
Computational Applied
Magnetics

Olle Heinonen
Seagate Technology



Boulder_mumag-03
July, 2003 Page 2

Computational applied magnetics - micromagnetics

Olle Heinonen, Seagate Technology

Thanks to Jan van Ek, Martin Plumer, Greg Parker



Boulder_mumag-03
July, 2003 Page 3

My background, what I do

• Condensed Matter Theory (quantum Hall effect, Fermi liquids, polymer physics,
low-dimensional magnets, mesoscopic transport, density functional theory)

• First principle electronic and magnetic structure calculations, semi-classical
transport in spin valves,

• Micromagnetic modeling, finite-temperature micromagnetic calculations, thermal
magnetic noise; reader and writer design/modeling

• Contact: Olle.G.Heinonen@seagate.com
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Interesting reading
Many Particle Theory

                     by E.K.U. Gross, E. Runge, O. Heinonen
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Course Objectives

• Provide intuition for the physical behavior of micron-and
sub-micron size magnetism

• Contrast traditional macroscopic approaches and concepts
with those of micromagnetic approaches

• Provide an understanding for the basics of
micromagnetics, its applicability and limitations

• Provide background so you can bang together and run a
micromagnetic code
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Course Outline
• Susceptibility - introduction

• Maxwell’s equations and constitutive relations - quick review

• Linear response

• Poles and demagnetizing fields

• More demagnetizing fields and the Pole Avoidance Principle

• (Paramagnets, diamagnets and ferromagnets)

• (Transition metals)

• Heisenberg model of exchange and ferromagnets

• Basic ingredients in micromagnetics: exchange, Zeeman, and magnetostatic energy, and
approximations

• Domain walls and anisotropy, exchange length

• (Stoner-Wohlfart model)

• Micromagnetic energy minimization, torque equations

• Landau-Lifshitz-Gilbert (LLG) equation

• Micromagnetics at finite temperatures

•Thermal magnetic noise
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Introduction

Question: What are the susceptibilities of the systems below?
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     a     b

Lx=15 mm Lx=0.15 µm

Ly=0.5 mm Ly=0.005 µm

Lz=30 mm Lz=0.3 µm

     a     b

R=8 mm R=400 nm

h=1.0 mm h=50 nm
Py
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How is susceptibility measured? What is it?

1. Prepare system in a specific magnetic state M0 (usually, but not always, M0=0).
Note: M0 is in general not a uniform magnetization density

2. Apply a small magnetic field δH in a specific direction

3. Measure the resulting change in magnetization δM

4. Susceptibility χ is defined as

δM

δH

H
M
r

r
t

δ
δχ =

Note:

• The susceptibility depends on the initial state M0

• δM is magnetization density averaged over the system.
This is OK if the magnetization density is uniform on a
macroscopic scale. What if it’s not?

• δM and δH need not be in the same direction, in which
case χ is a tensor.

• The susceptibility is closely related to the permeability µ
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Susceptibility of Supermalloy rectangles

     a     b

Lx=15 mm Lx=0.15 µm

Ly=0.5 mm Ly=0.005 µm

Lz=30 mm Lz=0.3 µm
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For macroscopic system, no
coercivity and large
susceptibility and permeability.

For microscopic system, large
coercivity and small initial
susceptibility and permeability.
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Susceptibility of disks

R

hPy
     a     b

R=8 mm R=400 nm

h=1.0 mm h=50 nm

For case a, system is macroscopic and the susceptibility and permeability
can be looked up (e.g., Bozorth), µ=10,000 for Ni80Fe20 initial permeability

For case b, one obtains µ=25 with H in plane of disk

M/M_sat vs. H for d=800 nm NiFe disk
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Conclusion

When the system under consideration is so small that the
magnetization density cannot be considered uniform, the magnetic
behavior of the system cannot be obtained from that of a larger
system simply by scaling,

e.g., µ(large system) is not equal to µ(small system).

Permeability and susceptibility are not useful concepts for micron-
and sub-micron size magnetic systems.

The relevant length scale is set by the size of the exchange length
(about 1000 A in Py), which characterizes over what distance the
magnetization can change.
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Electromagnetism (cgs units)
Electromagnetism is completely described by Maxwell’s equations:
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=•∇  Gauss’ law: ρ( r) is charge density

There are no magnetic monopoles

Faraday’s law of induction

Ampere’s law

These equations are exact. In them, E and B are total electric and magnetic fields,
respectively. This is OK for vacuum. In materials, however, bound charges and
currents give rise to polarization density P and magnetization density M. These act
as sources of induced fields, which add to the external fields and alter the total fields:

E=Eapplied+Eind

B=Bapplied+Bind
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Constitutive relations

It is convenient to formally define fields D and H which are due only to free charges and free currents
and to separate out these from the total fields:
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For our applications, we can drop the displacement current contribution (relativistic effect)
and take H to be the externally applied field. This means that we can consider this field to be
generated by external currents j. Extra internal currents (e.g., bias currents in spin valves)
generate additional fields which have to be added to the total magnetic field B. This choice
is one of convenience and one which we are free to make. But once we make it we have to
be consistent and careful with our book-keeping, that is, keep track of what is externally
applied and what is not.

Note that E and B are the physical fields to which charges respond.

The response of the material is buried in the relations between D and E, and between H and B.
These relations are all the tricky parts of electricity and magnetism in materials.
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Constitutive relations
For macroscopic media, one writes the constitutive relations

MHHB
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From now on, let’s focus only on magnetic fields and forget about the dielectric constant ε.

The definition of the permeability is general. For linear media, the magnetization density is
related to the external field through the susceptibility χ:
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Digression: units

Quantity Symbol Gaussian, cgs Conversion factor SI
Magnetic flux density, B gauss (G) 10-4 tesla (T)
magnetic field

Magnetic flux Φ maxwell (Mx), G cm2 10-8 weber (Wb)

Magnetic field strength H oerstedt (Oe) 103/4π A/m

Magnetization density M emu/cm3  103 A/m

Susceptibility χ dimensionless 4π dimensionles

vacuum permeability µ0 N/A 4π x 10-7 H/m

(relative) permeability µ dimensionless dimensionless
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Digression: Maxwell’s equations

cgs units SI units
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Constitutive relations
Questions:

• When is it safe to assume that the magnetization density is proportional to the local field
H,                      ?

• Is the constant of proportionality the same at all points in the medium?

Perhaps it is better to assume that the permeability depends on position,                     ?

Maybe better yet to allow for the susceptibility to be non-local and position-dependent

)()( rHrM rrrr
∝

)(rrtt µµ =
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⇒=

)'()',()(

)',()(
3 rHrrrdrM
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rrrrtrr
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But this is still an assumption of linear response, that is, the induced change in
magnetization density is proportional to the external field H
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Constitutive relations
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For an inhomogeneously magnetized body, the response is in general non-local:

H( r’)

r’

r Applying a field H to r’ will change the
magnetization at r’. Due to long-range
magnetostatic interactions and to exchange
coupling, this will induce changes in the
magnetization at r.
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Linear Response

∫ •= )'()',()( 3 rHrrrdrM rrrrtrr
χ

Increase external field H everywhere by a factor α and the induced magnetization
density increase everywhere by a factor α.

M(r)

H(r’)

2M(r)2H(r’)

Comes from expanding M in powers of H about some initial state M0( r) and keeping only first
(linear) term.
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Poles and demagnetizing fields
 Consider a magnetized body. Sort out the contributions to total field B( r) from magnetization
density

M( r)
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Start with time-independent Maxwell’s equations for magnetic
field

Combine first and third of these:
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The pole density, or (magnetic) charge density, ρm( r) is the source of magnetic
field due to magnetization density M
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Poles and demagnetizing fields
So the equations for the field H are then
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Write this in terms of integrals over sources:
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For magnetized medium, we can then write for the induced field Hd, the demagnetizing field,
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integrated over the volume of the
magnetized medium
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Poles and demagnetizing fields

Separate out volume and surface contributions:

M( r)

M=0

Discontinuities in ρm at surfaces give rise to magnetic fields
just like surface electric charges give rise to electric fields.

Field from magnetized body, including bulk and
surface charges:
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Magnetostatic interactions (energies due to demagnetizing fields) are long-range - the effect of
surface and volume charges will affect the magnetic state over a large distance.
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Poles and demagnetizing fields

Sources of magnetic field from magnetized body:

density charge surface  -  surface boundingon   )()(ˆ
density charge   volume-   )(

rMrn

rM
rrr

rr

•

•∇−

Uniformly magnetized bar

M

Sources of demagnetizing field are poles at the
ends

MM
M=0 M=0

X=0 X=L

n̂ n̂
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Poles and demagnetizing fields
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Poles and demagnetizing fields

Volume charge density:
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Demagnetizing fields

Demagnetizing field Hd is field due to surface charges                and volume charges
of a magnetized body. Demagnetizing fields strive to reduce the total magnetic field
B=Happlied+Hd (hence the name).

Mn
r

•ˆ M
r

•∇

This is expressed by the pole avoidance principle: The energy Ed due
to demagnetizing fields is positive semi-definite:

∫ ≥= 0)(
8
1 2 dVHE dd π

Therefore, the system strives to reduce the total energy by reducing the `poles’ (surface and
volume charges) in order to reduce Ed.

In small systems, Ed can be a very large contribution to the total energy (or, the
demagnetizing fields are large compared to applied fields). Then the demagnetizing effects
(magnetostatic self-interactions) largely determine the magnetic state of the system.
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Pole avoidance principle (simple
examples)

M

Uniform magnetization gives rise to large surface charges (poles), which cost a large
energy. The system reduces the energy by trying to align the magnetization density
with boundaries, which reduces the surface charges (at a small cost in volume charge
density).
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Demagnetizing fields

The effect of demagnetizing fields become increasingly more severe with decreasing system
size. For example, for a sheet film, the only relevant effect of the demagnetizing field is to make
the magnetization point in the plane of the film, but in the interior of the film, demagnetizing
effects due to the boundaries of the film can be ignored. This is basically because even though
the demag interactions are long-ranged, they do decay with distance and eventually become
negligible.

However, if the system is small enough, demag fields due to boundaries cannot be
ignored and may in fact be the dominant effect determining the magnetic state of the
system. For example, in sheet film stacks, demag effects can be ignored but not in small
patterned magnetic elements.
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Ferromagnets
Electron spin magnetic moments interact with one another through exchange coupling.

What is exchange coupling? Its origin is quantum mechanical and comes from the Pauli exclusion
principle: two electrons cannot occupy the same quantum state (here spin-up and spin-down states)
at the same place and time. If a spin-up electron is located at position r, we cannot put another spin-
up electron in the same quantum state at that position. As a consequence, two electrons with the
same spin orientation is kept apart by the Pauli exclusion principle, which lowers their electrostatic
(Coulomb) interaction energy. Hence, the Pauli exclusion principle makes the total energy of the two
parallel spins lower than that of two electrons with anti-parallel spins. The amount by which the
Coulomb energy is reduced is called exchange energy, and denoted by J.

Electrons with parallel spin are kept apart by the Pauli exclusion
principle - this lowers the Coulomb energy

Electrons with anti-parallel spin can overlap, which costs
electrostatic energy
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Ferromagnets and exchange (cont’d)

The spin-statistics theorem dictates that the total wavefunction of identical spin-1/2 particles be
antisymmetric under exchange of positions of any two particles. Consider two identical neighboring
atoms and orbital electrons states |α> and |β>. We want to construct a two-electron wavefunction in
which both electrons are in the same spin-state (triplet). Then the total orbital wavefunction must be
antisymmetric, and can be constructed in the following way:

[ ])()()()(
2

1),( 122121 rrrrrr rrrrrr
βαβα φφφφ −=Ψ

This wavefunction is manifestly antisymmetric under interchange of the two electrons (r1 ->
r2, r2 -> r1). This procedure can be generalized to N electrons (Slater determinants).
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Magnetic state of a body
When an external field H is applied to a body, it will induce a magnetization density M. The
magnetization density gives rise to magnetic charge density ρm( r), which in turns gives rise to
and induced demagnetizing field Hd. This changes to total field B, which changes the induced
magnetization density, and so on…..

The magnetic state of a body has to be found by self-consistently finding the magnetization in
the presence of the external field H such that the total energy is minimized.

Self-consistency:
• Apply external field H
• Find induced magnetization density M
• Find total field B
• Find new magnetization density due to total field
• Find new total field B……..
• Continue until the magnetization density does not change between steps.

The equations that describe these must be derived from an energy minimization principle.
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Micromagnetic energy
OK, let’s think about the energy of a ferromagnet in an
external field and see if we can put together an energy
minimization principle.

Note: We write the external field Hext, keeping in mind
that this field can be considered to be generated by
some external currents
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Ferromagnets - Heisenberg model and
exchange energy

Pauli exclusion principle lowers the interaction energy by -2J for parallel spins on neighboring
sites.

This suggests a simple model of exchange interaction of electron spins on two neighboring
sites 1 and 2:

2 siteat electron  of )(classicalr spin vecto total

1 siteat electron  of )(classicalr spin vecto total
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For a system of N electron spins on N sites, we can then write the classical Heisenberg
Hamiltonian

sites gneighborin are  and  means , where
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SSJH jji i
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This is a good model to represent the collective behavior (magnetism) due to interacting spins.
It does not represent individual atomic moments in transition metals, but rather the average
magnetization in some small volume.
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Ferromagnets - Heisenberg model

At T=0, lowest-energy state is that with all spins parallel in an arbitrary direction,

V
NSMNJSE Bµ=−= ||  ,2

0

At finite, non-zero temperatures, entropy S increases and free energy
is minimized. As entropy is increased, |M| decreases and vanishes at the Curie
temperature Tc.

TSUF −=

|M|

Tc
T

For T>Tc, |M|=0. For T<Tc, there will be spontaneous magnetization.
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Ferromagnets - Heisenberg model

If we measure the magnetization in a macroscopic ferromagnet (e.g., a piece of Fe or Co), we
will observe |M|=0 when the system is cooled through the Curie temperature in zero external
field.

Why?

Domains. The magnetic state is not homogeneous with a uniform magnetization density.

To understand the magnetic state of ferromagnets, we turn to a micromagnetic description.

This is a classical model which includes all relevant energy contributions on scales larger than
some 10 nm. This means that as a rule of thumb, in actual calculations, the grid size used
should be less than 10 nm or so.
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Micromagnetic exchange energy
Continuum limit of Heisenberg exchange: assume direction of magnetization density changes
slowly on scale of atomic lattice constant a, but that the magnitude of the magnetization density is
constant at the saturation magnetization density Ms (T=0 limit!). Then
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Micromagnetic exchange energy
Redefine zero of energy to absorb the unimportant constant. Then

( ) ( ) ( )[ ]
NiFefor  erg/cm 10
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C
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To do calculations, space has to be divided into cells of some size l. It must be noted that this
form of the exchange energy is valid only for small angles between adjacent cells. If in a
calculation the angles between magnetization directions in adjacent cells change by a large
amount, the calculation is invalid, the results nonsense, and  the calculation has to be done
over again on a finer cell size.

One can also derive this form of the exchange energy without appealing to an underlying
Heisenberg Hamiltonian. Instead, one starts with a (macroscopic) continuum theory and
expands the exchange energy about a uniformly magnetized state. The lowest-order
surviving term dictated by symmetry is then

( ) ( ) ( )[ ]dVmmmCE zyx∫ ∇+∇+∇= 222
ex 2
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Micromagnetic Zeeman energy

Add energy term due to interaction of the magnetization density with the external field.

For a magnetic moment µ=MV, the Zeeman energy is
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The self-interaction term does not make much sense here, so we will drop it. Thus for the
whole ferromagnetic body the Zeeman energy
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Micromagnetic magnetostatic self-
interactions
Add another energy term: a finite system must have a demagnetizing field (even if the
magnetization density is uniform and homogeneous in the magnetized body). Add energy due to
magnetostatic self-interactions (demagnetizing energy):
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If we expand this expression in moments of the magnetization in each cell, the first term is
just the dipole-dipole interaction between to magnets at r and r’:
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This term makes the magnets want to line up parallel to
the vector r-r’.
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Micromagnetic model, so far

• Space divided into cells of size l  and volume dV, with l much greater than lattice spacing a

• Each cell has a fixed magnitude of magnetization density equal to saturation magnetization
density Ms and a total magnetic moment equal to Ms dV

• Temperature is effectively 0

• Direction m( r) of magnetization density changes slowly on length scale l

• Exchange energy: tries to keep direction of magnetization density constant

• Magnetostatic self-interactions: try to minimize demagnetizing field by (typically) aligning
magnetization density parallel to bounding surfaces

• Zeeman energy: tries to align magnetization direction with external field.
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Micromagnetic energy competition
Exchange energy tries to keep magnetization uniform and parallel. But constant magnetization
up to boundaries creates poles which cost a lot of `demag’ energy - `demag’ energy tries to line
up magnetization parallel to bounding surfaces which makes the magnetization direction change.

Compromise: Divide up the system into chunks, domains, each of which has uniform
magnetization, but the direction of the magnetization in different domains is different. This
minimizes exchange energy within each domain, and minimizes exchange energy between
domains and boundaries by closing flux loops.

Whether or not the system breaks up into domains depends on if the increase in exchange
energy of the domain walls more than offset by the decrease in demag energy.
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Micromagnetic energy competition

For a small system, the exchange and magnetostatic energy cost of domain walls can be too
high and the system can form, e.g., a single domain or a vortex state

There is a finite length d over which the magnetization changes from one domain to another.
The regions of change are called domain walls.

d
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Domain walls
What is the cost in exchange energy of a domain wall?

Suppose magnetization direction changes only along x, and is constant along y and z.

Magnetization angle θ:
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Domain walls - scaling of exchange energy
and demag energy

Suppose we have a magnet of width L and make the magnetization twist from -1 to +1 across the
width L. The domain wall (exchange) energy of this twist scales as 1/L, that is, as

 1/(linear dimension) of the system. In contrast, demag energy scales as (Volume ~L3). This
means that when the size L approaches the scale of a domain wall, the system will become very
stiff: the cost in exchange energy to change the direction of magnetization across the system will
start to become prohibitive.
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Domain walls and anisotropy
What is the size d of a domain wall, and what determines d? In order to answer this in more
detail, we need to introduce another energy term: anisotropy energy.

Crystal axes in a material are in general not equivalent due to spin-orbit coupling between the
spin magnetic moment and the orbital magnetic moment of electrons. This makes some axes
preferred for the magnetization direction.

Hexagonal crystals (e.g, Co): Uniaxial anisotropy.
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The anisotropy energy density depends only on angle
θ to c-axis, and is symmetric with respect to ab-plane
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and
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Domain walls and anisotropy
Cubic anisotropy:

The anisotropy energy density must be invariant with respect to interchange of the crystal axes.
Expandin cubic harmonics:

( ) 222
2

222222
1ani zyxzyzxyx mmmKmmmmmmK +++≈ε

K1>0 for Fe (easy axis along (100) direction)

K1<0 for Ni (easy axis along (111) direction)

Domain walls have to fight:

• increased exchange energy due to non-collinear spins in domain wall

• magnetostatic energy due to pole density

• anisotropy energy as the magnetization direction deviates from easy axis direction(s)
M
r
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Domain walls and anisotropy
Estimate typical size d of domain wall (so-called Landau-Lifshitz wall). Use a simple model of an
infinite crystal, no demag energy, uniaxial anisotropy, easy axis=z axis
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Domain walls and anisotropy
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Domain walls and anisotropy

Characteristic scale of domain wall is                    , with δ the exchange length. This is of
the order of 103 A. 12K

C
=δ

Note:

• Exchange coupling C tries to spread out the size of the domain wall in order to minimize
exchange energy

• Anisotropy energy tries to reduce the size of the domain wall since it costs energy not to have
the magnetization along an easy axis

• In finite-size devices such as spin valves, demagnetizing fields add an effective uniaxial
anisotropy which will also contribute to the effective exchange length.
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Micromagnetic energy
The total magnetic energy for some system with saturation magnetization density Ms is  then

( ) ( ) ( )[ ]

here. includedbeen not  has anisotropy Surface
.anisotropy of form specific on the depends 

)()(

|'|
)')('()'(ˆ

|'|
)')(()(

)()(
2
1

2
1

2
1

,

ani

extext,

33

,

222
ex

aniZdex

E

dVrHrmMHSE

rr
rrrMrndS

rr
rrrMdVrH

dVrHrmMHSE

dVmmmCE

EEEEE

s
i

iiBZ

SV
d

dsid
i

iBd

zyx

rrrrrr

rr

rrrrr

rr

rrrr
rr

rrrrrr

∫∑

∫∫

∫∑

∫

•−≈•−=

−
−•+

−
−•∇

−=

•−≈•−=

∇+∇+∇=

+++=

µ

µ

Note:

• Exchange energy depends on C but not (directly) on Ms

• Zeeman energy depends on Ms

• Demag energy depends on           times a dimensionless shape functionVM s
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Micromagnetic energy minimization
Find equation for magnetization density by minimizing the energy expression with respect to m( r).

The ensuing algebra is a bit cumbersome, but the final result is
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This may look formidable, but simply expresses that the minimum-energy state is such that
the torque exerted locally by the local effective field on the magnetization (or magnetic
moment per cell) is zero. The equilibrium magnetization is parallel to the local effective
field Heff given by
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Micromagnetic energy minimization

• Since AxA=0 for any vector A, we can add an arbitrary vector proportional to M( r) without
changing anything. This is a convenient degree of freedom in actual calculations.

• The physics of the equilibrium state suggests a simple algorithm for calculations:

1. Assign an initial magnetization density (good guess, random, whatever)

2. Calculate the effective field at each cell

3. Align the magnetization of each cell with its local effective field

4. If the change in angle in the magnetization is small enough, exit, otherwise go to 2.

• Whatever technique is used to solve the equations for minimum energy magnetization, we are
only guaranteed to find a local minimum. With a different initial state, we may reach a different
equilibrium magnetization. A converged solutions has to be tested for stability: if we find an
equilibrium state (local energy minimum), poke at it to see if the system recovers the same state
or if another, different, minimum-energy state is reached.
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Landau-Lifshitz-Gilbert (LLG) equations
We can also find a dynamic equation for the magnetization density. Start with the torque
equation for a magnetic moment in an external field:
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This equation describes the undamped (no energy dissipation) precessional motion of a
moment in an effective magnetic field. We add a phenomenological damping by assuming that
the driving field is reduced by an amount proportional to the time-rate of change of the
magnetization:
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Landau-Lifshitz-Gilbert (LLG) equations

This can also be written
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This form is a little more convenient for calculations. The dynamic LLG equation can be
used both to find the time-dependent response and to find an equilibrium state. In the
latter case, one just cranks up the damping constant and lets the system evolve until
excess energy has dissipated and a stable time-independent state has been reached.
The structure of the equation guarantees that M2 is a constant of the motion. This latter
approach is convenient numerically because it is faster than the previous torque-method.
Note that here to we may reach different equilibrium states depending on what we set the
damping constant to be (the system may evolve farther with less damping and reach a
different state than with higher damping)!
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Landau-Lifshitz-Gilbert (LLG) equations
Questions:

1. What are the microscopic damping processes?

2. Is there any justification for the form of the damping term in the LLG equations from more
fundamental considerations?

One damping mechanism is due to coupling between spin waves (normal modes of the
magnetization motion) and the lattice, the so-called magnetoelastic coupling (H. Suhl, IEEE
Trans. Mag., 34, 1834 (1998))

Basic physics: Magnetization motion gives rise to strain (fundamentally due to spin-orbit
coupling) which gives rise to phonons, which dissipate energy.
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Landau-Lifshitz-Gilbert (LLG) equations
Combine equation of motion for the strains:
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(time-rate of change equals torque exerted by force). For small viscosity η one can
obtain an asymptotic expression (long times) which has the form of the LLG damping
term.
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Nitty-gritties
OK, how do we actually do computations? Why would I write my own code
when there are free (eg OOMMF from NIST) or commercial (eg Scheinfein’s
LLG code) packages? Well,

• canned codes do well what they were written to do, which is almost never
exactly what you are interested in

• you are anal-retentive and want to write your own code anyhow because you
don’t trust anybody else’s coding

• You’re a graduate student and have infinite time at your hands and you don’t
have anything better to do.
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Nitty-gritties
The main pain in the rear is calculating the demag term. This can be done by

• direct evalution (pair-wise summation). Extremely time consuming. Not smart.

• multi-pole expansion. Has theoretical appeal in that one can in theory go to
larger length scales, but in the practical calculations of the kind that I do multi-
pole expansions do not pay off.

• FFT. Very fast, but requires a regular lattice. The main drawback is that the
cell size of the lattice must be small enough that the magnetization direction
does not change much from cell to cell (otherwise the exchange energy is
garbage). Typical cell size is 10 nm or less. So the amount of memory (RAM)
available and the time and patience (for execution) available put serious
constraints on the size of systems that can be modeled without resorting to
some kind of parallelization (which is not easy because of the overhead in
communications between nodes).
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Nitty-gritties (cont’d)
So let’s decide on a Cartesian grid of cells of volume abc and use the FFT
method. The coordinate to the center of cell i is ri,and the magnetization is taken
to be constant in each cell i. The ‘demag’ field at cell i is then expressed in
terms of a demag-tensor N:
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The problem is then reduced to evaluating the demag tensor. Since the
magnetization is constant in each cell, we only need the contributions from

              at all the surfaces of volume j. These integrals are found in the
literature. There are two different versions:

• field-at-center. The demag field from cell j is evaluated at the center of cell
i. This is good for cubic systems but not for general parallelepipeds.

• volume-averaged field. The field from cell j is averaged over the volume of
cell i. This is considered more accurate and is my recommended form.
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Nitty-gritties (cont’d)
Let X,Y,Z be the relative coordinates between cells i and j, and define ξ=X-x’,
η=Y-y’, ζ=Z-z’, and                             . Then222 ζηξ ++=r
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Nitty-gritties (cont’d)
Luckily, the other matrix elements are given by symmetry and cyclic
permutations of the arguments:
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It’s still a bit of a pain to code up – be careful about the signs for the different
limits of integration, and be careful with the forms of matrix elements in the
limit of one (or more) argument going to zero! When debugging, carefully
check that your calculated matrix elements satisfy all the symmetries above.

Note: for a cube, the self-demag field of a cell is parallel to the magnetization
of that cell and exerts no torque. Therefore, the self-demag field can be
omitted. This is not true for general parallelepipeds.
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Nitty-gritties (cont’d)
The strategy is then to calculate the demag tensor in the beginning of the
calculation, FFT and store. To calculate the demag field, FFT the magnetization
density in each cell, FFT, multiply with the FFT of the demag tensor, and back-
transform. See Numerical Recipes for implementations – I use the fftpack
routines with F90 drivers for 2D and 3D FFT. This is up to seven times faster
than the cxml library routines for 3D FFT!

To zero-pad or not to zero-pad?

Note that FFT introduces a spurious periodicity since the approach assumes a
periodic system. There are standard ways in which one can avoid these
periodicities in the resulting magnetization density by enlarging the demag
tensor and filling up the new elements with zeros (zero-padding) – again, see
Numerical Recipes for a detailed discussion. However, this is not necessary for
magnetic systems – the demag tensor is a function of the difference coordinate,
and the magnetization array has to be enlarged to the same dimension before
FFT and convolution with the demag tensor, and the enlarged elements have
zeros. These are the elements which would cause spurious periodicities were
they not zero. Since they are, no spurious periodicities are introduced and we
save some space in RAM (I invite you to try with and without zero-padding and
see what the difference is!)
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Nitty-gritties (cont’d)
Exchange energy: Evaluate the exchange field according to a numerical
implementation of
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ex trm
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CrH

s

rrrr
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The vector Laplacian can be evaluated using some standard numerical
scheme – usually a three-point scheme (along each coordinate direction)
works just fine. Note

• there is no need to include the magnetization at point i in the evaluation of the
exchange field at point i. This is because this would give a contribution which
exerts no torque on the magnetization at point i. So the mid-point in the three-
point scheme can be excluded. There may perhaps sometimes be some
advantage from a stability point-of view to included it, but as a rule I have seen
no advantage to doing so.

• the exchange field is not scale invariant – if the cell size is decreased by a
factor of 2, the exchange field increases in strength by a factor of 4.
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Nitty-gritties (cont’d)
The whole code is just a loop:

• First define geometry – magnetization density, exchange coupling etc

• calculate demag tensor, FFT and store

• Initialize magnetization direction vectors

• Define external field

• Converge using torque minimization or LLG

• Dump data

• New external field

Initialization: Try not to build in any symmetries in the initial state. For example,
if you are calculating a magnetization loop (M vs. H) and start with a large
applied field and seed the magnetization to be parallel to the initial external field,
you will get incorrect results (too large coercivity). The reason is you built in a
symmetry which is preserved and which the system does not exhibit in reality. It
is much safer to start with a random initial magnetization direction in each cell.
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Nitty-gritties (cont’d)
LLG method and convergence.
Let’s assume we’ll only use the LLG method. To reach an equilibrium state, we crank up
the damping α, use some standard numerical integrator and let it rip.

Note

• You must renormalize each magnetization vector after each update! Numerical
integrators do not usually preserve norm, and if you don’t renormalize, the norms of the
magnetization vectors will change and you get crap.

• Pick a suitable time step and α. If the time step is too large, you get garbage (numerical
instabilities), too slow is time-consuming. Similarly, α too large can lead to instabilities and
α too small leads to longer times before the precessional motions are damped out. As
rules of thumbs, α in the range of 0.5 – 2 and time steps in the range of 0.1 ps to 0.5 ns
usually work. You may want to be careful and check the maximum rotation of each
magnetization vector in each update and limit the time step so this maximum rotation does
not exceed some value like 5 degrees.

• Convergence. You have to have pretty tight convergence criterion in order to avoid
numerical ‘noise’. For example, you can check the maximum rotation of each
magnetization vector or the difference between the magnetization direction and effective
field in each cell and require that either one is less than, say, 0.00001 radians.
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Nitty-gritties (cont’d)
Code sanity checks
So you have put together a code, it compiles, links, runs without crashing, and gives some
output that doesn’t look too stupid. How do you know the output is correct?

Some suitable code sanity checks can be obtained by checking the ‘standard’ problems at
the NIST micromagnetic group’s Web site:
http://www.ctcms.nist.gov/~rdm/mumag.org.html

Also, try some simple checks: set the magnetization to be uniform for a large
parallelepiped (bar magnet). Check the demag field with available analytical expressions.
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Examples – dynamics (J. van Ek and M. Plumer)

Impact of shape anisotropy on the characteristic precession frequencies of small
ferromagnetic platelets

2.5 nm thick platelets with Ms=1440 emu/cc (Co80Fe20).

Excited with short pulses (200 ps) of a weak external field (10 Oe), or subject to a
harmonic (frequencies from 0.5 to 2 GHz) strong driving force (200 Oe amplitude).
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Examples – dynamics (J. van Ek and M. Plumer)

Systems with varying aspect ratio W/L, but constant W=100 nm, were excited with weak, short
field pulses along the x-direction (along W). A constant 10 Oe bias field was applied along the y-
direction. The temporal evolution of Mx is monitored for samples ranging in size from W x L=100
x80 nm2 to 100x800 nm2. The cell size in the LLG calculation was 10x10x2.5 nm3 and the
damping parameter was α=0.01. At the 10:8 aspect ratio (WxL=100x80 nm2) the remnant state (t=0)
is largely magnetised along the x-direction, constrained by shape anisotropy (upper curve). After a
short field pulse the system is dissipating energy through viscous damping, but the magnetisation
never deviates substantially from the remnant state.

From The Physics of Ultra-High-Density Magnetic Recording, M. Plumer, J. van Ek,
and D. Weller (eds) (Springer Verlag Berlin 2001)
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Examples – dynamics (J. van Ek and M. Plumer)

The upper right panel in Fig. 1.2(b) shows the power spectrum of the temporal evolution of Mx. A
relatively narrow mode at 6.3 GHz dominates the spectrum.

The oscillatory mode softens and broadens when the aspect ratio approaches unity. At this aspect
ratio the combined bias  and the pulse fields make the state with diagonal magnetisation (Mx=0.71
Ms) energetically favourable, and the system strives toward this state. Once the field pulse vanishes,
the system relaxes with roughly half the precessional frequency observed at the 10:8 aspect ratio.

When the aspect ratio decreases, shape anisotropy poses well-defined constraints on the
magnetisation of the sample. The excitation narrows (Fig. 1.2(b)) and has shifted to slightly lower
frequency (5.7 GHz). At very small aspect ratio of 10:40 and 10:80, spectral power develops at
even higher frequency (8.6 GHz). The origin of this beating phenomenon is not clear.
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Finite temperatures: background and
motivation

Finite temperatures: background and
motivation

Micromagnetic simulations assume fixed saturation magnetization
Fluctuations are ignored
Thermal excitations over energy barriers ignored
At finite T, magnetization density is reduced

TTC

M

MS

T

M(T)
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• How can we include finite temperature effects (reduced equilibrium
magnetization, fluctuations) in micromagnetic simulations?

• How does equilibrium magnetic configuration change with element
dimensions and temperature?

• For magnetic sensors: What is the noise due to thermal magnetic
fluctuations?

Finite temperatures - background and
motivation
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Magnetic systems at finite temperatures

• Standard micromagnetics simulations are inherently 0-temperature techniques which do
not in any way include the effects of finite temperatures.

• At finite temperatures the local magnetization will fluctuate due to thermal excitations.
The probability that a new magnetization configuration at a change in energy ∆E will be
reached is given by the Boltzmann factor

( )[ ]TkE B/exp ∆−

• The frequency f0 with which the system tries to reach new configurations (the attempt
frequency) is of the order of 10-10 Hz and is due to magnon-phonon interactions and
magnon-quasiparticle interactions.

• The effect of thermal fluctuations can be studied using statistical mechanics. Effects
include reduced magnetization density M(T) compared to the T=0 value, finite-range
correlations functions such as susceptibility
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Magnetic systems at finite temperatures

• Standard finite-temperature Monte Carlo (MC) simulations can be used to calculate thermal
averages of any quantity.Unfortunately, MC simulations do not contain any time scale and
are not based on an equation of motion, so it is difficult (at best) to obtain any dynamics
information (e.g. frequency behavior) using MC simulations.

• Another approach which does contain time scales is the Langevin equation. This approach
is based on a clear separation of time scales. That is, the thermal fluctuations of a particle(s)
of interest is due to interactions with some other bath of particles. The timescale of the
particle of interest is much slower than the time scale of the particles in the bath. The effect
of the interactions with the particles in the bath can then be expressed as a random force. As
an example, the equation of motion for a particle of mass m in contact with a thermal bath is
then (in 1D)

vrR
dt
dvm β−= )(

where R(r) is the random force due to the interactions with the bath.
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• The solution is

( )[ ] ττβτβ dRmt
m

t
m

vtv
t

)(/exp1exp)0()(
0
∫ −−+⎥⎦

⎤
⎢⎣
⎡−=

To proceed, use the fact that integration and averaging commute

( )[ ] ττβτβ dRmt
m

t
m

vtv
t

)(/exp1exp)0()(
0
∫ −−+⎥⎦

⎤
⎢⎣
⎡−=

On the average, the stochastic force has to vanish: 0)( =tR

At any two different times the random force is uncorrelated (this is based on the
separation of time scales!):

)'()'()( ttqtRtR −= δ

Must now determine the strength of the noise q.
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• Define the spectral density of a stochastic variable z(t) as

( )

∫

∫
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Fourier-transforming the formal solution to v(t) and taking the modules, one then gets
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• Next, need a distribution for the random force – will take it as Gaussian, so

.exp
2

1)(
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How do we then integrate the stochastic equation of motion numerically (cannot make
a Dirac delta function numerically, so what should the numerical variance of the
stochastic force be?). The velocity and random force correlation times are
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• By assumption, the correlation time for the random force is
much smaller than the correlation time for the velocity. For a finite
time step h in the numerical algorithm, we
then assume that the random force is constant and that the
correlation time of the random force is h.Thus

,/2 hTkR Bβ=

and the system of equations is closed.
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Stochastic LLG equation

Use the ideas from the Langevin equation to write a stochastic LLG equation.
The magnetization is interacting with phonons and quasiparticles with much
faster timescales, and the interactions give rise to a fluctuating magnetic
field.

LLG equation:

where the field and time have been scaled appropriately. Add a random field to
the effective fields give the stochastic LLG equation

( ),)()(),(
flfl hhmmhhm

d
rmd rrrrrrr
rr

+××−+×−= α
τ
τ

Note: the stochastic field here enters multiplicatively, in contrast to the standard
Langevin equation, where the stochastic field is additive. There must be a rule
how to interpret the equation – Stratanovich stochastic calculus. One then has
to be careful that the numerical algorithm converges in the Stratanovich sense.

( ),),( hmmhm
d
rmd rrrrr
rr

××−×−= α
τ
τ
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Stochastic LLG
• Assume that the stochastic field is uncorrelated in time,

Still need to find the amplitude of the correlations (at t=t’). This was done by Brown for an
ensemble of non-interacting Stoner-Wohlfahrt particles as the form of the equilibrium
distribution function is known for them.

It is not easy to do for an interacting system (like a soft ferromagnetic film). Can get
certain approximate solutions from studying asymptotic behavior of the Fokker-Planck
equation. The stochastic field correlation function is taken as (Brown)

Use a second-order semi-implicit Heun scheme with added magnetization
renormalization for numerical integration. For an excellent guide for implementation, see
Ref. 13.
Note:
• The damping used is the phenomenological Gilbert damping. Need better physics…
•  For practical implementations, the time step has to be very small (sub-ps). This is of

the order of the time-scale of the thermal bath (e.g. phonons) and so violates the very
foundation of separation of time-scales which underpins the Langevin equation
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FL
RL

Tunneling junction

cap

AFM
Pinned layer

seed

Tunneling barrier

Current

Permanent
magnet

Tunneling reader cartoon
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I

TW

SH

Shield/ Contact

Shield/ Contact

Example: noise in tunneling magnetoresistive
reader. Cartoon of tunneling reader.
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Tunneling Magnetoresistive Read Head - TEM

PM

ABS view

PM
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Example: noise in tunneling magnetoresistive
reader

The signal voltage in a tunneling reader is generated by the difference in magnetization
direction between the reference layer and the free layer.

θ
M1 M2

( )⎥
⎦

⎤
⎢
⎣

⎡
−

∆
+= θcos1

2
11

0
0 R

RRR

For a fixed applied bias current Ib thee signal voltage is

( )θcos1
2
1

0
0 −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ∆
=∆=

R
RRIRIV bbs

Thermal fluctuations in the magnetization in the free layer and reference layer will create

voltage fluctuations – noise,                           . Using the stochastic LLG we can directly
calculate the magnetization fluctuations and the noise voltage, which is a rather
complicated correlation function between magnetization in free and reference layers.

22 cos~ θsv
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Background - noise
Consider a electronic device to which a constant potential difference V is
applied. The noise power is related to the fluctuations in current from its
average value      :I

[ ]2222 IIVIIVIVPn −=−=∆=

The noise is characterized by its spectral density, which is the Fourier transform
of the current-current correlation function:

)()(2)( 00 tIttIdteS ti ∆+∆= ∫
∞

∞−

ωω

with the brackets indicating an ensemble average, or, equivalently, and average
over initial times t0.
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Background, cont’d

)(2 DSSDBSD GGTkS +=

For systems which obey time-reversal invariance,

Shot noise (V>0, T=0) is due to temporal correlations between electrons. In
tunneling junctions and vacuum tubes, electrons are transmitted randomly and
independently of each other - described by Poisson statistics (events
uncorrelated in time) . For these devices, shot noise is maximum at

eISP 2=
In both cases, the noise is white (no dependence on frequency).

Thermal noise (V=0, T>0) is related to the conductance GSD (Source to Drain)
through the fluctuation-dissipation theorem:

SDBSD TGkS 4=
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Background, cont’d

Device
Terminal (source) Terminal (drain)

Source emits electrons in n channels (different bands) at the Fermi energy.
Each channel n has a probability Tn of being transmitted to the drain, and a
probability Rn=1-Tn of being reflected back to the source. In the presence
of a voltage V between the source and drain, the (linear response)
conductance is (Landauer)

∑=
n

nT
h
eG

2



Boulder_mumag-03
July, 2003 Page 87

Background, cont’d

[ ]∑ −+=
n

BnnnB TkeVeVTTTTk
h
eS )2/coth()1(22)( 2

2

ω

This equation describes thermal noise at eV<<kBT and the classical shot noise
formula for Tn<<1 at T=0. In the limit of zero temperature (2kBT<<eV), we
get

For arbitrary temperature and Tn<<1 we get

PoissonB STkeVS )2/coth(=

Using the Landauer formula at finite temperature, ‘one can show that’ the noise
spectral density is

)1(||2)(
3

n
n

n TT
h

VeS −= ∑ω



Boulder_mumag-03
July, 2003 Page 88

Define the Fano factor

∑
∑ −

==
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)()(

ω
ωω

• Zero-temperature shot noise is always suppressed compared to the Poisson limit (F<1)
– neither closed (T=0) nor open (T=1) channels contribute to the shot noise.

• In metallic diffuse wires F=1/3

Background, cont’d
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Example: noise in tunneling magnetoresistive
reader

Calculate noise current spectral density (constant voltage)

)()(2)( 00 tIttIdteS ti
I ∆+∆= ∫

∞

∞−

ωω

or noise voltage spectral density (constant current)

)()(2)( 00 tVttVdteS ti
V ∆+∆= ∫

∞

∞−

ωω

directly using stochastic LLG - sample voltage at timesteps over
a long time (100 ns), calculate voltage-voltage correlation
function
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Example: noise in tunneling magnetoresistive
reader

Noise voltage spectrum, 100 nm x 100 nm TGMR 
reader

0.0

5.0

10.0

15.0

20.0

0.0 5.0 10.0 15.0 20.0
Frequency [GHz]

No
is

e 
vo

lta
ge

 
sp

ec
tra

l d
en

si
ty

 
[n

V/
sq

rt(
Hz

)]

FMR peak (?)What is this?



Boulder_mumag-03
July, 2003 Page 91

Magnetization motion spectra 100 nm x 100 nm TGMR
readers – free layer motion

• Clear FMR peak seen at about 9 GHz

• x-component shows evidence of 1/f-ish stuff

• The peak in the noise voltage spectral density at about 8 GHz
comes from the reference layer motion – uncorrelated with the free
layer motion

FL mx spectra
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Magnetization motion spectra 100 nm x 100 nm TGMR
readers

• Reference layer has a lower peak structure around 8 GHz and
some 1/f-ish stuff at lower frequencies

Magnetization spectra, RL x-components
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Magnetization spectra, RL y-components
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Extra slides
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Paramagnets, diamagnets, and
ferromagnets

Paramagnets:

• Induced magnetization is parallel in direction and proportional to in magnitude to
the applied external field Hext. M=0 if H=0.

• Well-defined permeability and susceptibility

• No significant temperature dependence of response

• Most materials

Microscopic picture: spins of electrons act as independent magnetic moments, not
interacting with one another but only with external fields (Pauli paramagnetism).
Orbital motion (and ensuing orbital magnetic moment) is insignificant.
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Antiferromagnets

The exchange interaction between local moments in a sea of conduction electrons actually
oscillates in sign (the so-called RKKY interaction). This means that for some lattices, the
interaction between local moments actually favors anti-parallel moments, which gives rise
to anti-ferromagnets. These are also usually described by a Heisenberg model, but now
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Paramagnets
Apply and external field B to a metal with Fermi energy εF.

Electrons with spins anti-parallel to magnetic field lowers energy, Fermi energy shifts to
εF+gµBB.

Electrons with spin parallel to magnetic field increase energy, Fermi energy shifts to εF-gµBB.

Find number of down- and up-spin electrons:
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Diamagnets
Orbital motion gives rise to magnetic moment which couples to external fields. Magnetization
is anti-parallel to external field. No significant temperature dependence. Orbital motion
responds according to Lenz’ law with induced magnetic moment antiparallel to the external
field
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Transition metals
Transition metals: Rows 4, 5, 6 in the periodic table.

Row 4: (K,Ca), Sc, Ti, V, Cr, Mn, Fe, Co, Ni (Cu, Zn, Ga, Ge, As, Se, Br, Kr)

Row 5: (Rb, Sr), Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd (Ag, Cd, In, Sn, Sb, Te, I, Xe)

Row 6: (Cs, Ba), La (Lanthanides), Hf, Ta, W, Re, Os, Ir, Pt (Au, Hg, Tl, Pb, Bi, Po, At, Rn)

• Filled inner shells up to ns2, (n-1)d shells empty in alkali metals and alkaline earths, but filling up in
the transition metals.

Example: K(4s1), Ca(4s2), Sc(3d1 4s2), Ti (3d2 4s2), V (3d3 4s2), Cr (3d5 4s1), Mn (3d5 4s2), Fe (3d6

4s2),

Co (3d7 4s2), Ni (3d8 4s2), Cu (3d10 4s1)

The order of filling the d shell is described by Hund’s rules, which give

n  lz=2 lz=1 lz=0 lz=-1 lz=-1 S L=|Σ lz| J
1 -1/2 ½ 2 3/2 (=|L-S|)
2 -1/2 -1/2 1 3 2 (=|L-S|)
3 -1/2 -1/2 -1/2 3/1 3 3/2 (=|L-S|)
4 -1/2 -1/2 -1/2 -1/2 2 2 0 (=|L-S|)
5 -1/2 -1/2 -1/2 -1/2 -1/2 5/2 0 5/2
6 -1/2,+1/2 +1/2 +1/2 +1/2 +1/2 2 2 4 (=L+S)
7 -1/2,+1/2 -1/2,+1/2 +1/2 +1/2 +1/2 3/2 3 9/2 (=L+S)
8 -1/2,+1/2 -1/2,+1/2 -1/2,+1/2 +1/2 +1/2 1 3 4 (=L+S)
9 -1/2,+1/2 -1/2,+1/2 -1/2,+1/2 -1/2,+1/2 +1/2 ½ 2 5/2 (=L+S)
10 -1/2,+1/2 -1/2,+1/2 -1/2,+1/2 -1/2,+1/2 -1/2,+1/2 0 0 0
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Transition metals

Note: Magnetism in transition metals is not well described by starting with a picture of atoms
with local moments equal to those of isolated atoms, and these moments are coupled by
exchange coupling. The moment per atom in, for example, crystalline Fe, Co, Ni is not equal to
the moment of isolated atoms. Furthermore, just calculating the exchange coupling blindly can
give rise to anti-ferromagnetic coupling.

The magnetic transition metals are not individual isolated moments (local moments) which
interact with near-neighbors. Instead, the magnetism is distributed throughout spin-split d-
bands (itinerant magnetism) and one must look to the band structure to understand the cause
of the magnetism.
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Transition metals

3s and 3p (or 4s, 4p, 5s, 5p) states are strongly localized near the core of the atoms due to strong
Coulomb attraction to nucleus and do not overlap with states on neighboring sites. 3d states are
also strongly localized, but do overlap a little with neighboring sites, and overlap with 4s
conduction electrons.

Non-overlapping states               energy levels are approximately those of states in single atoms
and do not broaden into bands as the levels mix.

3d bands are relatively flat due to small mixing, 4s bands are free-electron like (near parabolic).

Energy

Wavevector k

3s, 3p bands are flat

4s band is free-electron like

3d band is relative flat,
crosses 4s band

Band crossing
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Transition metals

Energy

Wavevector k

At the band crossing, 3d and 4s states hybridize (mix), and a gap opens up at the crossing

Opening the gap may cause the paramagnetic state to be unstable with respect to
formation of a ferromagnetic ground state (more spin-up than spin down)
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Transition metals - ferromagnetic
instability

k

Energy

EF

Why are some transition metals ferromagnets? The reason is that they can achieve lower total energy in a
ferromagnetic state than in a paramagnetic state. Consider first a transition metal in a paramagnetic state.
The up-and down-spin bands are identical and have equal populations of electrons up to the common Fermi
energy EF (Fig. 1). In the presence of a band gap, the system may try to move some down-spin electrons to
up-spin electrons so that the spin populations are unequal. This changes the exchange energy of the bands,
and tends to move up-spin bands to lower energy, and down-spin bands to higher energy. As a
consequence, the Fermi energies of the spin orientations will be changed and be unequal if the occupations
of up-and down-spin bands are assumed to be held constant (Fig. 2). If the Fermi energy of the up-spin
electrons is lowered, more electrons can be transferred from down-spin states to up-spin states until the
Fermi energies are equalized - the paramagnetic state was unstable with respect to formation of a
ferromagnetic state (Fig. 3).

k

EF down

EF up

Energy

k

Energy

EF

Fig. 1 Fig. 2 Fig. 3
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Stoner-Wohlfart model
Simple model to describe magnetic material, hysteresis and coercivity. Assume material
consists of a collection of uniformly magentized ellipsoids with their axes pointing in arbitrary
directions. For an ellipsoid, the demagnetizing field can easily be obtained :
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Stoner-Wohlfart model
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Stoner-Wohlfart model
Minimize total energy by setting
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Set second derivative to zero to find instability of solution for given θ gives
critical field at which magnetization jumps to new orientation:
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Stoner-Wohlfart model
Find hysteresis loop by evaluating average orientation over an ensemble of particles
with different orientations as a function of external field:
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∫
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Numerical evaluation gives a coercivity of Hc=0.479(Na-Nb)Ms, and a remnant magnetization of
Ms/2

Note:

• Particle-particle interactions changes the coercivity

• Rotation of individual particles can be incoherent (not coherent as assumed here)

• If the ellipsoid is made large enough, the magnetization will not be uniform but domains will
be formed to lower the total energy.
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