [22] can be used to detect anomalies in for example the eCmT
SF pattern. The eCmT SF pattern exists in systems with a Z2 topological order with anyons I, e,
m and f = e ×m. Besides that, the system has charge conservation and time reversal symmetry
G = U(1) × ZT2 . Note that here the charge conservation part is in direct product with the time
reversal part, which means that the U(1) charge gets reversed under time reversal. Therefore, it
is better to think of the U(1) part of the symmetry as spin conservation around the z axis, which
reverses direction under time reversal.

The possibilities for symmetry fractionalization include fractional charges under U(1) and Kramer
doublet under time reversal (T 2 = −1). In the eCmT case we consider the situation where e
carries half charge while m carries integer charge, e is a time reversal singlet while m transforms
as a Kramer doublet. The consistency condition of the SF pattern is satisfied implicitly with f
carrying half charge and transforming as a Kramer doublet.
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In the first step of the anomaly test, we introduce symmetry flux of the U(1) part of the symmetry
and study its projective fusion rule (hence the name flux fusion). As e has half charge while m has
integer charge, we can conclude that

Ωπ × Ωπ = m or a(π, π) = m (47)

In the second step, we ask the question: how does Ωπ transform under time reversal symmetry?
First of all, we observe that time reversal does not change the amount of flux, because time reversal
commutes with U(1) rotations. Therefore, Ωπ transforms either as a time reversal singlet or a
Kramers doublet. But this is in contradiction to m being a Kramers doublet because whether Ωπ

is a time reversal singlet or doublet, the composite Ωπ × Ωπ = m must be a singlet. We have thus
found that eCmT is an anomalous fractionalization pattern.

The flux fusion method hence consists of 1. find the projective fusion rule of symmetry fluxes
2. examine whether symmetry fractionalization on the symmetry fluxes can be consistent with
the fusion rule. It applies to a variety of situations including those with time reversal and spatial
symmetries, but it is also restricted and does not apply when, for example, the symmetry flux type
is changed under symmetry transformation.

In [36, 58, 57, 59], anomalies in SF patterns with U(1) symmetry are detected using a ‘monopole
tunneling’ method. Imagine tunneling a monopole through the 2D system and leaving behind a
2π flux. If the 2π flux carries projective symmetry number or statistics, then the quantum number
of the monopole will change in a nontrivial way after tunneling, hence indicating anomaly. [36]
first used this method to show the anomaly of the eCmC state where the 2π flux is a fermion
(unless there is an odd Hall conductance). In [58], it was shown that for eCmT the 2π flux is a
Kramer doublet and hence nontrivial. The flux fusion method is equivalent to this method when
the symmetry flux inserted is a U(1) flux.

6.4 Conflicting Symmetries

In [11] and [27], it was proposed that anomalies in SF patterns with G1×G2 type of symmetry may
be detected through the ‘conflict’ between G1 and G2 which is revealed through the breaking of G2

by gauging G1. One example discussed in [11, 3] has Z2 topological order and ZA2 × ZB2 unitary
symmetry with group elements {I, gA, gB, gAgB}. The anyons transform as

e : Ue(gA) = iσz, Ue(gB) = σx; m : Um(gA) = I, Um(gB) = iσy (48)

The f anyon transforms as e and m combined, so the SF pattern is consistent. The fact that both
e and m transform nontrivially under the symmetry lead to potential anomaly[26].

If we look at the two Z2 symmetry subgroups individually, their actions are simple and not anoma-
lous. For example, under the ZA2 subgroup (generated by gA), m transforms trivially while e carries
half charge ((Ue(gA))2 = −I). Such a symmetry action can be realized in a strictly 2D system.
Correspondingly we can fully gauge the ZA2 subgroup and obtain a larger topological order. After
gauging, the ZB2 part remains a global symmetry of the system and acts on the anyons in the
larger topological order. The ‘conflict’ between ZA2 and ZB2 , and hence the anomaly of the SF
pattern, is detected through the observation that ZB2 does not act on the larger topological order
in a consistent way.
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In particular, gauging ZA2 results in a Z4 topological order with elementary gauge charge e4 (e4
4 = I)

and elementary gauge flux m4 (m4
4 = I). e4 and m4 has a mutual statistics of i. e4 comes from the

e anyon of the original Z2 topological order; e2
4 = c is the symmetry charge of the ZA2 symmetry;

m4 comes from the symmetry flux ΩA of ZA2 ; m2
4 = m is the m anyons of the original Z2 topological

order.

In the next step, one can ask how the ZB2 symmetry acts on the Z4 topological order. Because
in the original SF pattern, Ue(gB) = σx flips between the two components of e which differ by a
−1 under the action of Ue(gA) (one with eigenvalue i and one with −i), in the gauged theory gB
exchanges e4 and e4c = e3

4. In order to keep the statistics of the Z4 topological order invariant, gB
has to exchange m4 and m3

4. However, this is not consistent with the fact that m = m2
4 carries half

charge under gB. In order to see this, we need the consistency condition of SF patterns when anyon
types are changed under the symmetry. We did not discuss this in this review, although the result
in section4 can be generalized directly as shown in [2, 53]. In [11], the SF pattern and the gauging
procedure was discussed using the Chern-Simons formalism and it was explicitly shown that the
ZB2 symmetry action is not consistent with the Z4 topological order obtained after gauging ZA2 .

6.5 Gauging Obstruction

A powerful mathematical method exists to detect anomalies with unitary on-site symmetries. This
is discussed in [40] as the ‘obstruction to the extension of a braided fusion category by a finite
group’. In [7], the projective semion example was used to illustrate this method.

The projective semion example has the topological order of a chiral semion theory, whose only
nontrivial anyon s has topological spin i. The system also has unitary Z2 × Z2 symmetry with
group elements {I, gx, gy, gz}. Four possible SF patterns on the semion are:

PS0 : Us(gx) = iσx, Us(gy) = iσy, Us(gz) = iσz
PSX : Us(gx) = iσx, Us(gy) = σy, Us(gz) = σz
PSY : Us(gx) = σx, Us(gy) = iσy, Us(gz) = σz
PSZ : Us(gx) = σx, Us(gy) = σy, Us(gz) = iσz

(49)

Correspondingly, the symmetry fluxes fuse projectively as

PS0 : a(X,X) = s, a(Y, Y ) = s, a(Z,Z) = s
a(X,Y ) = a(Y, Z) = a(Z,X) = s, a(Y,X) = a(Z, Y ) = a(X,Z) = I

PSX : a(X,X) = s, a(Y, Y ) = I, a(Z,Z) = I
a(X,Y ) = a(Y, Z) = a(Z,X) = s, a(Y,X) = a(Z, Y ) = a(X,Z) = I

PSY : a(X,X) = I, a(Y, Y ) = s, a(Z,Z) = I
a(X,Y ) = a(Y, Z) = a(Z,X) = s, a(Y,X) = a(Z, Y ) = a(X,Z) = I

PSZ : a(X,X) = I, a(Y, Y ) = I, a(Z,Z) = s
a(X,Y ) = a(Y, Z) = a(Z,X) = s, a(Y,X) = a(Z, Y ) = a(X,Z) = I

(50)

Now, if the symmetry in the projective semion theory can be consistently gauged, we should be
able to define for the fluxes not only the projective fusion rules but also the braiding and fusion
statistics involved with exchanging two fluxes or fusing three of them in different orders. These
statistics cannot be chosen arbitrarily, but have to satisfy certain consistency conditions[2]. Failure
to satisfy these consistency conditions reveals the anomaly in the SF pattern. We are not going
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to explain the reasoning which led to the conclusion in [40] but only to quote that, to determine
whether these consistency conditions can be satisfied, it suffices to calculate the following quantity

ν(f, g, h, k) = Ra(h,k),a(f,g)Fa(g,h),a(f,gh),a(fgh,k)F
−1
a(g,h),a(gh,k),a(f,ghk)Fa(f,g),a(h,k),a(fg,hk)

F−1
a(f,g),a(fg,h),a(fgh,k)Fa(h,k),a(g,hk),a(f,ghk)F

−1
a(h,k),a(f,g),a(fg,hk)

(51)

The F and R symbols depend on the anyon coefficient of the projective fusion rule of the symmetry
fluxes and their value are determined from the semion topological order. ν(f, g, h, k) is a phase
factor that depends on four group elements f, g, h, k ∈ G. However, in some cases it is possible that
ν(f, g, h, k) can actually be generated from a phase factor µ which depends only on three group
elements as

ν(f, g, h, k) = µ(g, h, k)µ−1(fg, h, k)µ(f, gh, k)µ−1(f, g, hk)µ(f, g, h) (52)

The powerful conclusion of [40] is that: if this is the case, the SF pattern is not anomalous and
the gauging process can go through. However, if this is not true, that is if ν(f, g, h, k) cannot be
decomposed as in Eq.52, then the SF pattern is anomalous and there is obstruction to the gauging
procedure. If we do this calculation for the projective semion SF pattern listed above, we can find
that PS0 is non-anomalous and PSX , PSY , PSZ are anomalous.

This ‘Gauging Obstruction’ method hence provides a generic tool for detecting anomalies in SF
patterns with unitary symmetries. It is possible that this method can be generalized to anti-unitary
symmetries[7], although the idea of ‘gauging’ applies most naturally to unitary symmetries.

7 Non-anomalous SF pattern as 2D spin liquid

Combining the consistency condition and the anomaly detection methods, we can now try to
enumerate all SF patterns that can be realized in strictly 2D models with a given topological order
and given global symmetry. In section 7.1, we review one such effort for Kagome lattice chiral
spin liquid – a system with chiral semion topological order and symmetries common to a spin
model on Kagome lattice (spin rotation, lattice symmetry, etc). Which one of these possible SF
patterns is actually realized in the physically realistic models, like the nearest neighbor Heisenberg
model? To answer this question, we need to be able to detect SF patterns through numerical or
experimental probes. Some of the proposed probing methods are reviewed in section 7.2 and section
7.3 respectively.

7.1 Classification Example

[12] and [64] considered the classification of chiral spin liquid on the Kagome lattice. The chiral
spin liquid contains one nontrivial anyon – the semion s, which can carry fractional representations
of SO(3) spin rotation, translation and plaquette centered inversion symmetry. While in a chiral
spin liquid time reversal and reflection symmetries are individually broken, their combined action
can still be preserved, under which the semion can transform projectively. It was found in [12] and
[64] that in the physically interesting case of an odd number of spin 1/2s per unit cell, there is only
one non-anomalous SF pattern for the chiral spin liquid.

First, it was proven that in a lattice with an odd number of spin 1/2s per unit cell, at least one
anyon has to carry half integer spin[10]. In this case, it has to be the semion. Here we want to
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comment that half integer spin is a nontrivial fractionalization pattern for the anyons even though
the system is composed of half integer spins per lattice site. This is because, as long as the Hilbert
space on each lattice site is not a direct sum of half integer and integer spins, global excitations
(the difference between excited state and ground state) always carry integer spin. Only fractional
excitations like the anyons can carry half integer spins.

In the next step, fractional quantum numbers are determined for the semion under translation
symmetry Tx, Ty, inversion symmetry Iv and the combined action of reflection and time reversal
Rx, Ry. It was found that the only non-anomalous possibility is that

U(Iv)
2 = s, U(Tx)U(Ty)U(T−1

x )U(T−1
y ) = s, U(Rx)2 = s, U(Ry)

2 = s (53)

which is saying that, for example, applying inversion (Iv) twice on the semion results in the phase
factor of −1(the braiding statistics between two semions). Therefore, the SF pattern of the chiral
spin liquid on Kagome lattice is completely fixed by the consistency condition and the anomaly
free condition.

7.2 Numerical Probe

In other types of spin liquids (with different topological order or lattice symmetry), usually more
than one SF pattern is potentially realizable[31, 30, 33, 65, 43, 4, 29, 42]. To determine which one
is actually realized in a specific model, one can perform tests in numerical simulations, as discussed
in [25, 12, 63, 60, 45, 64, 47].

A useful geometry for this purpose is the cylinder, as shown in Fig.11, with periodic boundary
condition in the y direction and open boundary condition in the x direction. Consider the situation
where the circumference along the y direction is finite while the length along the x direction is
infinite. The 2D topological state with symmetry is then effectively reduced to a 1D gapped state
with symmetry, with 1D symmetry protected topological order. This process is called ‘dimensional
reduction’.

y

x

a ā

Figure 11: Putting the 2D system on a cylinder with finite circumference effectively reduces the
system to 1D; creating a pair of anyons a and ā at the two ends of the cylinder can change the
symmetry protected topological order of the 1D state which can be measured to determine the SF
pattern of a.

Now to detect symmetry fractionalization, one can create a pair of anyons a and ā and bring them
to the two ends of the cylinder. This process can change the symmetry protected topological order
of the dimensional reduced system and the SF pattern of a is encoded in the change of the edge
state of the 1D system. By measuring the symmetry protected topological order of the dimensional
reduced system with, e.g., nonlocal order parameters[41, 18], one can determine the SF pattern of
different anyons.
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7.3 Experimental Probe

In fqH systems, the fractional charge carried by the anyons has been directly measured through
shot-noise and local tunneling experiements[61, 13, 48, 32]. For spin liquids, candidate systems
have been identified in organic Mott insulator κ-(BEDT-TTF)2Cu2(CN)3[52] and herbertsmithite
ZnCu3(OH)6Cl2[20] etc. The nonexistence of magnetic order in these materials at very low tem-
perature gives strong evidence that they are in a spin liquid state[19]. Can we obtain more direct
evidence for the existence of a spin liquid by, for example, identifying the SF pattern? Several
proposals have been made to address this issue.

[51] discussed different ways to detect spin charge separation in a spin liquid. In particular, in a
superconductor – insulator – superconductor junction, if the insulator contains chargons – spinless
charge e− bosons, the ac Josephson current obtained by applying a dc voltage V across the junction
will have an oscillating component at frequency ω = e−V/~ in addition to the component at
ω = 2e−V/~. Similarly, the tunneling conductance into small superconducting islands across an
insulating barrier behaves differently if the insulating barrier has spin-charge separation. With
non-fractionalized insulating barrier, the tunneling conductance vary with the total charge on the
island with a period of 2e−. If the the barrier contains chargons, the period becomes e−.

More recently, [1] proposed that spin-charge separation can be directly measured by tunneling
electrons into the spin liquid through suitably chosen boundary state. In particular, if chargons
(spinons) are condensed at the boundary, electrons can leave their charge (spin) behind and enter
the spin liquid as a fractional particle. This can be detected through the oscillation of the local
density of states of the tunneling electron with the applied voltage, which results from the coherent
propagation of fractional particles across the spin liquid.

On the other hand, [15] discussed experimental signature of crystal momentum fractionalization in
Z2 spin liquid. For example, translation in the x and y direction can anti-commute on a spinon

Ue(Tx)Ue(Ty)Ue(T
−1
x )Ue(T

−1
y ) = −1 (54)

That is, bringing the spinon around a plaquette in the square lattice results in a phase factor of
−1. If this is the case, then [15] showed that the density of states of the two-spinon continuum
in the spectrum has an enhanced periodicity. In particular, for any two spinon state |a〉, applying
translation on only one of the spinon generates three other different states Ue1(Tx)|a〉, Ue1(Ty)|a〉,
Ue1(Tx)Ue1(Ty)|a〉 with different lattice momentum but the same energy. Therefore, the density
of states repeats itself four times in the Brillouin zone, which can be detected through neutron
scattering experiments.

8 Anomalous SF pattern on surface of 3D systems

When the SF patterns are anomalous, they cannot be realized in strictly 2D systems. However,
they are not completely impossible either. It was realized that they can be found on the surface of
a 3D system and their anomaly is a reflection of the nontrivial order inside the 3D bulk, as shown
in Fig.12. This connection was first pointed out in [54] and many examples have been worked out
demonstrating this kind of bulk-boundary correspondence. We review several interesting cases in
this section, with anomalous SF pattern on the surface and symmetry protected topological order
in the bulk.
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Nontrivial bulk 
order 

Figure 12: Anomalous SF patterns can be realized on the surface of a 3D system and their anomaly
is a reflection of the nontrivial order in the 3D bulk.

8.1 Bosonic Topological Insulator

First, it was realized[54, 58] that the eCmC SF pattern with time reversal discussed in section 6.1
can be realized on the surface of a 3D bosonic topological insulator. Being on the surface of a 3D
system, it avoids the contradiction discussed in section 6.1 where the nonzero Hall conductance on
the edge explicitly breaks time reversal. This is due to a simple, yet powerful, geometric observation
that the 2D boundary of a 3D bulk does not have a boundary of its own. Therefore, we will not
be able to observe the nonzero Hall conductance and there is no contradiction to the system being
time reversal invariant. On the other hand, its existence as the 2D surface indicates special order
in the 3D bulk, even though the anyons only live on the surface and cannot tunnel into the bulk. In
particular it was shown[36] that the monopole in the 3D bulk is a fermion – the ‘statistical Witten
effect’, indicating that the bulk state cannot be smoothly connected to a product state without
breaking charge conservation and time reversal symmetry. The bulk state is the so-called ‘Bosonic
topological insulator’ , following the terminology of fermionic topological insulators[17, 38, 46].

8.2 Bosonic Z2 × Z2 symmetry protected topological phases

The projective semion SF patterns discussed in section 6.5 are realized on the surface of 3D bosonic
symmetry protected topological phases with Z2×Z2 symmetry. It was shown in [7] that the PSX ,
PSY and PSZ SF patterns are realized on the surface of three different nontrivial phases. A
strong indication of the relation between the surface anomaly and the bulk symmetry protected
topological order is that they are both characterized by ν(f, g, h, k) (Eq.51), the fourth cocycle
of the group. This kind of bulk-boundary correspondence is expected to apply for all unitary
groups[55]. Moreover, one of the 3D bosonic symmetry protected topological phases with time
reversal symmetry seems to fit into this scheme as well whose surface can have Z2 topological order
with both e and m transforming under time reversal as a Kramer doublet[6]. If we use Eq.51 to
compute ν(f, g, h, k), we would obtain the nontrivial cocycle related to the bulk order.

8.3 Fermionic Topological Insulator

It is of great interest to investigate what kind of SF pattern can exist on the surface of 3D fermionic
topological insulator, whose bulk state has been realized experimentally[23, 24, 9]. [5, 56, 8, 37]
addressed this question and found the following two answers: the T-Pfaffian state and the Pfaffian-
anti-semion state. Table 13 summarizes the anyon content and the SF pattern of the two states.

The two states share the following common properties: 1. as surface states, they have both time
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Figure 13: The SF pattern on the surface of a 3D fermionic topological insulator. (a) the T-Pfaffian
topological order is composed of an Ising sector (I, σ, ψ) and a U(1)8 sector (0 ∼ 7) (b) the Pfaffian
anti-semion topological order is composed of an Ising sector, an anti-semion sector (s) and a U(1)8

sector. Entries in the table are topological spins of the anyon. Anyon pairs connected with an
arrow are time reversal partners. Blue entries are for time reversal singlets while red entries are for
time reversal doublets. The charge carried by the anyons are given in the last row of the tables.

reversal and charge conservation symmetry; 2. if realized in 2D with charge conservation symmetry,

the system would have Hall conductance σxy =
(e−)

2

2h and hence break time reversal symmetry; 3.
if superconductivity is induced in the states, the π flux would host a Majorana zero mode. All these
ensures that they are consistent with the bulk order. Although it suffices to have non-interacting
electrons to realize the bulk state, to induce topological order and symmetry fractionalization on
the surface, strong interaction is necessary. Exactly what kind of interaction is needed is still under
investigation. By considering possible surface SF patterns, a complete classification of interacting
topological insulators has been obtained[57]. Therefore, the study of SF pattern on the surface
provides a useful strongly interacting perspective of symmetry protected topological phases. More
discussions of these surface states can be found in [34, 50, 39]

8.4 Fermionic Topological Superconductor

[16, 35, 34, 62] studied the SF pattern possible on the surface of fermionic topological superconduc-
tors and the findings are listed in table 1. An interesting observation obtained from this analysis
is that, when ν = 16 (i.e. 16 copies of the elementary topological superconductor), the SF pattern
becomes non-anomalous, implying that the ν = 16 topological superconductor can be smoothly
connected to a trivial s-wave superconductor. Such a connection is of course only possible with
strong interaction, as in the non-interacting classification each integer ν corresponds to a differ-
ent topological superconductor[49, 28]. A similar conclusion is reached for topological crystalline
insulators where the ν = 8 state is found to be trivial through the study of surface SF pattern[44].
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