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1 Outline

• 2D XY Model

• Continuous Symmetry, Mermin-Wagner Theorem

• Vortices

• Electrostatics and Coulomb Gas Representations

• Experiments on 4He films and superconducting films

• Duality Transformations

• Sine-Gordon Representation and RNG Analysis (Still Under Construc-
tion)

The reader is directed to Refs. [1–9] which are a useful general back-
ground.

2 Gauge Invariance and Continuous Symme-
try

In the previous lecture I discussed the nature of symmetry breaking in su-
perconductors. The superconducting state is described by a complex order
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parameter whose properties are essentially those of a macroscopic wave func-
tion

|Ψ| eiϕ(�r) ≡
〈
ψ†

↑(�r)ψ
†
↓(�r)

〉
. (1)

In the Ginzburg-Landau mean field theory one neglects fluctuations and the
mean field transition temperature is defined by the point at which the am-
plitude of the order parameter first becomes non-zero. In reality there are
always thermal fluctuations so that the rms value of the magnitude of the
order parameter is always non-zero. It turns out that for the special case of
two dimensions, the true transition temperature can be substantially below
the mean-field Tc and is controlled primarily by fluctuations in the phase
of the order parameter. In our discussion, we will therefore take the order
parameter amplitude to be unity everywhere.

The microscopic Hamiltonian H commutes with electron number

[H, N̂ ] = 0, (2)

where
N̂ ≡ ∑

σ

ψ†
σψσ. (3)

Let us define the unitary transformation

U ≡ e+iθN̂ . (4)

Particle number conservation is represented by the fact that H is invariant
under this transformation

UHU † = H. (5)

The transformation U is a special case of the more general case of a gauge
transformation in which the phase angle θ varies with position. See Appendix
A for further details. Hence gauge invariance is equivalent to particle number
conservation. Note however that the order parameter has less symmetry
than the Hamiltonian and it is not invariant under this transformation and
therefore is not gauge invariant〈

Uψ†
↑(�r)ψ

†
↓(�r)U †〉 = e2iθ

〈
ψ†

↑(�r)ψ
†
↓(�r)

〉
= ei[ϕ(�r)+2θ]. (6)

The factor of two in the exponential tells us that we have a ‘charge two’ order
parameter.
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Charge conservation guarantees that the energy is invariant under the
continuous global U(1) transformation

ϕ(�r) −→ ϕ(�r) + 2θ. (7)

Neglecting fluctuations in the amplitude of the order parameter, the simplest
form consistent with this symmetry is

U =
1
2
ρs

∫
d2r |∇ϕ|2 , (8)

where ρs is called the (bare) ‘spin stiffness’ or ‘superfluid density’ and in 2D
has units of energy. It therefore sets the characteristic temperature scale for
the system.

This 2D XY model is used to describe superfluid 4He and 3He films as
well as superconducting films. [In the case of superconducting films, it is im-
portant that there be sufficient disorder and/or that the films be sufficiently
thin that the magnetic penetration length is much larger than the system
size. Otherwise magnetic screening needs to be included in the model and
the Kosterlitz-Thouless transition is destroyed.] The model is also relevant to
some high Tc materials like BSSCO which has extremely weak interlayer cou-
pling. The actual phase ordering transition is 3D but there is a temperature
regime in which the layers act approximately independently.

Because this model has a continuous symmetry, the Mermin-Wagner the-
orem guarantees that it can not show true spontaneous symmetry breaking
in 2D. That is, true long-range order

lim
r→∞〈e−iϕ(�r)eiϕ(�0)〉 
= 0 (9)

is impossible at any finite temperature. To see why this is so, consider the
partition function at inverse temperature β

Z =
∫

Dϕ e−β 1
2ρs

∫
d2r |∇ϕ|2 , (10)

where
∫ Dϕ indicates a functional integral or partition sum over all possible

configurations of the field ϕ. The first suspicious thing we notice is that this
seems to be a simple gaussian model which can’t possibly have any phase
transition at all. We will come back to this subtlety shortly. For now let us
take it at face value and use that fact that for a gaussian model

G(r) ≡ 〈e−iϕ(�r)eiϕ(�0)〉 = e− 1
2 〈[ϕ(�r)−ϕ(�0)]2〉. (11)
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Using the fact that the quadratic form is diagonal in Fourier space we have

〈ϕ−�qϕ�q〉 = 1
βρsq2 (12)

From this
〈
ϕ(�r)ϕ(�0) − ϕ(�0)ϕ(�0)

〉
=
∫ d2q

(2π)2
1

βρsq2 [e
i�q·�r − 1] (13)

The momentum integral has an ultraviolet cutoff 1/a set by some microscopic
length in the problem (such as the Cooper pair size). In the infra-red the
logarithmic divergence is cut off by 1/r. Thus for r � a we can approximate
the integral as

1
2πβρs

∫ 1/a

1/r
dq

1
q
[0 − 1]. (14)

That is, we take the exponential to cancel the −1 term for qr < 1 and assume
that the exponential oscillates so rapidly for qr > 1 that we can replace it
by zero. The result for the correlation function is then

〈
ϕ(�r)ϕ(�0) − ϕ(�0)ϕ(�0)

〉
= − 1

2πβρs
ln
(
r

a

)
. (15)

Finally we obtain (for r � a) the result that G decays to zero algebraically

G(r) ∼
(
a

r

)η(T )
(16)

where
η(T ) =

kBT

2πρs
. (17)

This result has several important implications. First it demonstrates that
there is no long-range order for T > 0, in agreement for with the Mermin-
Wagner theorem. Second it seems to indicate that the system is ‘critical’
at any temperature–there is no characteristic length scale associated with
exponential decay since G decays algebraically for all T > 0.

Something has to be wrong however. Surely at temperatures T � ρs,
the quasi-long-range correlations should be destroyed and G should decay
exponentially. Indeed, there is something wrong. Our gaussian model has
neglected the existence of topological defects, vortices, in the order param-
eter. There are two ways to remedy this problem. We can include in our
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partition sum singular configurations of the ϕ field such as those illustrated in
Figs.(1-2). The second way is to modify the model so that these excitations
appear naturally by introducing a lattice regularization

H = −J∑
〈ij〉

cos(ϕi − ϕj), (18)

where i and j label lattice sites on (say) a square lattice of lattice constant a
and the sum is over near neighbors. Defining 2D spin vectors �S by Sx+iSy =
eiϕ, we can map this onto a model of a 2D magnet with easy plane anisotropy

H = −J∑
〈ij〉

�Si · �Sj. (19)

If we assume T � J so that the spins are nearly parallel on neighboring sites
then we can expand the cosine to second order to obtain the lattice gaussian
model

H ≈ 1
2
J
∑
〈ij〉

(ϕi − ϕj)
2 . (20)

The continuum approximation to this model is identical to Eq.(8) if we take

J = ρs. (21)

This is the reason that ρs is often referred to as the ‘spin stiffness’ instead of
the superfluid density.

The key feature of the lattice regularization of the model used in Eq. (18)
is that it has an additional symmetry not present in the gaussian approxi-
mation used in Eqs. (8) and (20). In addition to being invariant under the
continuous global U(1) transformations in Eq.(7), it is also invariant under
discrete local transformations which change any single spin

ϕi −→ ϕi ± 2π. (22)

This is a key feature because it permits the existence of vortices. A vortex
is a topological defect in which the phase winds by ±2π in going around the
defect as illustrated in Figs. (1-2)

∮
d�r · �∇ϕ = 2πnW (23)
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where nW = ±1 is the topological ‘charge’ or winding number. 1 In the
presence of a vortex there is a discontinuity in ϕ where the 2π value is
adjacent to the ϕ = 0 value. Of course this is totally missed in the gaussian
approximation.

To put it in more formal language, it is crucial to recognize that ϕ is
a compact variable living on the unit circle. The gaussian model implicitly
takes it to be non-compact and living on the real line.

We can now ask ourselves how much energy it costs to introduce a vortex
into the system. In the continuum limit the phase field configuration for a
right-handed vortex centered on the origin as shown in Fig. (1) is simply

ϕ(�r) = θ(�r) + θ0 (24)

where θ = arctan(y/x) is the azimuthal angle at position �r and θ0 is an
arbitrary constant. Hence we have �∇ϕ = θ̂

r
and the energy cost in a system

of size L is
E =

∫ L

a
dr 2πr

1
2
ρs

1
r2 ∼ πρs ln

(
L

a

)
+ Ec. (25)

The integration at short distances is cutoff by the core size ξ0 ∼ a of the
vortex, and Ec is the core energy. The core energy in the XY spin model
is on the scale of ρs and is not an independent parameter. In a model with
more than near-neighbor couplings or in the continuum Ginzburg-Landau
model where the diameter of the core region depends on the GL coherence
length ξ0, the core energy is an adjustable parameter that has to be fit to
experiment.

The integration at large distances diverges logarithmically with system
size. We thus see that the vortex costs an infinite amount of energy in the
thermodynamics limit, so perhaps we were justified after all in neglecting
vortices in our original calculation. This is not the case however, as can be
seen by computing the entropy. The number of independent places where
the vortex can be located is ∼ L2/a2 and so the entropy is

S = kB ln
L2

a2 . (26)

The free energy cost to introduce a single vortex is therefore

F = πρs ln
(
L

a

)
+ Ec − 2kBT ln

L

a
. (27)

1In principle it is possible to have vortices with higher winding numbers but these are
generally expensive energetically and can be safely ignored.
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In the thermodynamic limit, this changes sign from positive to negative as
T increases through the Kosterlitz-Thouless temperature

TKT =
π

2
ρs. (28)

At this point vortices begin to proliferate and G(r) begins to decay exponen-
tially on a length scale given by the typical spacing between vortices

G(r) ∼ e−r/ξ(T ) (29)

where ξ(T ) scales with the inverse square root of the vortex density. It can be
shown from a renormalization group analysis that the decay length diverges
extremely rapidly near the critical

ξ(T ) ∼ e−b|T−TKT|−1/2
. (30)

[This divergence is faster than any power law and so the correlation length
exponent (defined by ξ ∼ |T − TKT|−ν) obeys ν = ∞.]

Below TKT vortices can exist only in bound pairs with opposite vorticity
[see Fig. (3)] held together by a logarithmic confining potential (discussed
in the next section). Eq. (28) is not exact because it considers only a single
vortex rather than many interacting vortices. As we will see, the bound pairs
of vortices at short distances renormalize the bare spin stiffness ρs measured
on long length scales. If however we use this spin stiffness measured on long
length scales then this expression for the critical temperature is exact.

Above TKT the finite density of unbound vortices causes the spin stiffness
to drop discontinuously to zero. It is a peculiar feature of this 2D transi-
tion, that the stiffness is discontinuous even though the transition itself is
continuous. Notice also that in addition to a ‘universal jump’

ρs
TKT

=
2
π

(31)

in the superfluid density, the algebraic decay exponent in Eq. (17) takes on
the universal value

η = 1/4 (32)

as TKT is approached from below. The universal jump in superfluid density
is beautifully illustrated in the data of Bishop and Reppy [10] reproduced in
Fig. (4).

All of this remarkable phenomenology can be understand within an elec-
trostatics analogy discussed in the next section.
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3 Electrostatics Representation

It is very useful to develop a representation in which vortex singularities in
the ϕ field play the role of point charges in a 2D electrostatics analogy. Let
us therefore define a ‘displacement field’ by

�D = �∇ϕ × ẑ. (33)

Examples of this are shown in Figs. (1-2). Using Eq. (24) we see that

�∇ · �D = �∇ × �∇ϕ = 2πnw δ2(r). (34)

This is simply the 2D version of the Poisson equation from electrostatics
for a point charge whose strength is the vortex ‘topological charge’ (winding
number). The fact that the coefficient of the delta function is 2π rather than
the familiar 4π is simply from the fact that the circumference of a circle is
2πr while the area of a sphere is 4πr2. The electric (displacement) field from
a point charge of unit strength in 2D (equivalent to a line charge in 3D) is

�D =
r̂

r
(35)

and the flux passing through a circle of radius r is 2π.
Defining the ‘dielectric constant’

ε =
1

2πρs
, (36)

and defining the electric field via

�D = ε �E, (37)

Eq. (8) for the energy of the XY model becomes the usual (2D) electrostatics
expression

U =
1
4π

∫
d2r �E · �D. (38)

The electrostatic potential V produced by a charge can be found from inte-
grating

�E = nw
r̂

εr
(39)
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to obtain (after a somewhat arbitrary but convenient choice of integration
constant)

V (r) = −nw
ε

ln
(
r

a

)
. (40)

The statistical mechanics of a collection of interacting vortices is thus
that of a 2D plasma of charges with potential energy

U = −1
ε

∑
i<j

qiqj ln
∣∣∣∣∣�ri − �rj

a

∣∣∣∣∣ , (41)

where qi = ±1 is the winding number of the ith vortex.
It is a little strange that the magnitude of the interaction increases with

distance, but still we see that opposite charges attract. It costs an infinite
energy to pull a bound pair apart and so the systems exhibits charge confine-
ment at low temperatures and is an ‘insulator’ in the electrostatics analogy.
In the language of the superconductor however this ‘insulator’ is the ordered
dissipationless superconducting phase. For T > TKT the bound pairs ionize
due to the effects of entropy and mutual screening and the system becomes a
conducting plasma. This ‘metal’ in the electrostatics analogy is highly dissi-
pative due to the vortex motion and so is the ‘normal’ non-superconducting
phase in the language of the superconductor.

Having established the electrostatics analogy it is now extremely easy to
see what the effect of a uniform supercurrent is on a bound vortex pair. The
uniform supercurrent density is established by a background phase gradient
in the order parameter

�Js =
2e
h̄
ρs�∇ϕ. (42)

This expression can be derived from general gauge invariance considerations
(see Appendix A), but here we simply note that the prefactor has the cor-
rect engineering units. The pseudo ‘electric field’ established by this phase
gradient is simply

�E =
h̄

2e
1
ερs

�Js × ẑ =
h

2e
�Js × ẑ. (43)

The force that this produces on a (stationary) vortex with ‘charge’ q = nw is

�F = nw
h

2e
�Js × ẑ (44)

is at right angles to the current and is called the Magnus force (or in a different
interpretation, the Lorentz force). This force is opposite in sign for each

9



member of a bound pair of vortices and so the bound pair can polarize but
will not otherwise respond (see below however). This polarization is exactly
like electric polarization in a medium and contributes to the renormalization
of the dielectric constant. The increase in ε in this case corresponds to a
decrease in the spin stiffness. The weakly bound pairs become infinitely
polarizable at TKT and drive 1/ε and therefore ρs discontinuously to zero.

If there are unbound vortices (as is the case above TKT), they drift under
the influence of the Magnus force, dissipating energy in their normal cores
and in the lattice, thereby destroying the superfluid or superconducting state.
For weak applied force we expect linear response to hold and the drift velocity
will obey

�v = µ�F (45)

where the ‘mobility’ µ is determined by various microscopic details and the
normal state resistivity of the material.

The phase difference between the top and bottom of the sample of height
L slips by 2π each time a vortex crosses the sample horizontally. The time it
takes a vortex to drift across the sample of width W is W/v and the number
of vortices in the sample is nVLW . Hence it follows that the rate of phase
slip due to an applied current J is

ϕ̇ = 2πLnV µ
h

2e
J, (46)

where nV is the total vortex density (n+ +n−). From the Josephson relation

h̄ϕ̇ = 2eV, (47)

the (true) voltage drop is

V = LnV µ

(
h

2e

)2

J, (48)

and the (true) resistivity of the material is

ρ =
(
h

2e

)2

nV µ = σV , (49)

where the flux quantum h
2e can be interpreted as the vortex ‘charge’ and σV

as the vortex ‘conductivity’ in analogy to the usual expression for electron
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conductivity σ = e2nµ. This is an example of a ‘duality relation’ in which the
resistivity of the particles is related to the conductivity of the ‘dual particles,’
the vortices.

Using the fact that the vortex density nV ∼ ξ−2 and Eq. (30) we see that
above TKT the resistance varies extremely rapidly with temperature

R ∼ e2b|T−TKT|−1/2
. (50)

Experimental confirmation of this is shown in Fig. (5).
I remarked above that bound pairs of vortices don’t do much. This isn’t

quite correct. It turns out that instead of simply polarizing, each bound pair
has a small probability of being ‘ionized’ by the ‘electric field’ (supercurrent).
This means that the critical current is actually zero and there is always some
dissipation in a 2D film (although the dissipation can be exceedingly weak).
To see how this works, consider the energy of a bound pair of separation
d under the combined influence of their mutual attraction and the applied
current

U = 2πρs ln
(
d

a

)
− h

2e
Jd. (51)

The second term is linear in the separation because the force from the external
‘field’ is constant. Consider the case of very tiny J . Then for small d the
second term is not important and the interaction energy rises logarithmically
with distance. This confining potential is eventually overwhelmed however
(even for tiny J) because the second term varies linearly with d while the first
term rises only logarithmically. Extremizing this expression with respect to
d shows that the maximum in the energy cost

U(d∗) = 2πρs ln
(
J0

J

)
(52)

occurs at a distance
d∗ = a

J0

J
(53)

where
J0 ≡ 2eρs

h̄a
(54)

is a measure of the maximum possible scale of the current density. Random
fluctuations will thermally activate this pair over the energy barrier at a rate
given by the Arrhenius law

Rionization ∝ e−βU∗
. (55)
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From the law of mass action, we expect that the rate of recombination of
unbound pairs of vortices obeys

Rrecombination ∝ n+n− ∝ n2
V . (56)

Equating these two rates in steady state shows that the non-equilibrium
density of free (unbound) vortices is

nV ∝
√
Rionization ∝ e−βU∗/2 ∝

(
J

J0

) 1
2η(T )

, (57)

where η(T ) is the exponent defined in Eq. (17). Since the resistivity is propor-
tional to this quantity we immediately have a scaling law for the non-linear
current voltage curve

V ∼ Ja (58)

where from Eqs. (17) and (28), the exponent a has the simple form

a = 1 + 2
TKT

T
. (59)

For T > TKT the system is in the normal state (since unbound pairs can be
thermally excited even without a driving current) and the behavior will be
linear (ohmic) for small J . Thus we expect a universal jump in the exponent

a = 3 → a = 1, (60)

as we pass through TKT. This is in fact observed experimentally as illustrated
in Fig. (6) and Fig. (7) reproduced from Mooij’s article in Ref. [2].

A Gauge Invariance

We are used to thinking about gauge invariance in first quantization terms.
If we make a local phase change on a single-particle wave function

ψ(�r) −→ Uψ(�r) (61)

where
U = eiθ(�r) (62)
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then the velocity operator transforms according to

U
(
�p+

e

c
�A
)

U † = �p+
e

c
�A− h̄�∇θ (63)

which we can interpret as a gauge change

�A −→ �A− h̄c

e
�∇θ. (64)

The analogous transformation in second quantized language is

U = exp
(
+i
∫
d2r θ(�r)n̂(�r)

)
(65)

where
n̂(�r) = ψ†(�r)ψ(�r) (66)

is the local density operator. The analog of Eq.(61) is

ψ†(�r) −→ Uψ†(�r)U † = eiθ(�r)ψ†(�r). (67)

For the case of constant θ the vector potential is unchanged and the
Hamiltonian will remain invariant, provided that it conserves particle number[

H,
∫
d2r n̂(�r)

]
= 0. (68)

Thus gauge invariance and charge conservation are one and the same. See
Schrieffer’s book for further discussion of this point. [11]

From the transformation properties of the charge two order parameter
in Eq. (6) we see that the XY model in Eq. (18) transforms under a gauge
change according to

U −→ 1
2
ρs

∫
d2r

(
�∇ϕ − 2e

h̄c
�A.
)2

(69)

It follows that this must be the correct form in general, even when �A has
a curl and is therefore physical. The definition of the current density is the
functional derivative of the energy (or free energy) with respect to the vector
potential

Jα(�r) ≡ −c δU

δAα(�r)
. (70)

Eq. (42) follows directly from this result (in the limit of zero vector potential).
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Figure 1: (a) ϕ field configuration for a vortex with winding number +1.
(b) �∇ϕ for this vortex. (c) The field �D ≡ �∇ϕ × ẑ used in the electrostatics
representation. (e-f) corresponding configurations after a global U(1) trans-
formation ϕ −→ ϕ+π. Notice that the winding number has not changed. It
is still +1 and the �∇ϕ and �D fields (as well as the energy) are left unchanged
by the transformation.

Figure 2: Same as Fig. (1) but for a vortex with winding number −1.

Figure 3: Bound pair of vortices with opposite winding numbers. These
objects are bound together by the logarithmic confining potential below TKT.

Figure 4: Filled circles: Superfluid density of a 4He film measured with a
torsional pendulum. Dashed line is the theoretical curve for a static theory
[12] that ignores the finite oscillation frequency of the pendulum. Solid line
is a four parameter fit to the dynamical theory of Ambegaokar et al. [13]
Data of Bishop et al. [10]

Figure 5: Resistance of a film above the Kosterlitz-Thouless temperature fit
to a model in which the resistance is proportional to the vortex density ξ−2

with ξ given by Eq.(30). Data of Hebard and Fiory [14].

Figure 6: Non-linear IV characteristics of 2D superconducting films at differ-
ent temperatures. Note that at the critical temperature, V ∼ I3 as expected.
Data of Epstein et al. [15].

Figure 7: Exponent a in the nonlinear IV relation V ∼ Ia as a function of
temperature. Data of Epstein et al. [15].
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