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D. Frenkel, Boulder, July 6, 2006

Lecture 2+3: Simulations of Soft Matter

1. Why Lecture 1 was irrelevant…

2. Coarse graining

3. Phase equilibria

4. Applications

An atom 3Å 1 atom

A Colloid 300nm 109 atoms
A cell 30 µm 1015 atoms
A pebble 3cm 1023 atoms

Don’t try atomistic simulations

What distinguishes Colloids from atoms or 
pebbles?

Size? (1 nm – 1 µm)

No: distinguish through properties

Distinction between small molecules and 
colloids:

To understand the behavior of colloids we do NOT 
need to know their structure in atomic detail.

Consequence:
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Molecules may behave like colloids in SOME 
respects, but not in others…

Example: TMV

Phase
 behavio

r

Colloid

Only overall shape, charge 
and flexibility matter

Biological function

Not a colloid…

Precise sequence 
matters…

Question: Is a Pebble a colloid?

Colloids can be described by 
statistical mechanics:

Relevant energies O(kBT)
Example: barometric height distribution

colloids pebbles
P(h)=exp(-mgh/kT)

<h> = kT/mg

Should be larger 
than particle size.

For colloids:

<h>=kT/mg=kT/(4π/3 ρ R3 g) 

Must be of order R.

kT/(4π/3 ρ R3 g) = R

kT/(4π/3 ρ g) = R4

⇒2R = σ ≈ 1µ

on earth…

For pebbles (e.g. 50 g)

<h>=kT/mg = 10-18 cm

on earth…

Experiment

For colloids:

<h>=kT/mg=kT/(4π/3 ρ R3 g) 

Must be of order R.

kT/(4π/3 ρ R3 g) = R

kT/(4π/3 ρ g) = R4

⇒2R = σ ≈ 1µ

on earth…

For pebbles (e.g. 50 g)

<h>=kT/mg = 10-18 cm

on earth…
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Is a pebble in space a colloid?
Silence!!Pebble crystallization experiment 

in progress

To explore possible structures, the colloids must diffuse at 
least their own radius during an experiment:

2D texp = R2 , but D = kT/(6πηR). Therefore:

texp ≈ 3πηR3/kT

For 1 µ colloids in water: 

texp ≈ 1 sec

But

For 1 cm pebbles in water:

texp ≈ 1012 sec !!!

Time scale [s]10-14 10-6 10+2

1

1012

1024

atomistic

Coarse grained models

Continuum description

SOFT 
MATTER

Most simulations of soft matter use coarse grained models:

1. Lattice models (“Be wise –discretize”)

2. Pseudo-atomistic models (pearl-necklace polymers, 
polymers as soft spheres, dissipative particle dynamics 
etc etc etc

3. Quasi continuum models (particles + (charge)density 
fields, particles + hydrodynamic fields, etc etc etc)
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The models for dynamics are all different

(# of models ≈ # of researchers)

But there are some general classifications:

1. Models with Newtonian dynamics on coarse-grained 
objects.

2. Stochastic dynamics WITH momentum conservation 
(yields hydrodynamics)

3. Stochastic dynamics WITHOUT momentum 
conservation (does not reproduce hydrodynamics)

Simulations of soft matter are time consuming:

1. Because of the large number of degrees of 
freedom (solution: coarse graining)

2. Because the dynamics is intrinsically slow. 
Examples:

1. Polymer dynamics

2. Hydrodynamics

3. Activated dynamics

Slow dynamics implies slow equilibration. This is 
particularly serious for glassy systems. 

6 hours 8 hours

Mountain hikes

..

.. .. .. .. .. .. .. .. ..

20 minutes
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Sampling the valleys

..

Combine this… .. …with this

Parallel Tempering

COMBINE  Low-temperature and high-
temperature runs in a SINGLE Parallel 
simulation

In practice:

System 1 at 
temperature T1 

System 2 at 
temperature T2

Boltzmann factor Boltzmann factor

Total Boltzmann factor

SWAP move

System 1 at 
temperature T2 

System 2 at 
temperature T1

Boltzmann factor Boltzmann factor

Total Boltzmann factor
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Ratio
Systems may swap temperature if their 
combined Boltzmann factor allows it.

number  of  MC cycles

W
indow

0                     10000             20000

300

200

100

NOTES:

1. One can run MANY systems in parallel

2. The control parameter need not be 
temperature

Application: computation of a critical point INSIDE the 
glassy phase of “sticky spheres”:

GLASSY
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Most experiments are not performed at constant Volume, 
but at constant pressure.

Can we do simulations at constant pressure?

Start from partition function Q(N,V,T):

Constant-pressure Monte Carlo

V0-V

V

Introduce “scaled” coordinates:

L
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(c = normalisation constant)

Write this as:

Looks like a Boltzmann weight.

Now we can do standard Metropolis sampling on 
the scaled coordinates sN … AND the volume V. 

Similarly: Grand-Canonical Monte Carlo

V0

V

Condition for phase coexistence in a one-component system:
With normal Monte Carlo simulations, we cannot compute 
“thermal” quantities, such as S, F and G, because they 
depend on the total volume of accessible phase space. 

For example:

and
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Solutions:

1. “normal” thermodynamic integration

2. “artificial” thermodynamic integration

3. “particle-insertion” method 

How are free energies measured experimentally?

P

Then take the limit V0 ⇒ ∞.

Not so convenient because of divergences. 
Better:

⇒ 0, as V0 ⇒ ∞

This approach works if we can integrate from a known 
reference state  - Ideal gas (“T=∞”), Harmonic crystal 
(“T=0”), 

Otherwise: use “artificial” thermodynamic integration 
(Kirkwood)

Suppose we know F(N,V,T) for a system with a 
simple potential energy function U0: F0(N,V,T). 

We wish to know F1(N,V,T) for a system with a  
potential energy function U1.
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Consider a system with a mixed potential 
energy function (1-λ)U0+ λ U1:  F λ(N,V,T).

hence

Or:

And therefore

Example of application: testing models for water

J. L. F. Abascal, E. Sanz, R. García Fernández, and C. Vega, J.C.P. 122, 234511 (2005)

You can think up your own 
thermodynamic integration 

schemes…
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Particle insertion method to compute 
chemical potentials

But N is not a continuous 
variable. Therefore

Does that help? 

Yes: rewrite

s is a scaled coordinate: 0≤s<1

r = L s (L is box size)

Now write

then

And therefore

but
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So, finally, we get:

Interpretation:

1. Evaluate ∆U for a random insertion of a 
molecule in a system containing N 
molecule.

2. Compute 

3. Repeat M times and compute the average 
“Boltzmann factor”

4. Then: 

For repulsive interactions:

Intuitive interpretation:

Excess chemical potential measures how difficult it is 
to insert a particle at random without creating overlaps.

ACCEPTANCE OF RANDOM INSERTION DEPENDS ON SIZE ACCEPTANCE OF RANDOM INSERTION DEPENDS ON SIZE
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Particle insertion continued….

therefore

But also

As before:

With s a scaled coordinate: 0≤s<1

r = L s (L is box size)

Now write

And therefore
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Interpretation:

1. Evaluate ∆U for a random REMOVAL of a 
molecule in a system containing N+1 molecule.

2. Compute 

3. Repeat M times and compute the average 
“Boltzmann factor”

4. Then 

What is wrong?

is not bounded. The average 
that we compute can be 
dominated by INFINITE 
contributions from points that 
are NEVER sampled.

What to do?

Consider:

And also consider the distribution

p0 and p1 are related:

so

but hence
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Rewrite:

define

Then:

For ALL ∆U

∆U

f1

f0

βµ

Diagnostic test: 

If the distributions do not overlap, don’t trust your results 
for µ

Does it work for hard 
spheres?

consider ∆U=0


