## Lagrangian Methods Assignment 1 - Due Sep 19, 2002

Blobs in 1 dimension: recall that $\phi_{\delta}(x)=\frac{1}{\delta} \phi(x / \delta)$

1. Consider blobs given by functions of the form

$$
\phi(x)=\frac{A_{p}}{\left(x^{2}+1\right)^{p / 2}} .
$$

For each integer $p=3,4,5,6,7,8,9,10$, find the appropriate constant $A_{p}$ so that $\int_{-\infty}^{\infty} \phi(x) d x=1$. Comment on the patterns you find.
For all blobs, compute the second moment $M_{2}(\phi)$.
Choose three of these blobs and, for each one, plot $\phi_{\delta}(x)$ for $\delta=1,1 / 2$ and $1 / 8$ on the same graph.
2. Suppose now that you look to design blobs of the form

$$
\phi(x)=\frac{A_{p}-B_{p} x^{2}}{\left(x^{2}+1\right)^{p / 2}} .
$$

that satisfy $M_{0}(\phi)=1$ and $M_{2}(\phi)=0$. What is the smallest possible integer $p$ for which you can do this? Denote your answer by $p_{o}$.
For each integer $p$ between $p_{o}$ and 10, find appropriate constants $A_{p}$ and $B_{p}$.
For these blobs, compute the fourth moment $M_{4}(\phi)$.
Choose three of these blobs and, for each one, plot $\phi_{\delta}(x)$ for $\delta=1,1 / 2$ and $1 / 8$ on the same graph.
3. Consider the blob given by

$$
\phi(x)=\frac{A}{\sqrt{\pi}} e^{-x^{2}}
$$

Find the constant $A$ so that $M_{0}(\phi)=1$ and compute the second moment $M_{2}(\phi)$.
Plot $\phi_{\delta}(x)$ for $\delta=1,1 / 2$ and $1 / 8$ on the same graph.
4. Now consider the blob

$$
\phi(x)=\frac{A_{0}+A_{1} x^{2}}{\sqrt{\pi}} e^{-x^{2}}
$$

Find $A_{0}$ and $A_{1}$ such that $M_{0}(\phi)=1$ and $M_{2}(\phi)=0$ and plot $\phi_{\delta}(x)$ for $\delta=1,1 / 2$ and $1 / 8$ on the same graph.
5. Take the blob from problem 3 and call it $\phi_{1}(x)$. We know that $M_{2}\left(\phi_{1}\right) \neq$ 0 . Define new blobs using the recursion

$$
\phi_{n+1}(x)=-\frac{1}{4 n}\left(\phi_{n}^{\prime \prime}(x)+\frac{2}{x} \phi_{n}^{\prime}(x)\right) \quad \text { for } n \geq 1
$$

Use this formula to find $\phi_{2}(x)$ and compare with the blob you found in problem 4.
Find $\phi_{n}$ for $n=3,4,5$ and verify that each new blob in the sequence satisfies more (even) moment conditions. Can you prove this?
Plot $\phi_{1}(x)$ through $\phi_{5}(x)$ on the same graph.
6. Blobs with compact support: consider the blobs

$$
\phi_{1}(x)= \begin{cases}A(1+\cos (\pi x)), & |x| \leq 1 \\ 0, & |x|>1\end{cases}
$$

and

$$
\phi_{2}(x)= \begin{cases}A\left(x^{2}-1\right)^{4}, & |x| \leq 1 \\ 0, & |x|>1\end{cases}
$$

Find $A$ so that $M_{0}(\phi)=1$ for each blob.
Blobs in 2 dimensions: In 2D the scaling for radially symmetric blobs is $\phi_{\delta}(r)=\frac{1}{\delta^{2}} \phi(r / \delta)$. We require that

$$
M_{0}(\phi)=2 \pi \int_{0}^{\infty} r \phi(r) d r=1
$$

For higher moment conditions we require

$$
M_{k}(\phi)=C_{k} \int_{0}^{\infty} r^{k+1} \phi(r) d r=0
$$

7. Find the constants $A_{p}$ for $p=3,4,5,6,7$ so that the blob

$$
\phi(r)=\frac{A_{p}}{\left(r^{2}+1\right)^{p / 2}}
$$

satisfies $M_{0}(\phi)=1$. Plot $\phi(r)$ vs. $r$.
8. Find the constant $A$ so that the blob

$$
\phi(r)=A e^{-r^{2}}
$$

satisfies $M_{0}(\phi)=1$.
9. Find the constants $A$ and $B$ so that the blob

$$
\phi(r)=\left(A+B r^{2}\right) e^{-r^{2}}
$$

satisfies $M_{0}(\phi)=1$ and $M_{2}(\phi)=0$.
10. In two dimensions, the recursion for higher-order blobs of this form is

$$
\phi_{n+1}(x)=-\frac{1}{4 \pi \phi_{n}(0)}\left(\phi_{n}^{\prime \prime}(r)+\frac{3}{r} \phi_{n}^{\prime}(r)\right) \quad \text { for } n \geq 1
$$

Verify that each new blob in the sequence satisfies another moment condition.
Plot a few of these blobs on the same graph.

