

II. Basic Materials Issues

- Crystal Structures
 - Nb-Ti: body centered cubic *simple, ductile*
 - Nb₃Sn: cubic A15 Crystal structure with range of off-stoichiometric compositions
 - BSCCO: complex layered phase(s) not found at fixed stoichiometry of nominal phase
 - YBCO: layered phase of fixed cation stoichiometry but variable O content
- Only Nb-Ti is ductile
- Essential Phase Diagram Information
 - well known for LTS, poorly known for HTS

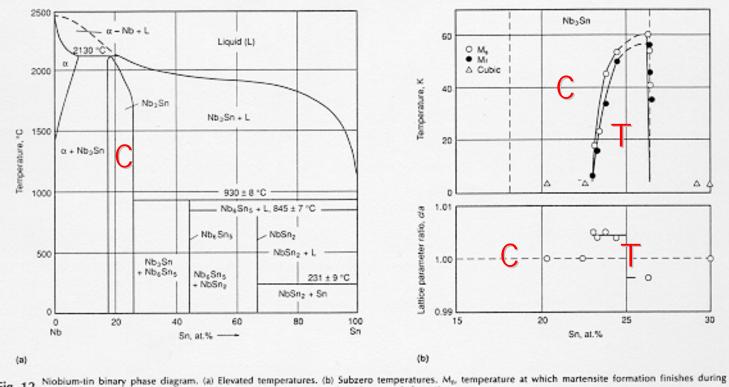
lla. Nb-Ti Phase Diagram

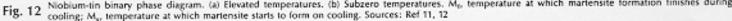
Key features:

•Very high melting points

•Large separation liquidus and solidus leads to segregation on cooling

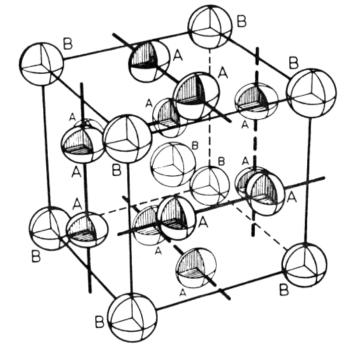
Nb is bcc at all T, while Ti is bcc at high T and hcp at low T
Nb-Ti alloys want to become 2 phase hcp and bcc at low T but cannot transform by diffusion
The lattice acquires a soft phonon that has very important


consequences:


•E declines on cooling •p increases on cooling •The martensitic phase transformation is only incipient for Nb47wt.%Ti but the resistivity is greatly increased and H_{c2} increased too

University of Wisconsin-Madison Applied Superconductivity Center

IIb. Nb-Sn Phase Relations


C: Cubic A15, higher H_{c2} phase, T: Tetragonal A15 phase

Broad composition range 18-25at.%Sn, LT shear transformation to a small tetragonality, lowering T_c and H_{c2}

University of Wisconsin-Madison Applied Superconductivity Center

IIc. Nb₃Sn Structure

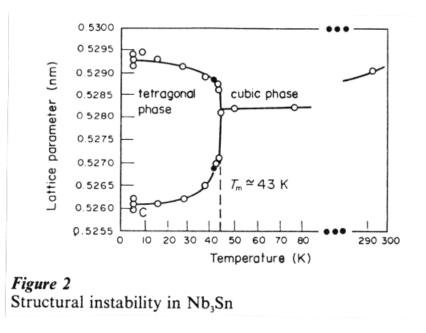


Figure 1 The A15 type structure A_3B , space group Pm3n

Cubic structure with 3 orthogonal chains in which the Nb atoms are more closely spaced than in pure Nb: high N(0).

Departures from stoichiometry must be accommodated by University of Wisconsin-Madison Applied Superconductivity Center Vacancies or anti-site disorder

IId. The BSCCO Family

2212

 $\gamma \sim 200-300$

~70-95K

Bi-O double

Bi-O double

 γ may be ~ 50

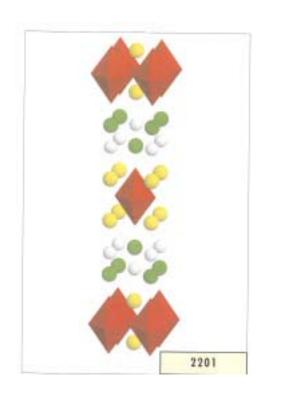
layer

Sr

Ca

CuO₂

 CuO_2

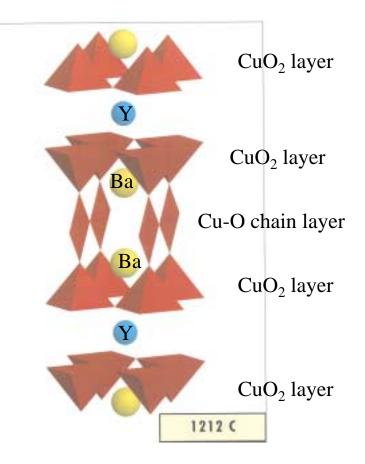

 CuO_2

 CuO_2

~105-110K

2223

layer


Tc ~30K

University of Wisconsin-Madison Applied Superconductivity Center

Ile. YBCO

- YBCO (YBa₂Cu₃O_{7-x}) possesses the first crystal structure with T_c > 77K
- It has defined cation stoichiometry 1:2:3, but O content is variable from 6-7
 - $T_c > 90K$ demands x<0.05
- YBCO is often thought of as being archetypal but in fact the Cu-O chain layers are very unusual
 - Make charge reservoir layer metallic
 - Most HTS are 2D, but YBCO is anisotropic 3D with electron mass anisotropy $\gamma = (m_c/m_a)^{0.5}$ of ~7

IIf Summary Materials Issues

- Higher T_c means greater crystal complexity
 - body centered cubic Nb-Ti with random site occupation, ductile
 - phonon anomalies
 - Nb₃Sn ordered A15 phase, brittle
 - other intermetallics often distort phase field
 - YBCO is anisotropic 3D, low carrier density, cation stoichiometric, brittle
 - metallic charge reservoir layer
 - BSCCO has 3 layered phases none of which exist at cation stoichiometry, micaceous with self-aligning tendencies
 - strongly anisotropic, 2D (but depends on doping state)
 - poorly understood phase relations

• Materials quality at scale of ξ is always an issue! University of Wisconsin-Madison Applied Superconductivity Center