B. Keimer

Max-Planck-Institute for Solid State Research

- 1. self-contained introduction
 - neutron scattering and spectroscopy
 - x-ray scattering and spectroscopy
- 2. application to correlated-electron materials
 - bulk
 - interfaces

- 1. weak correlations: Pb, Nb
- 2. intermediate correlations: Sr₂RuO₄
- 3. strong correlations: $YBa_2Cu_3O_{6+x}$
- 4. orbital degeracy: $La_{1-x}Ca_{x}MnO_{3}$ (Y,La)TiO₃
- 5. oxide heterostructures

- 1. weak correlations: Pb, Nb
- 2. intermediate correlations: Sr₂RuO₄
- 3. strong correlations: $YBa_2Cu_3O_{6+x}$
- 4. orbital degeracy: $La_{1-x}Ca_{x}MnO_{3}$ (Y,La)TiO₃
- 5. oxide heterostructures

Electron-phonon interaction

electron-phonon interaction in simple metals predicted by ab-initio LDA

example MgB₂

Kong et al., PRB 2001

strong coupling short phonon lifetime

für Festkörperforschung

typical phonon linewidth: 1-100 µeV

Inelastic nuclear neutron scattering

Neutron spectroscopy

triple axis spectrometer:

excitation energy \sim 1-100 meV energy resolution \sim 0.1-10 meV

triple axis – spin echo spectrometer: excitation energy \sim 1-100 meV energy resolution \sim 1 – 100 μeV

3 orders of magnitude gain in energy resolution \rightarrow possible to resolve excitation lifetimes in solids

TRISP Spectrometer at FRM-II

Brockhouse et al., PR 1963

ab-initio lattice dynamics

L. Boeri, MPI-FKF

lifetime renormalization below superconducting $T_c = 7.2$ K

Keller et al., PRL 2006

superconducting energy gap

merges with second linewidth maximum at low T

series of linewidth maxima persists up to T >> T_c

most likely origin: Kohn anomalies

but not predicted in TA branch by ab-initio LDA calculations

Accident ?

also rules out spin-orbit coupling as origin

Origin: Kohn anomaly?

at T = 122 K

Moncton et al., PRB 1977

scenario

- many-body effects beyond LDA: spin/charge density wave fluctuations
- dynamical nesting \rightarrow Kohn anomalies
- interference between SDW/CDW and superconducting fluctuations limits growth of superconducting energy gap
- not anticipated by theory

calculations needed !

- 1. weak correlations: Pb, Nb
- 2. intermediate correlations: Sr₂RuO₄
- 3. strong correlations: $YBa_2Cu_3O_{6+x}$
- 4. orbital degeracy: $La_{1-x}Ca_{x}MnO_{3}$ (Y,La)TiO₃
- 5. oxide heterostructures

Inelastic magnetic neutron scattering

$$\begin{split} \frac{d^2\sigma}{d\Omega\,dE} &= (\gamma r_0)^2 \frac{k_f}{k_i} N \, |F(\mathbf{Q})|^2 \, e^{-2W} \sum_{\alpha\beta} (\delta_{\alpha\beta} - \hat{Q}_{\alpha} \hat{Q}_{\beta}) S^{\alpha\beta}(\mathbf{Q}, \omega) \\ S^{\alpha\beta}(\mathbf{Q}, \omega) &= \frac{1}{2\pi\hbar} \int \sum_l e^{i\mathbf{Qr}_l} \left\langle S^{\alpha}_0(0) S^{\beta}_l(t) \right\rangle e^{-i\omega t} dt \end{split}$$

fluctuation-dissipation theorem

$$S^{\alpha\beta}(\mathbf{Q},\omega) = \frac{1}{\pi (g\mu_{\mathrm{B}})^2} \frac{1}{1 - e^{-\hbar\omega\beta}} \chi_{\alpha\beta}''(\mathbf{Q},\omega)$$

 $\chi''(\mathbf{Q},\omega) = \operatorname{Tr}[\chi''_{lphaeta}(\mathbf{Q},\omega)]/3$ dynamical magnetic susceptibility response to time- and position-dependent magnetic field

$$\frac{d^2\sigma}{d\Omega \, dE} = 2(\gamma r_0)^2 \frac{k_f}{k_i} N \left| F(\mathbf{Q}) \right|^2 e^{-2W} \frac{1}{\pi (g\mu_{\mathrm{B}})^2} \frac{1}{1 - e^{-\hbar\omega\beta}} \chi''(\mathbf{Q},\omega)$$

Stoner model

enhanced by electronic correlations (RPA)

$$\chi(q,\omega) = \frac{\chi_0(q,\omega)}{1 - J(q)\chi_0(q,\omega)}$$

J(q) peaked at q=0, sufficiently strong \rightarrow ferromagnetism

q

Sr₂RuO₄

layered structure isostructural to layered cuprates

electron configuration $3d^4$ electrons in t_{2g} orbitals

Sr₂RuO₄ spin excitations

ARPES Fermi surface strongly nested

band susceptibility

Mazin et al., PRL 1999

Sr₂RuO₄ spin excitations

inelastic magnetic neutron scattering

signal explained by "bare" band susceptibility no apparent role in driving p-wave superconductivity

- 1. weak correlations: Pb, Nb
- 2. intermediate correlations: Sr₂RuO₄
- 3. strong correlations: YBa₂Cu₃O_{6+x}
- 4. orbital degeracy: $La_{1-x}Ca_{x}MnO_{3}$ (Y,La)TiO₃
- 5. oxide heterostructures

$YBa_2Cu_3O_{6+x}$

- two-dimensional electronic structure
- no orbital degeneracy

YBa₂Cu₃O_{6+x} x-ray linear dichroism

- absorption cross section much greater for E || ab-plane $\rightarrow x^2-y^2$ orbital partially occupied
 - peak position
 independent of doping
 (Zhang-Rice singlet state)

Nücker et al., PRB 1995

YBa₂Cu₃O_{6+x}

Inelastic magnetic neutron scattering

spin-spin correlation function

Heisenberg antiferromagnet, magnon creation

$$\begin{array}{ll} \frac{d^2\sigma}{d\Omega\,dE} &=& (\gamma r_0)^2 \frac{k_f}{k_i} \, |F(\mathbf{Q})|^2 \, e^{-2W} \frac{(2\pi)^3}{4Nv_0} \{1 + (\hat{Q}\,\hat{\eta}\,)^2\} \times \\ & & \sum_{a\,=\,0,\,1}\, \sum_{q,\,K_{\rm m}} \langle n_{q,a} + 1 \rangle \, \delta(\omega_{q,a} - \omega) \, \delta(\mathbf{Q} - \mathbf{q} - \mathbf{K_{\rm m}}) \end{array}$$

YBa₂Cu₃O₆ magnons

$$H = \Sigma_{ij} \left(J_{\parallel} S_{i}^{(a,b)} \bullet S_{j}^{(a,b)} \right) + \Sigma_{i} \left(J_{\perp 1} S_{i}^{(a)} \bullet S_{i}^{(b)} + J_{\perp 2} S_{i}^{(b)} \bullet S_{i}^{(a)} \right)$$

für Festkörperforschung

YBa₂Cu₃O_{6+x}

YBCO_{6.6} spin dynamics

untwinned YBCO_{6.6} ($T_c = 61K$)

two-dimensional "hour glass" dispersion also seen in YBCO₇ and other high-T_c cuprates *Hinkov et al. Nature 2004 Nature Phys. 2007*

YBCO_{6.6} spin dynamics

 $T < T_c$

"hour glass" dispersion

$T > T_c$

"hour glass" replaced by "vertical" dispersion very large in-plane anisotropy

Hinkov et al., Nature Phys. 2007

Band susceptibility in superconducting state

$$\begin{array}{ll} \mbox{coherence factor} & \mbox{Fermi factor} \\ \chi_0(q,\omega) = \sum_k \{ \frac{1}{2} \left(1 + \frac{\varepsilon_k \varepsilon_{k+q} + \Delta_k \Delta_{k+q}}{E_k E_{k+q}} \right) \frac{f(E_{k+q}) - f(E_k)}{\omega - (E_{k+q} - E_k) + i\delta} & \mbox{scattering of thermally excited pairs} \\ + \frac{1}{4} \left(1 - \frac{\varepsilon_k \varepsilon_{k+q} + \Delta_k \Delta_{k+q}}{E_k E_{k+q}} \right) \frac{1 - f(E_{k+q}) - f(E_k)}{\omega + (E_{k+q} + E_k) + i\delta} & \mbox{pair annihilation} \\ + \frac{1}{4} \left(1 - \frac{\varepsilon_k \varepsilon_{k+q} + \Delta_k \Delta_{k+q}}{E_k E_{k+q}} \right) \frac{f(E_{k+q}) + f(E_k) - 1}{\omega - (E_{k+q} + E_k) + i\delta} \\ \mbox{pair creation} \\ \mathcal{E}_k & \mbox{band dispersion, measured from } \mathsf{E}_\mathsf{F} \\ E_k &= \sqrt{\varepsilon_k^2 + \Delta_k^2} \end{array}$$

yields only broad features, inconsistent with experiment

Spin exciton model

- "hour glass" reproduced
- upper cutoff of neutron spectrum direct measure of **bulk** Δ(q)
- agrees well with other probes of $\Delta(q)$

Eremin et al., PRL 2005 see also: many other RPA calculations

Spin exciton model

interlayer exchange interaction

Pailhes et al., PRL 2003, PRL 2006

- odd
- even
- gap estimated based on RPA

$$\frac{\omega_c - E_r^{odd}}{\omega_c - E_r^{even}} = \frac{W_{odd}(q_{AF})}{W_{even}(q_{AF})}$$
$$W_{e,o} = \int \chi''(q_{AF}, \omega) d\omega$$

Spin dynamics in superconducting state

1.5

0.5

neutron intensity maps

square at high energies ellipse at low energies

Hinkov et al., Nature Phys. 2007 see also: Mook et al., Nature 2000 Hayden et al., Nature 2004

RPA calculation

parameters from ARPES & LDA overall behavior consistent with experiment **but:** hard to reproduce spectral weight anisotropy at low E

Yamase & Metzner, PRB 2006

Static stripes ?

generic magnetic dispersion

predicted intensity maps at high energies

Vojta & Ulbricht, PRL 2004

Yao et al., PRB 2006 ... etc.

streaks at high energy predicted for untwinned samples inconsistent with square pattern observed in YBCO_{6.6}

Fluctuating stripes ?

calculations incorporating directional stripe fluctuations

can reproduce large anisotropy at low energies, square at high energies

but: too many free parameters

effect of superconductivity not described

YBCO_{6+x} transport properties

Ando et al., PRL 2002

Sun et al., PRL 2005

für Festkörperforschung

Comparison: YBCO_{6.45} and YBCO_{6.6}

$YBa_2Cu_3O_{6.6}$ (T_c = 61 K)

- large spin gap
- qualitative difference between superconducting and normal states

$YBa_2Cu_3O_{6.45}$ (T_c = 35 K)

- small or absent spin gap
- spectrum evolves smoothly through $\rm T_{c}$

YBCO_{6.45} constant-energy cuts

3 meV

E = 3 meV, T = 5 K

E > 15 meVisotropicE < 15 meV</th>large anisotropy

incommensurate along a*
commensurate along b*
→ one-dimensional geometry

Hinkov et al., Science 2008

Phase transition

phase transition at ~ 150 K

spin system spontaneously develops 1D incommensurate modulation weak structural in-plane anisotropy selects unique incommensurate domain

Magnetic order ?

muon spin relaxation

 $E \sim 1 \ \mu eV$

slow electronic spin relaxation for T \leq 10 K static magnetic order for T \leq 2 K

Nematic order ?

T < 150 K: pronounced increase of

- intensity of low-energy, 1D incommensurate spin fluctuations

broadened by disorder, finite energy, finite field

nematic transition two orders-of-magnitude higher than onset of magnetic order

Analogies

1. nematic liquid-crystal in weak electric field

2. "electronic nematic phase" in Sr₃Ru₂O₇

in-plane component of H aligns nematic director

für Festkörperforschun

Dynamical scaling

signature of proximity to quantum phase transition

$$\chi(q,\omega) \propto T^{-(2-\eta)/z} F(\frac{q-\underline{Q_{AF}}}{T^{1/z}},\frac{\hbar\omega}{k_{\text{B}}T})$$

YBa₂Cu₃O_{6+x}

additional ordered phases near Mott insulator

Electronic liquid crystals

electronic nematic phase

- fourfold rotational symmetry spontaneously broken
- translational symmetry unbroken

Strength of interactions

Kivelson et al., Nature 1998

Pomeranchuk instability

renormalization group calculations \rightarrow spontaneous formation of open Fermi surface

Halboth & Metzner, PRL 2000 Yamase & Kohno, JPSJ 2000

Neutron and x-ray spectroscopy

outline

- 1. weak correlations: Pb, Nb
- 2. intermediate correlations: Sr₂RuO₄
- 3. strong correlations: $YBa_2Cu_3O_{6+x}$
- 4. orbital degeracy: $La_{1-x}Ca_{x}MnO_{3}$ (Y,La)TiO₃
- 5. oxide heterostructures

Example: manganates

Elastic neutron scattering from LaMnO₃

PHYSICAL REVIEW

VOLUME 100, NUMBER 2

OCTOBER 15. 1955

Neutron Diffraction Study of the Magnetic Properties of the Series of Perovskite-Type Compounds $[(1-x)La, xCa]MnO_3^{\dagger}$

> E. O. WOLLAN AND W. C. KOEHLER Oak Ridge National Laboratory, Oak Ridge, Tennessee (Received May 9, 1955)

LaMnO₃ lattice structure

from neutron/x-ray diffraction

octahedra distorted below ~ 800K

Rodriguez-Carvajal et al., PRB 1998

LaMnO₃ lattice structure

Theory of the Role of Covalence in the Perovskite-Type Manganites $[La, M(II)]MnO_3^{\dagger}$

JOHN B. GOODENOUGH Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts (Received May 16, 1955)

LaMnO₃ x-ray linear dichroism

Castleton & Altarelli, PRB 2002

LaMnO₃ orbital & spin order

T < T₀: **orbital order** locks in exchange interactions

superexchange rules

identical orbitals: strong, antiferromagnetic

orthogonal orbitals: weak, ferromagnetic

 $T < T_N << T_O$: **spin order**

LaMnO₃ orbital & spin order

(La,Y)TiO₃ structure

one electron in t_{2q} orbitals

- larger orbital degeneracy
- weaker lattice coupling

than in e_{q} systems

(La,Y)TiO₃ spin & orbital order

LaTiO₃

G-type antiferromagnet

YTiO₃

ferromagnet

orbital order according to electronic structure calculations:

no orbital ordering transitions observed up to at least 700 K \rightarrow orbital degeneracy lifted by lattice distortions? \rightarrow orbital fluctuations?

Orbital excitations

ground state

orbiton excitation

Raman scattering

photon energy tuned to intersite transitions

excitation in final state:

- phonon
- magnon
- orbiton?

Raman scattering from orbitons

- peak above 2-magnon, 2-phonon ranges
- below charge excitations known from IR spectra
- \rightarrow orbital excitation

Resonant inelastic x-ray scattering

larger photon momentum than Raman
→ dispersion of orbital excitations

Ulrich et al., PRB 2008 and unpublished

Neutron and x-ray spectroscopy

outline

- 1. weak correlations: Pb, Nb
- 2. intermediate correlations: Sr₂RuO₄
- 3. strong correlations: $YBa_2Cu_3O_{6+x}$
- 4. orbital degeracy: $La_{1-x}Ca_{x}MnO_{3}$ (Y,La)TiO₃
- 5. oxide heterostructures

New physics at interfaces

YBCO-LCMO interface

YBa₂Cu₃O₇ (YBCO): high-T_c superconducor La_{0.7}Ca_{0.3}MnO₃ (LCMO): metallic ferromagnet

antagonistic order parameters at interface

YBCO-LCMO interface

Z. Zhang, U. Kaiser

- different magnetic environment
- different valence state
- different crystal field
- different covalent bonding
- different stoichiometry (oxygen vacancies/interstitials) ...

can superconductivity be modified/created at interfaces?

a

YBCO-LCMO superlattices

neutron reflectivity

→ Bragg reflections due to structural and magnetic periodicity

Stahn et al., PRB 2005

magnetic circular dichroism

- at L- absorption edges
- \rightarrow element-specific magnetization

- ferromagnetic polarization of Cu in YBCO
- direction antiparallel to Mn

Spin polarization at interface

magnetization profile

superexchange across interface

Chakhalian et al., Nature Phys. 2006

Temperature dependence of spin polarization

Cu magnetization closely follows Mn moment → large antiferromagnetic Cu-Mn exchange interaction

Exchange coupling across interface

assume bulk orbital occupancy is maintained at interface

→ weak ferromagnetic exchange across interface expected from superexchange rules

inconsistent with experiment \rightarrow **orbital reconstruction ?**

X-ray linear dichroism

interface sensitivity through "cap layers"

FY bulk sensitive

TEY low electron escape depth \rightarrow probes first interface

Orbitals at interface

Chakhalian et al. Science 2007

FY matches data on bulk YBCO

TEY shifted → ~ 0.2 electrons / Cu ion transferred across interface not subject to Zhang-Rice singlet formation almost isotropic → partial occupation of Cu 3z²-r² orbital orbital reconstruction

Cluster calculations

possible origins

Exchange coupling across orbitally reconstructed interface

Cu 3z²-r² orbital partially occupied

\rightarrow strong antiferromagnetic exchange across interface

 \rightarrow reduced in-plane antiferromagnetic correlations

combination explains large ferromagnetic susceptibility, suppression of metallicity and superconductivity of YBCO near interface

Oxide heterostructure research program

- understand and manipulate orbital and spin polarization at interfaces
- create dense correlated-electron systems with controlled interactions
- new quantum phases? ↔ FQHE in semiconductors
- lateral (nano)-structuring

 $CoFe_2O_4$ nanopillars in BaTiO₃ matrix *Zheng et al., Science 2004*

La₂CuO₄ & LaNiO₃ electronic structure

für Festkörperforschung

Strain-induced orbital polarization

X-ray linear dichroism in La_{1-x}Sr_xMnO₃ thin films

Aruta et al., Phys. Rev. B 2006

LaNiO₃-LaMO₃ superlattices

Chaloupka & Khaliullin, PRL 2008

- 2D electronic structure
- x²-y² orbital favored

→ cuprate Hamiltonian?

LaNiO₃-LaMO₃ superconductivity?

mean-field superconducting transition temperature

Chaloupka & Khaliullin, PRL 2008

LaNiO₃-LaAlO₃ structure

TEM

nonresonant x-ray reflectivity

LaNiO₃-LaAlO₃ soft x-ray reflectivity

"forbidden" superlattice peak

- \rightarrow charge distribution of valence electrons \neq atomic structure
- \rightarrow signature of interface-induced charge order

RNiO₃ phase diagrams

Torrance et al., PRB 1992

Mazin et al., PRL 2007

competing instabilities in bulk nickelates:

- antiferromagnetism
 - charge order

Conclusions

YBCO-LCMO superlattices

- orbital and magnetic polarization at interface
- interface-induced antiferromagnetic insulating state (?)

LaNiO₃-LaAlO₃ superlattices

interface-induced charge-ordering instability (not present in bulk)

Can high-temperature superconductivity be generated by suppressing competing instability?

Oxide heterostructure toolkit

structure TEM, XRD magnetization neutrons, XMCD **orbital occupation** XLD, RXS charge transport FTIR