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Abstract. Magnetization inhomogenities, associated for example with grain bound-
aries, give rise to local spin-dependent potentials and affect the magnetoresistance.
The local magnetization M(r) depends on both intrinsic and extrinsic factors. In-
trinsic properties, such as spontaneous magnetization and anisotropy, are determined
on an atomic scale and are basically independent of the material’s real structure and
history. Extrinsic properties, such as remanence and coercivity, are linked to mag-
netic hysteresis, realized on mesoscopic or macroscopic length scales, and are strongly
real-structure dependent. The local magnetization M(r), which determines the mag-
netoresistance, is determined from a nonlinear and nonlocal micromagnetic energy
functional containing the intrinsic properties as parameters. This chapter focuses on
basic micromagnetic effects and on the spin structure at grain boundaries. Continuum
and layer-resolved analytic calculations yield a quasi-discontinuity of the magnetization
between misaligned and in-completely exchange-coupled grains and a disproportionally
large grain-boundary magnetoresistance.

10.1 Introduction

Electron scattering in advanced magnetoresistive materials depends on the spin-
dependent potential associated with the local magnetization M(r). In order
to abstract from the atomic origin of the magnetoresistance, which is different
for GMR [1,2,3,4,5], CMR [6,7,8,9], and PMR materials [10], we introduce the
term spin-projecting magnetoresistance (SMR). The basic assumption of SMR
is that the magnetoresistance is a unique though generally difficult-to-calculate
function of M(r). SMR must be distinguished from ordinary magnetoresistance
and anisotropic magnetoresistance, which reflect Lorentz forces in typically non-
magnetic metals and spin-orbit coupling in transition metals, respectively. Phys-
ically, SMR means that the magnetic field alters the mean free paths for ↑ and
↓ channels by modifying the local potential felt by the conduction electrons.
The Bloch character of one-electron wave functions in perfect crystals implies

zero resistivity, but thermal or structural disorder yield finite mean free paths
λ, finite relaxation times τ , and nonzero resistivities ρ ∝ 1/τ . Due to the Pauli
principle, the interaction between electrons depends on the relative spin orien-
tation, so that the local potential and the electron scattering is spin-dependent
(see Chap. 4). Subject to the availability of electronic states – as epitomized by
the density of states at the Fermi level – this mechanism leads to an explicit
magnetization dependence of the resistivity.
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In the case of weakly inhomogeneous materials the resistivity is proportional
to the square of the gradient of the spin-dependent local potential [11] and
therefore proportional to the square of the magnetization gradient. Since mag-
netization inhomogenities are most pronounced in low and moderate magnetic
fields H, the resistance may be very large at low fields, whereas high magnetic
fields reduce the resistance by aligning the spins.
The determination of the local magnetization (mesoscopic spin structure)

is a micromagnetic problem. The traditional term micromagnetic [12] is some-
what unfortunate, because most micromagnetic phenomena – such as magnetic
hysteresis – are nanostructural, realized on deep-submicron length scales. Micro-
magnetic or extrinsic properties reflect the real structure (defect structure, mor-
phology, metallurgical microstructure) of a material. By contrast, intrinsic prop-
erties, such as spontaneous magnetization and magnetocrystalline anisotropy,
refer to perfect crystals.
Micromagnetic problems are usually solved on a continuum level [12,13,14].

Narrow-wall phenomena, which have been studied for example in rare-earth
cobalt permanent magnets [15], involve individual atoms and atomic planes and
lead to comparatively small corrections to the extrinsic behavior. However, in
the context of spin electronics, grain-boundary related scattering is generally
non-negligible [4,8,9,16,17] and involves quite small length scales of about 1 nm
[8]. This may lead to a disproportionally strong spin scattering and calls for a
comparison of continuum and layer-resolved calculations.
This chapter elaborates basic ideas of magnetism and, in a sense, considers

thin films, paramagnetic gases, bulk magnets, small particles, and wires on an
equal footing. Sect. 10.2 is a brief summary of the atomic origin of magnetism,
Sect. 10.3 deals with fundamental aspects of micromagnetism, and Sect. 10.4 is
devoted to grain-boundary and narrow-wall phenomena.

10.2 Intrinsic Properties

Intrinsic properties refer to the atomic origin of magnetism and involve quan-
tum phenomena such as exchange, crystal-field interaction, interatomic hopping,
and spin-orbit coupling [18,19,20,21,22]. Quantities describing the mesoscopic
spin structure, such as the coercivity Hc and the remanence Mr, are extrinsic
(real-structure related) [14,23,24,25], but intrinsic properties enter micromag-
netic equations as local micromagnetic parameters. Table 10.1 shows the mag-
netic moment m, the spontaneous magnetization MS, the Curie temperature
TC, and first uniaxial anisotropy constant K1 for some magnetic materials. Not
included are antiferromagnets, such as NiO, GdFeO3, and Ti2O3, whose long-
range magnetic order vanishes above the Néel temperature TN, and oxides such
as CrO2 (FM), and Y3Fe5O12 (FIM) (see Chaps. 12 and 6).

10.2.1 Magnetic Moment, Exchange, and Magnetization

Magnetic solids contain atoms characterized by a quantum-mechanical magnetic
dipole moment m̂ = −µB(̂l + 2ŝ)/�. Often one considers the net magnetic mo-
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Table 10.1. Intrinsic and structural properties of some magnetic materials (FM =
ferromagnet, FIM = ferrimagnet).

m µ0MS TC K1 Comment

µB/f.u. T K MJ/m3

Fe 2.23 2.15 1044 0.05 Cubic FM

Co 1.73 1.81 1390 0.53 Hexagonal FM

Ni 0.62 0.62 628 -0.005 Cubic FM

SmCo5 8.0 1.07 1020 17.2 Hexagonal FM

Nd2Fe14B 37.6 1.61 585 4.9 Tetragonal FM

BaFe12O19 19.9 0.47 742 0.33 Hexagonal FIM

Fe3O4 4.0 0.63 860 -0.012 Cubic FIM

ment m per formula unit, which is measured in µB. An alternative way of char-
acterizing a material’s net moment is to consider the spontaneous magnetization
MS = dm/dV , measured in A/m, or its flux-density equivalent µ0MS, measured
in T. Here dV is a small volume element containing at least one unit cell. Since
thermal excitations tend to disalign the atomic moments, the spontaneous mag-
netization is temperature-dependent. The zero-temperature spontaneous mag-
netization MS(T = 0) is determined by the atomic moments and often denoted
by M0.
There are two sources of magnetic moment: currents associated with the

orbital motion of the electrons (orbital moment) and the electron spin (spin
moment). Solid-state magnetism originates from the partly filled inner electron
shells of transition-metal atoms. Of particular importance are the 3d iron-series
elements, in particular Fe, Co, and Ni, and the 4f rare-earth elements, such
as Nd, Sm, Gd, and Dy. On the other hand, 4d palladium-series elements, 5d
platinum-series elements, and actinide elements, such as U, have a magnetic
moment in suitable crystalline environments.
The magnetic moment of iron-series transition-metal atoms in metals (Fe,

Co, Ni, YCo5) and non-metals (Fe3O4, NiO) is given by the spin, so that the
moment, measured in µB, is equal to the number of unpaired spins. The reason
is that the orbital moment is largely quenched (destroyed) by the crystal field,
although the small residual orbital moment (of the order of 0.1µB) is important in
the context of magnetic anisotropy. Rare-earth atoms keep their orbital moments
in metals and non-metals, because their partly filled shells lie deep inside the
atoms and are not very much affected by the crystal field.
Figure 10.1 illustrates that the net magnetic moment depends on the type

of zero-temperature magnetic order. In ferromagnets the atomic moments add,
whereas ferrimagnets and antiferromagnets are characterized by two (or more)
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sublattices with opposite moments. This amounts to a reduction of the net mo-
ment (ferrimagnetism) or to the absence of a net moment (antiferromagnetism).
In order to understand moment formation and magnetic order one has to

start from the many-electron Schrödinger equation (see Chaps. 2 and 5). The
solution of that equation is complicated by Coulomb interactions of the type
1/|r − r′|, where r and r′ are the positions of the interacting electrons. For
non-interacting electrons, the many-electron wave function factorizes, but the
Coulomb repulsion makes such a separation impossible and gives rise to a variety
of intra- and interatomic exchange contributions.
In the case of two electrons and two atomic sites, the problem reduces to the

discussion of three parameters: the hopping parameter t, the Coulomb energy U
necessary to add a second electron into an atomic orbital, and the direct exchange
JD [14]. The direct exchange is always positive, but for interatomic distances of
interest it is not larger than about 0.1 eV, that is smaller than U and t by at
least one order of magnitude. Comparing the energies of the lowest-lying ↑↑ and
↑↓ states yields the effective exchange

Jeff = JD +
U

4
−

√
t2 +

U2

16
(10.1)

From this equation we see that the Coulomb repulsion U and the direct exchange
JD favor ferromagnetism (Jeff > 0), whereas interatomic hopping (t) tends to
destroy ferromagnetism. The reason is that ↑↓ electron pairs in an atomic orbital
are unfavorable from the point of view of Coulomb repulsion, whereas parallel
spin alignment ↑↑ is favorable, because the Pauli principle implies that the two
electrons are in different orbitals. However, this energy gain has to compete
against a hopping-related increase in one-electron energies.

 

Ferromagnet (T = 0)                         Ferromagnet (T = TC)

Micromagnetic configuration (T = 0)       Ferrimagnet (T = 0)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10.1. Magnetic order (schematic). Magnetoresistance involves both zero-
temperature and finite temperature magnetic ordering. Much of the fascination of
advanced magnetoresistive phenomena is based on the intriguing interplay between
microscopic and mesoscopic physics (micromagnetism).
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In oxides, t � U and (10.1) yields Jeff = JD − 2t2/U . Due to the small-
ness of the direct exchange, oxides are often antiferromagnets, but when t = 0
by symmetry, as in CrO2, then JD gives rise to ferromagnetism (Goodenough-
Kanamori rules, see Chaps. 5 and 12). In 3d metals, t � U and (10.1) yields
Jeff = JD+U/4−t. Since U is a largely atomic property, metallic ferromagnetism
is realized for not-too-large hopping, that is for narrow bands (Stoner criterion,
see Chap. 2).
In order to discuss magnetic order, it is necessary to distinguish between

intra-atomic and interatomic exchange interactions. Intra-atomic exchange is
responsible for the formation of atomic moments, whereas interatomic exchange
favors a ferromagnetic (or antiferromagnetic) alignment of neighboring spins.
Typically, the intra-atomic exchange Jintra is much larger than the interatomic
exchange Jinter = J , and atomic moments tend to be quite stable. By compari-
son, it is comparatively easy to disalign neighboring spins by thermal excitation
and – to a lesser extent – by inhomogeneous magnetic fields and polycrystalline
random-anisotropy contributions.
A widely-used approach to discuss interatomic exchange is the Heisenberg

interaction −J ŝ1 · ŝ2 between neighboring spins ŝ1 and ŝ2, where J is an inter-
atomic exchange constant. The derivation of the spontaneous magnetizationMS
of a solid from the corresponding Heisenberg Hamiltonian is a very complicated
problem, but a number of approximations (normalized classical spins, restriction
to nearest-neighbor interactions, mean-field approximation) lead to the simple
result that MS vanishes above the Curie temperature TC = zJ/3kB, where z is
the number of nearest neighbors.
Strictly speaking, the applicability of the Heisenberg model is limited to local-

moment magnets, such as insulating transition-metal oxides and rare-earth met-
als. In 3d metals, the magnetic moment is a band-structure property, involving
at least a few neighboring atoms [14,26]. This leads to non-integer moments per
atom, may yield moment and exchange-constant corrections at grain boundaries
and interfaces, and means that quantities such as J and m should be considered
as atomic parameters.
As indicated in Fig. 10.1, the vanishing of the spontaneous magnetization at

TC reflects the thermally activated rotational misalignment of the atomic mo-
ments. By contrast, the magnitude of the atomic moments remains largely un-
changed [27]. The reason is that atomic moments are supported by intra-atomic
exchange energies of the order of 1 eV (104 K), whereas the interatomic exchange
does not exceed about 0.1 eV. This scenario is realized in both metals and non-
metals, although interatomic hopping in itinerant metals, such as iron, may yield
short-range correlations at and above TC. The magnetization MS considered in
micromagnetism is usually averaged over a few interatomic distances and can be
regarded as a temperature-dependent but field-independent material constant
(micromagnetic parameter). This means, in particular, that micromagnetic phe-
nomena, such as domain formation and hysteresis, are realized by magnetization
rotations.
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Aside from long-range critical fluctuations in the vicinity of TC, the spon-
taneous magnetization is caused by atomic-scale exchange interactions. How-
ever, there is also an exchange energy associated with micromagnetic magne-
tization rotations, such as domains. The local magnetization can be written as
M(r) =MS(T )s(r), where s(r) is the unit vector giving the local magnetization
direction. Heisenberg exchange means that spin misalignment in ferromagnets
(J > 0) costs exchange energy. On a continuum level, the normalized magnetiza-
tion s1/2 = s(r)±b ∂s(r)/∂x of two neighbouring atoms located at r1/2 = ±bex

correspond to the exchange energy

− Js1 · s2 = −J + Jb2
(
∂s

∂x

)2

(10.2)

More generally, any magnetization inhomogenity is punished by an exchange
energy density

dEex

dV
= A (∇s)2 (10.3)

where the exchange stiffness A is of the order of 10 pJ/m (10−11 J/m) for typical
ferromagnets, see Table 10.2.

10.2.2 Anisotropy

The energy of a magnetic solid depends on the orientation of the magnetiza-
tion with respect to the crystal axes, which is known as magnetic anisotropy.
The anisotropy of permanent magnets is high in order to keep the magnetiza-
tion in a desired direction, whereas soft magnets are characterized by a very
low anisotropy. Materials with moderate anisotropy are often used as magnetic-
recording media. In the field of magnetoresistance, anisotropy is a double-edged
issue: high anisotropies enhance the magnetization gradient and the magnetore-
sistance, but they also make the material more difficult to magnetize.
It is convenient to write the magnetization as

M =MS [sin(θ) sin(ϕ)ex + sin(θ) cos(ϕ)ey + cos(θ)ez] . (10.4)

The simplest anisotropy-energy expression is then

Ea = K1V sin2(θ) , (10.5)

where K1 is the first uniaxial anisotropy constant and V is the magnet vol-
ume [28]. Equation (10.5) is widely used to describe uniaxial magnets (hexag-
onal, tetragonal, and rhombohedral crystals) and small ellipsoids of revolution
(fine particles). For K1 > 0 the easy magnetic direction is along the c- (or z-)
axis, which is called easy-axis anisotropy, whereas K1 < 0 leads to easy-plane
anisotropy, where the easy magnetic direction is anywhere in the a-b- (or x-y-)
plane. In cubic magnets there is no unique z-axis, but (10.5) can be used for
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small angles θ (see below). For very low symmetry (orthorhombic, monoclinic,
and triclinic), the first-order anisotropy energy can be written as

Ea = K1V sin2(θ) +K ′
1V sin

2(θ) cos(2ϕ) , (10.6)

where K1 and K ′
1 are, in general, of comparable magnitude. This expression

must also be used for magnets having a low-symmetry shape, such as ellipsoids
having three unequal principal axes, and for a variety of surface anisotropies,
such as that of bcc (011) surfaces.
An expression including second order anisotropy constants is [28]

Ea

V
= K1 sin2(θ) +K2 sin4(θ) +K ′

2 sin
4(θ) cos(4ϕ) . (10.7)

This equation describes tetragonal, hexagonal, rhombohedral and cubic crystals.
Hexagonal and rhombohedral crystals are characterized by K ′

2 = 0 (fourth-order
uniaxial anisotropy), whereas in the tetragonal case K2 and K ′

2 are of the same
order of magnitude.
The anisotropy of cubic crystals is often written as

Ea

V
= Kc

1
(
α2
1α

2
2 + α2

2α
2
3 + α2

3α
2
1
)
+Kc

2 α
2
1α

2
2α

2
3 , (10.8)

where α1 = cos(θ), α2 = sin(θ) cos(ϕ), and α3 = sin(θ) sin(ϕ) are the direction
cosines of the magnetization direction. Analysis of (10.8) shows that Kc

1 > 0
favors the alignment of the magnetization along the (001) cube edges, which is
called iron-type anisotropy, whereas Kc

1 < 0 corresponds to an alignment along
the (111) cube diagonals referred to as nickel-type anisotropy. Comparison of
(10.7) and (10.8) yields K2 = −7Kc

1/8 + Kc
2/8 and K ′

2 = −Kc
1/8 − Kc

2/8.
These relations mean (i) that the constant K1 in cubic materials reflects fourth-
order crystal-field interactions [14] and (ii) that there are only two independent
constants when (10.7) is applied to cubic magnets [14]. Typical Kc

2 values are
0.015, 0.05, and 0.28 MJ/m3 for Fe, Ni, and Fe3O4, respectively.
By definition, there are no odd-order terms in (10.6)–(10.8). Odd-order

anisotropies may be caused by relativistic Moriya-Dzialoshinskii interactions,
exchange biasing, or particular micromagnetic regimes [14,29]. This refers in par-
ticular to uni-directional anisotropies of the type Kud cos(θ), which correspond
to a hysteresis-loop shift.
With respect to the physical origin of anisotropy it is necessary to distin-

guish between magnetostatic and magnetoelectric anisotropies. Magnetostatic
interactions give rise to shape anisotropy, which is illustrated in Fig. 10.2: the
magnetostatic energy of the spin configuration (a) is lower than that of the con-
figuration (b), so that the easy magnetization corresponds to the lowest magne-
tostatic energy. For fine particles (see below), the shape-anisotropy contribution
to K1 is

K1,sh =
µ0
4
(1− 3N)M2

S , (10.9)

where N is the demagnetizing factor of the particle (N = 0 for long cylinders,
N = 1/3 for spheres, and N = 1 for plates). Note that (10.9) and the simplified
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picture Fig. 10.2 do not apply to large particles, where the exchange stiffness
A is not able to ensure a uniform (coherent) spin orientation throughout the
magnet (Sect. 10.3.3).

 

easy  direction hard  direction

(a) (b)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10.2. Shape anisotropy of cubic magnets (schematic). The configuration (a) is
energetically more favorable than the configuration (b), as one can deduce from the
compass-needle analogy.

In non-cubic magnets there is also a magnetostatic contribution to the bulk
anisotropy. However, in most materials the bulk ormagnetocrystalline anisotropy
reflects the competition between the spin-orbit coupling and the electrostatic
crystal-field interaction (magnetoelectric anisotropy) [30]. The crystal field re-
flects the local symmetry of the crystal and acts on the orbits of the electrons
in the partly filled inner shells. The anisotropy is then realized by the cou-
pling of the orbital moments to the spins by the relativistic spin-orbit coupling
HSO = λSO l̂ · ŝ. The spin-orbit coupling has two consequences: (i) it couples
the magnetization (the spin) to the orbital motion of the electrons and (ii) it
creates a small orbital moment in largely quenched magnets. Quenched wave
functions correspond to standing waves of the type cos(2ϕ) and are favorable
from the point of view of electrostatic crystal-field interaction, because they are
able to adapt to the crystal field, but due to the standing-wave character of the
quenched wave function the orbital moment and the anisotropy are zero. By con-
trast, unquenched wave functions, such as exp(2iϕ), do not split in the crystal
field benefit from the spin-orbit coupling, because their running-wave character
amounts to a circular current.
Depending on the relative strengths of the crystal-field and spin-orbit inter-

actions there are two limits of interest. Rare-earth 4f electrons are close to the
atomic core and exhibit a strong spin-orbit coupling, whereas the crystal field
felt by the 4f electrons is rather small. This means a rigid coupling between spin
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and orbital moment, and the magnetocrystalline anisotropy is given by the elec-
trostatic interaction of the generally aspherical 4f charge cloud with the crystal
field [14]. Although the 4f crystal field is much smaller than the crystal-field
acting on iron-series 3d electrons, it creates a high rare-earth anisotropy con-
tribution (Table 10.1). The much smaller anisotropy of 3d magnets is explained
by the quenching of the orbital moment due to the crystal field. In the limit of
complete quenching, 〈̂l〉 = 0 and K1 = 0, but in reality the weak 3d spin-orbit
coupling acts as a perturbation and yields some admixture of running-wave char-
acter, a small residual orbital moment, and some anisotropy.
In order to illustrate the origin of the 3d anisotropy we consider two d orbitals,

such as |Ψ1〉 = |xy〉 and |Ψ2〉 = |x2 − y2〉. The Hamiltonian is

H =


A0 0

0 −A0


+ 2λSO cos(θ)


 0 i

−i 0


 , (10.10)

where the crystal-field parameter A0 describes the electrostatic energy of the
two orbitals in the crystal field, cos(θ) is the angle between spin direction and
z-axis and the factor 2 is the magnetic quantum number of the d orbitals. Diag-
onalization of (10.10) yields the energy eigenvalues

E± = ±
√

A2
0 + 4λ

2
SO cos2(θ) . (10.11)

By expanding E− into powers of the small quantity λ2SO/A2
0 we obtain the

second-order anisotropy energy

Ea =
2λ2SO

A0
sin2(θ) . (10.12)

An equation of this type was first derived by Bloch and Gentile [30]. The cor-
responding orbital moment scales as λSOµB/A0 [14]. Note that the qualitative
result (10.12) applies to both metallic and non-metallic 3d magnets, but in met-
als the crystal-field splitting must be replaced by the band width [21]. To make
quantitative predictions one has to extend (10.10) by including all occupied 3d
orbitals and all unperturbed crystal-field or band-structure states.
The magnetocrystalline anisotropy is closely related to the magnetoelastic

anisotropy, because strained crystals can be regarded as unstrained crystals
having slightly different atomic positions. Magnetoelastic anisotropy is partic-
ularly important in cubic magnets, where uniaxial stress gives rise to uniaxial
anisotropy contributions. The magnetoelastic contribution to the first anisotropy
constant is (see e.g. [14])

K1,me =
3λSσ
2

, (10.13)

where σ is the uniaxial stress and λS is the saturation magnetostriction. Exper-
imental room-temperature values of λS are −7 × 10−6 for iron, −33 × 10−6 for
nickel, 40× 10−6 for Fe3O4, −1560× 10−6 for SmFe2, 75× 10−6 for FeCo, and
practically zero for Fe20Ni80 (permalloy).
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As the spontaneous magnetization, anisotropy constants are temperature de-
pendent: atomic excitations lead to the occupation of excited levels, and in the
limit of very high temperatures all levels are occupied with equal probability
(zero anisotropy). Note that the temperature equivalent of anisotropy energies
per atom does not exceed about 1 K, but the switching of individual spins into
states with reduced anisotropy is largely suppressed by the strong inter-atomic
exchange.

-1.0 -0.5 0 0.5 1.0

- M

0

M

H (arb. units)

s

s

M

Mr

Hc

VIRGIN CURVE

MINOR LOOP

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10.3. Typical major M-H hysteresis loop.

10.3 Basic Micromagnetism

As mentioned in the introduction, magnetic properties derived from the hystere-
sis loop are extrinsic properties, because they describe the real structure of the
magnet rather than the atomic (intrinsic) behavior. Figure 10.3 shows a typ-
ical M -H hysteresis loop. Note that hysteresis loops are usually corrected for
the demagnetizing field −NM by plotting the magnetization as a function of
the internal field H −NM . In general, this skewing (shearing) correction makes
the hysteresis loops more rectangular. Major or limiting hysteresis loops are ob-
tained by starting from a fully aligned magnet where M(r) = MSe. This is
achieved by applying a large positive field. The loop is then obtained by moni-
toring the volume-averaged magnetization as a function of the external magnetic
field H.Minor loops are obtained if the maximum applied field ±H is insufficient
for complete saturation. They lie inside the major loop and therefore include a
smaller area than the major loop. Virgin curves (initial curves) are obtained
on increasing H from zero after thermal demagnetization, that is after heating
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beyond TC. B-H hysteresis loops are used, for example, to determine the energy
product of permanent magnets [14].

E

H = 0

H < H

H > H
H = H
←

←

←
←

↑

c

c

c

↓ H
 ↑ ↑ ↑
↑ ↑ ↑ ↑
 ↑ ↑ ↑

 ↓ ↓ ↓
↓ ↓ ↓ ↓
 ↓ ↓ ↓

  → →
→ → →
  → →

0 π/2 π →θangle

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10.4. Origin of coercivity: hysteresis involves metastable energy minima.

The most important extrinsic properties are the remanent magnetization or
remanence Mr which remains in a magnet after switching off a large magnetic
field and the coercive force or coercivity Hc that is the reverse field at which
the average magnetization vanishes. Coercivity describes the stability of the re-
manent state and gives rise to the classification of magnets into hard magnetic
materials (permanent magnets), semi-hard materials (storage media), and soft
magnetic materials. Modern permanent magnets exhibit broad hysteresis loops
with coercivities of order 1 T (0.8 MA/m), whereas semi-hard materials used in
storage media exhibit narrow but rectangular hysteresis loops having coercivi-
ties of the order 0.05 T (40 kA/m). The coercivity of storage media is sufficient
to assure the remanence of the stored information without requiring powerful
and bulky writing facilities. Other extrinsic properties, such as the permanent-
magnet energy product and loop squareness, go beyond the exclusive considera-
tion of Mr and Hc. The strong real-structure dependence of extrinsic properties
is seen, for example, from the fact that the coercivity of technical iron doubles
by adding 0.01 wt.% nitrogen [25]. The reason is that the interstitial nitrogen
yields a local modification of K1 which has a disproportionally strong impact on
the motion of domain walls.
The explanation and determination of extrinsic properties is generally very

complicated, and only in a few cases it is possible to use simple hysteresis mod-
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els. One example is the coherent-rotation or Stoner–Wohlfarth model, which
describes the hysteretic behavior of a uniformly magnetized particle (Fig. 10.4).
However, truly one-dimensional energy landscapes, such as E(θ) in Fig. 10.4,
are rarely encountered in practice. Most magnetization processes of interest are
incoherent, and the associated energy landscape is multidimensional. For exam-
ple, the applicability of the Stoner–Wohlfarth theory is limited to very small
particles, and even in the case of single-domain particles (Sect. 10.3.3) the mag-
netization reversal may be incoherent. A further complication is that the involved
micromagnetic equations are nonlocal and nonlinear, and only in a few cases it
has been possible to obtain physically transparent solutions.

10.3.1 Coherent Rotation

The Stoner–Wohlfarthmodel [31] assumes that the magnetization remains coher-
ent (uniform) throughout the magnet, as in Figs. 10.2 and 10.4. This is justified
for very small particles or very thin films or wires, where the interatomic ex-
change is able to keep the spins parallel throughout the magnet (see Sect. 10.3.3).
Incorporating the shape anisotropy into K1, the magnetic energy of an

aligned uniaxial Stoner–Wohlfarth particle is

E

V
= K1 sin2(θ) +K2 sin4(θ)− µ0MSH cos(θ) , (10.14)

where H is the external magnetic field, applied in the z-direction, and Mz =
MS cos(θ). The last term in this equation is the Zeeman energy −µ0 m · H,
which describes the interaction of a magnetized body with the external field.
Putting H = 0 in (10.14) yields a variety of zero-field spin configurations.

When both K1 and K2 are positive, then minimization of (10.14) yields easy-
axis anisotropy (θ = 0). On the other hand, when both K1 and K2 are negative,
then the magnetization lies in the basal plane: easy-plane anisotropy, Θ = π/2.
A particularly interesting regime is the easy-cone magnetism occurring if the
conditions K1 < 0 and K2 > −K1/2 are satisfied simultaneously [14,29]. The
tilt angle between the z-axis and the easy magnetization direction is given by

θc = arcsin




√
|K1|
2K2


 . (10.15)

Since the temperature dependences of K1 and K2 are generally different (K2 is
often negligible at high temperatures), the preferential magnetization direction
may change upon heating (spin-reorientation transition). A similar film-thickness
dependent transition is observed in films where surface and bulk anisotropy
contributions compete.
For K2 = 0, stability analysis of (10.14) yields the coherent-rotation nucle-

ation field

HN =
2K1

µ0MS
(10.16)
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at which the θ = 0 state (Mz = MS) becomes unstable. In terms of Fig. 10.4,
this instability refers to the vanishing of the local energy minimum at Hc = HN
and leads to a rectangular hysteresis loop.
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Fig. 10.5. Dependence of the magnetization on the angle θ between field and easy axis
for a uniaxial magnet. Dashed lines indicate magnetization jumps.

Equation (10.16) translates the anisotropy constant K1 into a field quantity,
namely the anisotropy field Ha = HN. It may be used as a coercivity esti-
mate, although it almost invariably overestimates the coercivity by one order
of magnitude. This discrepancy, known as Brown’s paradox, is explained by the
prevalence of incoherent magnetization processes in real magnets. For anisotropy
fields in more complicated magnets see Ref. [14].
Many materials of interest in spin electronics are polycrystallites (nanocrys-

tallites) or powders. Ignoring interparticle interactions, which are discussed in
the following sections, we can describe those materials as ensembles of Stoner–
Wohlfarth particles, characterized by a coherent rotation of the magnetization.
Figure 10.5 shows hysteresis loops of uniaxial Stoner–Wohlfarth particles for dif-
ferent angles θ between the applied magnetic field and the crystallite’s c-axis. The
magnetic behavior of the material is then obtained as a superposition of Stoner–
Wohlfarth loops. For uniaxial magnets the resulting remanence Mr = MS/2,
whereas for iron-type (K1 > 0) and nickel-type (K1 < 0) cubic magnets,Mr/MS
equals 0.832 and 0.866, respectively. In the case of uniaxial magnets, the coer-
civity is equal to 0.479Ha.
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10.3.2 Domains and Domain Walls

Until now we have neglected the mutual magnetostatic dipole interaction be-
tween atomic moments. The magnetostatic dipole field created by a magnet’s
own magnetization is given by

Hd(r) =
1
4π

∫
dV ′ 3(r − r′)(r − r′) · M(r′)− |r − r′|2M(r′)

|r − r′|5 . (10.17)

(a)                           (b)                            (c)

+ +

- -

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10.6. Magnetostatic self-energy and flux closure (schematic). As implied by
(10.17), the spin configurations (b) and (c) are more favorable than the configuration
(a). The transition between domains is realized by a domain wall (grey area).

Due to a self-interaction contribution, this field differs by M/3 from the
internal magnetostatic field obtained from Maxwell’s equations. However, mag-
netic fields couple as M ·H to the magnetization, so that any term proportional
to M ·M =M2

S amounts to a physically irrelevant shift of the zero-point of the
self-interaction energy −(1/2)µ0

∫
Hd · MdV [32], and the physics of magneto-

static self-interaction is fully contained in (10.17).
By expressing (10.17) in terms of the magnetic charge density −∇·M it can

be shown that the magnetostatic self-interaction energy is particularly low when
there are no magnetic charges at the magnet’s surface. From Fig. 10.6 we see
that the absence of surface charges is linked to flux closure in the magnet. More
generally, magnetostatic interactions tend to yield magnetic domains of opposite
magnetization directions [23,24,33,34]. This explains why the net magnetization
〈M(r)〉 of many magnets is equal to zero, despite M(r)2 =M2

S throughout the
magnet. For example, two pieces of soft iron do not attract each other, and to
exert a force on a soft magnet one needs to destroy the domains by an external
field. There are many different domain patterns of interest in the context of
magnetoresistance (see particularly Chaps. 14 and 15).
A common feature of all domain structures is that the domains are separated

by comparatively sharp domain walls [23,24]. The reason for the formation of
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Fig. 10.7. Bloch wall lying in the y-z-plane (schematic). The arrows show the local
magnetization direction.

domain walls is that the magnetization inside the domains lies along easy direc-
tions, whereas the transition between two easy magnetization directions involves
energetically unfavorable spin orientations. Magnetocrystalline anisotropy favors
narrow domain walls, but (10.5) shows that narrow walls, that is large magneti-
zation gradients, are unfavorable from the point of view of exchange.
The domain-wall width is estimated very easily from dimensional arguments

[23]. The domain-wall width is determined by the anisotropy constant K1 and
the exchange stiffness A, which are measured in J/m3 and J/m, respectively, so
that the only length and the only wall energy derivable from these parameters
are the wall-width parameter δ0 = (A/K1)1/2 and the wall-energy parameter
γ0 = (K1A)1/2, respectively. This means that the domain-wall thickness tends
to be much larger than the interatomic spacing but is much smaller than typical
domain sizes.
In order to make quantitative predictions one has to consider specific wall

geometries. Figure 10.7 shows a K1-only Bloch wall, where the wall thickness
δ = πδ0 and the wall energy γ = 4γ0 [14,35]. The 180◦ Bloch wall shown in
Fig. 10.7 is frequently encountered in uniaxial magnets. Other important wall
configurations are thin-film 180◦ Néel walls, where the magnetization vector
remains in a plane (in the z-x-plane in Fig. 10.7), and 90◦ walls observed in
cubic crystals. Typical domain-wall widths are 5 nm and 100 nm for hard and
soft magnetic materials, respectively.
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The magnetostatic dipole interaction favors domain formation, but since the
creation of domain walls costs energy, there are no walls if the gain in magneto-
static energy is smaller than the wall energy. For example, the wall in Fig. 10.7b
– indicated by the dotted line – corresponds to a wall energy γπR2. The com-
peting gain in magnetostatic energy is roughly equal to half the single-domain
energy, that is µ0M2

SV/12, so that domain formation is favorable for particles
whose radius exceeds a critical single-domain radius

Rsd � 36
√
AK1

µ0M2
S

. (10.18)

This value varies between a few nm in soft magnets and about 1 µm in hard
magnets.
It is important to note that the critical single-domain radius is an equilib-

rium property and therefore largely unrelated to hysteresis. As illustrated in
Fig. 10.4, hysteresis involves energy barriers and metastable states, and in hard
magnetic materials, where K1 is large, the structural length scales associated
with hysteresis and coercivity are much smaller than Rsd.
The critical single-domain radius can also be written as Rsd = 36κlex, where

κ =

√
K1

µ0M2
S

(10.19)

is the magnetic hardness parameter and

lex =

√
A

µ0M2
S

(10.20)

is the exchange length. The exchange length lex is the length below which atomic
exchange interactions dominate typical magnetostatic fields. For example, we
will see that lex determines the coherence radius Rcoh below which interatomic
exchange is able to ensure coherent rotation. It also determines the thickness of
soft-magnetic films below which Néel walls are energetically more favorable than
Bloch walls and the grain size of two-phase magnets below which the hysteresis
loops look single-phase like.
Table 10.2 shows typical micromagnetic parameters. Note that magnetically

very hard and very soft materials are characterized by κ � 1 and κ � 1,
respectively, whereas lex = 3 nm for a broad range of magnetic materials.

10.3.3 Hysteresis and Coercivity

In order to explain the hysteresis loop of magnetic materials one needs to trace
the local magnetization M(r) = MSs(r) as a function of the applied field H.
The starting point is the magnetic energy functional Em obtained by adding the
exchange energy (10.3), the anisotropy energy, the magnetostatic self-energy, as
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Table 10.2. Micromagnetic parameters at room temperature. (The values for Fe and
Ni are uniaxial estimates).

µ0MS A K1 δ γ lex Rsd H0

Material κ

T pJ/m MJ/m3 nm mJ/m2 nm nm T

Fe 2.15 8.3 0.05 40 2.6 1.5 0.12 6 0.06

Co 1.76 10.3 0.53 14 9.3 2.0 0.46 34 0.76

Ni 0.61 3.4 -0.005 82 0.5 3.4 0.13 16 0.03

BaFe12O19 0.47 6.1 0.33 14 5.7 5.9 1.37 290 1.8

SmCo5 1.07 22.0 17 3.6 77 4.9 4.35 764 40

Nd2Fe14B 1.61 7.7 4.9 3.9 25 1.9 1.54 107 7.6

implied by (10.17), and the Zeeman energy −µ0M · HV describing the interac-
tion with the applied field. For K1-only uniaxial magnets we obtain

Em =
∫ [

A

(∇M

MS

)2

− K1

(
n · M

MS

)2

− 1
2
µ0M · Hd(M)− µ0M · H

]
dV

(10.21)
where n(r) is a unit vector denoting the crystallite’s easy axis.
As illustrated in Fig. 10.4, hysteresis indicates difficulties in reaching the

global (free) energy minimum. As a crude rule – and aside from the Stoner–
Wohlfarth-like reversal in weakly interacting particle ensembles – there are two
main coercivity mechanisms: nucleation and pinning. Nucleation determines the
coercivity of nearly homogeneous magnets and means that the magnetization
reversal occurs immediately after the original magnetization state becomes un-
stable. Examples are the Stoner–Wohlfarth nucleation field (10.16), which de-
scribes the reversal of the magnetization of an isolated small particle, and the
localized nucleation [38] in submicron particles. Pinning governs the magnetiza-
tion reversal in strongly inhomogeneous magnets and means that the coercivity
is determined by the interaction of domain walls with structural inhomogenities.
To realize magnetization reversal in pinning-controlled magnets, the reverse ex-
ternal field must be larger than some (de)pinning (or propagation) field. One
typical pinning mechanism involves inhomogenities whose anisotropy constant
is higher than that of the main phase: since high anisotropies yield high domain-
wall energies, the penetration of the wall into the highly anisotropic regions is
energetically unfavorable. This mechanism is also known as repulsive pinning,
whereas the capturing of a wall in a low-anisotropy region is referred to as at-
tractive pinning.
The trapping of walls by a small number of powerful pinning cen-

ters is called strong pinning. A simple strong-pinning expression is Hp =
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(dγ(x)/dx)/(2µ0MS), where γ(x) is the average wall energy as a function of
the wall position [14,36]. By contrast, pinning caused by a large number of very
small pinning centers, such as atomic defects, is called weak pinning. In the
case of weak pinning, the wall energy is averaged over a distance of order δB,
so that the density of pinning centers determines the pinning strength. Another
mechanism involves many nucleation centers, so that the magnetization reversal
is realized by the pinning-controlled growth and coalescence of a large number
of domains.
In the hysteresis loop, the difference between nucleation and pinning is seen

most easily from the virgin curves, which are obtained by thermal demagneti-
zation. Figure 10.8 illustrates this distinction. After thermal demagnetization,
domain walls in nucleation-controlled particles are very mobile, so that satu-
ration is achieved in very low fields. By contrast, pinning centers impede the
domain wall motion in both the virgin-curve and major-loop regimes.
For structurally (morphologically) homogeneous ellipsoids of revolution hav-

ing the easy axis parallel to the axis of revolution, the nucleation problem can be
solved exactly [12,13,14]. This is of some practical importance, because acicular
(wire- or needle-like) magnets, fine particles, and thin films can be approximated
by prolate, spherical, or oblate ellipsoids of revolution. The calculation consists
of two steps: (i) the linearization of (10.21), as discussed in Sect. 10.4, and (ii)
solving the resulting stability problem by eigenmode analysis. The correspond-
ing eigenmodes m(r) =M(r)− MSez are known as nucleation modes, and the
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Fig. 10.8. Virgin curves for pinning-controlled and nucleation-controlled permanent
magnets.



222 R. Skomski

field at which the instability of the m(r) = 0 state occurs is the nucleation field.

Coherent rotation                          Curling  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10.9. Nucleation modes in homogeneous ellipsoids of revolution (top view on the
equator plane). The arrows show m(r).

soft or semihard very hard

Bulging                          Clamped curling

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10.10. Nucleation modes in spheres surrounded by a hard-magnetic shell (top view
on the equator plane). The arrows show m(r) for the core phase; in the surrounding
shell, m(r) = 0. In both cases, the radial dependence of m is given by spherical Bessel
functions and localized in the soft region.

The nucleation field is [13,14]

HN =
2K1

µ0MS
+
1
2
(1− 3N)MS (10.22)

for coherent rotation and

HN =
2K1

µ0MS
− NMS +

cA

µ0MSR2 (10.23)
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for the so-called curling mode. Here the radius R = Rx = Ry refers to the two de-
generate axes of the ellipsoid, and c = 8.666 for spheres (N = 1/3) and c = 6.678
for needles (N = 0). Coherent rotation and curling are realized in small magnets
(R < Rcoh) and large magnets (R > Rcoh), respectively, where the coherence
radius Rcoh is of the order of 5lex [37]. Note that these radii are independent of
K1. Figure 10.9 compares the coherent-rotation and curling modes. Coherent
rotation is favorable from the point of view of exchange, but the exchange en-
ergy necessary to realize curling competes with the gain in magnetostatic energy
associated with the flux-closure clearly visible in Fig. 10.10. We also deduce that
the flux-closure contribution dominates the exchange in large magnets.
The coherent-rotation and curling modes are delocalized, that is the nucle-

ation mode extends throughout the magnet. In general, inhomogenities lead to a
localization of the nucleation mode [38]. An exactly solvable case is a soft or semi-
hard magnetic sphere surrounded by a hard-magnetic shell. Eigenmode analy-
sis then yields a bulging mode characterized by the symmetry of the coherent-
rotation mode but incoherent due to the radial dependence of m [39].
Figure 10.10 compares the bulging mode, realized for small particles, with

the corresponding modified curling mode realized in large particles. The ultimate
reason for the incoherent character of the bulging mode are the boundary condi-
tions at the interface between the two magnetic phases. This yields not only an
increase of the nucleation-field coercivity, as compared to Fig. 10.9, but also a
singularity at the interface. In Sect. 10.4 we will see under which circumstances
grain boundaries are sources of magnetoresistance.

10.3.4 Time Dependence of Magnetic Properties

The non-equilibrium character of magnetization processes means that magnetic
properties are time-dependent. There are two basic types of time-dependent mag-
netic phenomena. Fast atomic processes lead to equilibrium on a local scale and
realize intrinsic properties on sub-nanosecond time scales. For this reason, intrin-
sic properties can be regarded as equilibrium properties, and the energy func-
tional (10.21) is also known as the micromagnetic free energy. Micro-magnetic
processes are much slower, because atomic thermal excitations have to compete
against many-atom energy barriers. For example, permanent magnetism relies
on the fact that typical energy barriers are much larger than kBT [14]. Interme-
diate time scales are used, for example, to explain phenomena such as spin-wave
resonance (see Chap. 15).
In a strict sense, ferromagnetism is limited to infinite magnets, because ther-

mal excitations in finite magnets cause the net moment to fluctuate between
opposite directions and yield – ultimately – a zero spontaneous magnetization.
However, the corresponding equilibration time may be very large, and in practice
it is often difficult to distinguish the magnetism of small particles from true fer-
romagnetism. In structurally inhomogeneous magnets (two-phase magnetism),
each non-equivalent site i exhibits a local spontaneous magnetization Mi(T ),
and there is only one common Curie temperature. However, when the size of the
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inhomogenities is larger than about 1 nm, it is quite difficult to distinguish the
inhomogeneous ferromagnet from a mixture of two phases [40].
A manifestation of extrinsic dynamics is that freshly magnetized permanent

magnets loose a small fraction of their magnetization within the first few hours,
which is known as magnetic viscosity. Typically, the magnetization loss is loga-
rithmic, ∆M = −S ln(t), where S is the magnetic-viscosity constant [14,36,41].
A related effect is that coercivity depends on the sweep rate dH/dt used to mea-
sure the loops: Hc is largest for high sweep rates, that is for fast hysteresis-loop
measurements.
Small energy barriers, realized for example in fine-particle ensembles, give rise

to superparamagnetism. First, in particles whose radius is smaller than about
1 nm the external magnetic field is unable to produce saturation, because it
cannot compete against thermal excitations. Secondly, there is a blocking radius
below which thermal excitations are able to overcome anisotropy-energy barriers.
Blocking radii scale as (T/K1)1/3 and are of the order of 5 nm for semi-hard
materials.

10.4 Grain–boundary Magnetism

Real polycrystalline (nanocrystalline) magnets exhibit intergranular exchange
coupling and magnetostatic interactions between grains. Strong intergranular
interactions lead to the breakdown of the picture of individual grains and the
magnetic reversal becomes a cooperative effect involving many grains.
A simple model is the Preisach model, where the interactions appear as

random magnetic fields acting on the individual crystallites [36], but internal
interaction fields are unable to give an appropriate description of cooperative
magnetization processes. In fact, the validity of the internal-field approach is
restricted to the non-cooperative ensembles, where the width of the switching-
field distribution P (Hc) of the (non-interacting) crystallites is larger than the
magnitude of the interaction fields [42].
A better approach is the random-anisotropy theory [43,44,45,46], which fo-

cuses on the competition between interatomic exchange and random anisotropy.
There are two main random-anisotropy effects: (i) the exchange favors paral-
lel spin alignment throughout the magnet, and the remanence is exchanged-
enhanced and (ii) in the limit of strong exchange interactions the coercivity of
isotropic magnets vanishes. The relative strength of the intergranular exchange
can be expressed in terms of the dimensionless parameter A/K1R

2, where R is
an average grain radius. This parameter shows that intergranular exchange is
most effective in the limit of small grain sizes.
However, the original random-anisotropy theory cannot be used when two

or more structural length scales are involved. This refers in particular to the
effect of sharp grain boundaries [42,47]. Here we present a linear grain-boundary
theory, which applies to weakly misaligned grains and is compatible with the
scattering mechanism mentioned in the introduction.
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10.4.1 Model

Consider an ensemble of exchange-coupled misaligned grains characterized by
the local exchange stiffness A(r) and the local easy direction n(r). The starting
point of the calculation is (10.21). Since SMR scales as (∇M)2, we can restrict
ourselves to short length scales, where magnetostatic interactions are of sec-
ondary importance (Sect. 10.3.2), and incorporate the self-interaction field into
H. To linearize the problem we consider weakly misaligned grains and small
deviations from perfect spin alignment. Since |M(r)| = MS and |n(r)| = 1, we
can then write

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

n
e M

ma

Ms

z
e z

Fig. 10.11. Unit vectors n(r) and M(r)/MS describing the polycrystalline easy axes
and the local magnetization, respectively.

n(r) =
(
1− a(r)2

2

)
ez + a(r) (10.24)

and

M(r) =MS

(
1− m(r)2

2

)
ez +MSm(r) , (10.25)

where a � 1, m � 1, abd a · ez = m · ez = 0. Figure 10.11 illustrates the
meaning of a and m.
Putting (10.24), (10.25) into (10.21) and taking H = −Hez yields

E =
∫ [

A(r) (∇m)2 +K1 (m − a(r))2 − µ0MSH

2
m2

]
dV . (10.26)

Minimizing this equation with respect to m we obtain

− ∇ (A(r)∇ · m) + (K1 − µ0MSH/2)m = K1a . (10.27)

Next we consider a grain boundary in the y-z-plane, as shown in Fig. 10.12.
This is reasonable, because the perturbation m(x) caused by the grain bound-
aries decays quite fast in the interior of the grains [42]. Since a = aey and



226 R. Skomski

 

   J        J'      J       J       J

n
n

x

y

z

GRAIN I
GRAIN II

t

Fig. 10.12. Two neighboring grains and grain boundary. In this section, both contin-
uum and layer-resolved configurations are discussed.

m = mey, (10.27) now simplifies to

− ∂

∂x

[
A(x)

∂m

∂x

]
+

[
K1 − µ0MSH

2

]
m = K1a(x) (10.28)

where a(x) is equal to aI and aII in the respective grains I and II.

10.4.2 Boundary Conditions

As one can see from Fig. 10.10, grain or phase boundaries lead to singularities
in the magnetization (M or m) and may be potential sources of a pronounced
magnetoresistance. The boundary conditions implied by (10.27) and (10.28) have
been discussed in [48]. For an interface located at x0, integration from x0 − ε to
x0 + ε yields [

A(x)
∂m

∂x

]
x0−ε

=
[
A(x)

∂m

∂x

]
x0+ε

. (10.29)

This means that a jump in A(r) changes the slope of the perpendicular magne-
tization component m.
Figure 10.13 shows that the boundary conditions (10.29) give rise to a variety

of scenarios. In Fig. 10.13a, a phase I characterized by a large exchange stiffness
is coupled to a phase II having a low A. When the anisotropy of phase I is
very high, then the mode m(r) is localized in the phase II characterized by low
or moderate anisotropy, regardless of the value of A in the two phases. This
regime is illustrated in Fig. 10.13b and realized, for example, in the composite
Fig. 10.10. Of particular interest in spin electronics is the case where two grains
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Fig. 10.13. Boundary conditions at interfaces: (a) interface between two phases of
different exchange stiffness, (b) interface between hard and soft regions, (c) effect of
grain-boundary region characterized by reduced exchange, and (d) reduced exchange
coupling at interface. Note that (d) may be interpreted as a special case of (c) where
B = 0.

are separated by a grain-boundary region (B) of reduced exchange stiffness.
As shown in Figs. 10.13c and d, this leads to a quasi-discontinuity ∆m of the
magnetization with a strong potential for SMR.
In order to calculate the magnitude of the quasi-discontinuity, we assume a

thin grain-boundary region of thickness t whose exchange stiffness A′ is smaller
than the bulk exchange stiffness A (Fig. 10.13c). Putting, for simplicity, H = 0
in (10.28) [49], we see that m = a well inside the grains. It is therefore useful
to consider the quantity ∆ = ∆m/|aII − aI |, that is the fraction of the mag-
netization variation concentrated in the grain-boundary region. In the bulk, the
differencem−a decays exponentially [42], so that the calculation of∆ amounts to
incorporating the boundary condition (10.29). After short calculation we obtain

∆ =
1

1 + 2A
′δ

πAt

. (10.30)

For t = 0, the quasi-discontinuity vanishes (∆ = 0), whereas zero intergran-
ular exchange (A′ = 0) leads to ∆ = 1. On the other hand, since t tends to
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be much smaller than the wall width δ, an exchange enhancement at the grain
boundary (A′ > A) has no major impact on ∆.

10.4.3 Layer–Resolved Spin Structure

Equation (10.28) describes ferromagnets on a continuum level, so that magneti-
zation processes cannot be resolved on an atomic scale. For example, as indicated
in Fig. 10.13d, grain boundaries tend to be atomically thin, and it is difficult to
judge whether (10.30) remains valid in this limit.

n0 1-1 2

m

m

m

n

I

II

∆m

 
 
 
  

 
 
 
 
 
 
 
 

Fig. 10.14. Spin structure in the vicinity of the grain boundary. The jump ∆m means
a quasi-discontinuity of the magnetization at the grain boundary.

In a layer-resolved analysis, as envisaged in Fig. 10.12, (10.28) must be re-
placed by

E =
∞∑

n=−∞

[
Jn,n+1

(Mn − Mn+1)
2

M2
S

− K1S0t0
(nn · Mn)

2

M2
S

− µ0Mn · HS0t0

]

(10.31)
where S0 is the interface area, Jn,n+1 � A(r)t0 is the interlayer exchange cou-
pling between adjacent atoms in the n-th and (n+1)-th layers, and each layer
(index n) has a thickness t0 = t. Restricting ourselves to the remanent state
(H = 0) and using the approximation (10.25) we obtain, aside from a physically
irrelevant zero-point energy,

E =
∞∑

n=−∞

[
Jn,n+1(mn − mn+1)2 +K1S0t0(mn − an)2

]
. (10.32)
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Here the interatomic interface exchange J0,1 = J ′ is smaller than the bulk ex-
change Jn,n+1 = J for n �= 0 (Fig. 10.12). Minimizing (10.32) yields the set of
equations

Jn,n+1(mn − mn+1) +K1S0t0mn = K1S0t0an (10.33)

subject to the boundary conditions mn = aI/II for n = ±∞.
A typical solution is shown in Fig. 10.14. For n < 0 and n > 1, the depen-

dence of the layer-resolved perpendicular magnetization contribution mn on n
is exponential, (mn − aI/II) ∼ exp(±n/λ), and the decay length is

λ =
1

arcosh(1 +K1S0t0/2J)
(10.34)

In the interesting limit K1S0t0 � J this reduces to the bulk-type wall-
width expression (J/K1S0t0)1/2. As in the continuum limit, the reduced interface
exchange yields a quasi-discontinuity∆m = m1−m0. ForK1S0t0 � J , we obtain

∆ =
√
K1S0t0J√

K1S0t0J + 2J ′ . (10.35)

Aside from the use of atomic parameters, this result is very similar to (10.30).
Due to the quadratic dependence of SMR on the magnetization gradient,

most of the magnetoresistive scattering by weakly coupled grains is associated
with the quasi-discontinuity ∆. From (10.30) and (10.35) we deduce that ∆ = 1
for A′ = 0 and J ′ = 0, respectively, that is for zero intergranular exchange.
Compared to ordinary domain-wall scattering, this corresponds to an increase
of the magnetoresistance by a factor of order δ/t0, that is of the order of 100 for
many materials of interest in spin electronics. However, a comparatively weak
intergranular exchange is sufficient to yield a strong reduction of∆. Taking t = t0
(one layer of reduced exchange) we find that ∆ = 1/2 when A′/A and J ′/J are
about t0/δ, that is of the order of 0.01. This means that SMR materials are not
very forgiving with respect to residual intergranular exchange.

10.5 Concluding Remarks

A key finding of this chapter is that reduced exchange at grain boundaries yields
a quasi-discontinuity of the magnetization, corresponding to a disproportionally
strong domain-wall type magneto-resistance. By comparison, enhanced exchange
in a thin grain-boundary region has no major effect on the spin structure. The
same is true for anisotropy changes in the grain-boundary region, because the
effect of anisotropy inhomogenities averages over at least a few nm.
The atomic origin of the grain-boundary exchange is of secondary importance

in micromagnetism, because it is treated as a parameter. In any case, there is
no conduction without some rudimentary exchange, so that the intergranular
exchange may be small but is always nonzero.
The results obtained in Sect. 10.4 do not depend very much on whether one

uses continuum or layer-resolved models. However, this does not mean that the
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relation between intrinsic and extrinsic properties at grain-boundaries is trivial,
and a thorough and comprehensive description of the magnetic and magnetore-
sistive phenomena at grain boundaries remains a challenge.
Since the wall-width parameter δ scales as (A/K1)1/2, the domain-wall scat-

tering is particularly strong in hard magnets, but in that case one needs un-
desirably large magnetic fields to change the spin configuration. Reduced inter-
granular exchange has a much more favorable effect on the magnetoresistance.
From the point of view of spin-projecting magnetoresistance (SMR), the ideal
magnetoresistive material is a hard-soft nanocomposite characterized by very
weak intergranular exchange [50]. Of course, the realization of such a material
remains a real challenge to atomic theory and magnet processing.
Note, finally, that SMR requirements are similar to the situation encoun-

tered in magnetic recording, where pronounced intergranular exchange between
semi-hard grains leads to ’interaction domains’ and reduces the storage density
[51]. By contrast, two-phase permanent magnetism relies on a strong exchange
coupling between hard and soft regions [42].
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