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Abstract. Magnetic tunneling of a large spin subject to the Hamiltonian H = −DS2
z + BS2

x − gµBH · S
is investigated by elementary methods for weak fields H. In zero field (H = 0) the tunnel frequency in
the ground state is found to be equal to Ds[1 + (2D/B) + 2

p
(1 +D/B)D/B]−s multiplied by a quantity

whose variation with s is slower than exponential. This result coincides with that of path integral meth-
ods [16]. For the values of the longitudinal field which allow tunneling, the tunnel frequency ωT is shown
to vanish when Hy = 0 for certain “diabolic” values of gµBHx/

p
B(D +B), in qualitative agreement

with experiments by Wernsdorfer and Sessoli. The particular case Hz = 0 was already obtained by Garg
by means of path integrals. The diabolic values of gµBHx/

p
B(D +B) are in agreement with numerical

results but, as already noticed by Wernsdorfer and Sessoli, they disagree with the experimental ones. This
may be an effect of higher order anisotropy terms, which is briefly addressed in the conclusion.

PACS. 75.45.+j Macroscopic quantum phenomena in magnetic systems – 75.50.Xx Molecular magnets –
61.46.+w Clusters, nanoparticles, and nanocrystalline materials

1 Introduction

Tunneling in magnetic systems is the subject of a con-
siderable literature, especially because of the discovery
in the eighties of high spin molecular groups which form
good crystals. Those spins are just large enough to have
a ground state splitting which is sufficiently small to de-
serve the name of tunnel splitting, but is yet observable
in a time reasonably short with respect to the duration of
a Ph.D. thesis.

The best example is presently the compound
[(tacn)8Fe8O8(OH)8]8+ (where tacn is 1-4-7-triaza-
cyclononane), where tunneling is observable at temper-
atures T < 0.4 K [1–3]. In this material, hereafter called
“Fe8”, the molecular groups can be with a fairly good
approximation treated as spins of modulus s = 10 in
an anisotropy field. The Hamiltonian resulting from this
anisotropy and an external magnetic field H is

H = −DS2
z +BS2

x − gµBHxSx

− gµBHySy − gµBHzSz. (1)

We are interested in the Ising case, D > 0, B > 0 which
corresponds to Fe8. The spin s will be assumed to be in-
teger and even except if a different hypothesis is specified.
Extension to odd spins would be straightforward. The field
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is assumed to be weak. In particular, the longitudinal com-
ponent Hz satisfies the condition

|Hz | � Ds (2)

so that the low energy regions Sz ≈ −s and Sz ≈ s are
separated by a potential barrier of the order of Ds2, which
ensures a long relaxation time. For most of the values of
Hz, the low energy eigenstates of (1) are localized in the
region Sz < 0 or in the region Sz > 0. Such states will
be called negative-localized and positive-localized, respec-
tively. For particular values ofHz, they are delocalized. An
initially negative-localized spin subject to Hamiltonian (1)
oscillates between the two wells Sz ≈ −s and Sz ≈ s with
the “tunnel frequency” ωT. The calculation of ωT can eas-
ily be performed numerically if the spin is not too large.
For large s, say s > 40 if B/D ≈ 1, it becomes difficult.
In the present work, the limit s� 1 is studied by analytic
methods.

For Hz = 0, 2~ωT can also be interpreted as the “tun-
nel splitting” of the “ground doublet”, i.e. between the de-
localized ground state of (1) and the lowest excited state.
A way to measure ωT is to initially apply a strongly neg-
ative longitudinal field Hz(t), so that the ground state is
negative-localized. Then, Hz(t) is slowly raised until it be-
comes slightly positive and the change in magnetization
∆M is measured. At low temperature, demagnetization
occurs only when tunneling is possible, i.e. for Hz ≈ 0,
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and ∆M is directly related to ωT which can thus be de-
termined [4].

Tunneling can also occur for positive values of Hz

(see formula (5) below). The tunnel frequency can be
measured in a similar way except that the longitudi-
nal field is abruptly switched from a strongly negative
value to a positive one, which is slightly smaller than
that which permits tunneling. The spin is then in the
negative-localized state of lowest energy. This state will
be called the “pseudo-ground state”. As Hz(t) is slowly
raised, tunneling becomes possible between this pseudo-
ground state and a positive-localized state. When delocal-
ization is greater (i.e. 50%), the distance between levels is
minimal and equal to the tunnel splitting 2~ωT which we
want to calculate.

A particularly interesting feature of Fe8 is the recent
experimental observation [4] that, for Hy = Hz = 0 and
for particular values of Hz , in particular Hz = 0, the
tunnel frequency has minima when the transverse field
Hx is varied. This is in agreement with theoretical pre-
dictions [5–8] that the tunnel splitting vanishes for cer-
tain values of Hx. This exact degeneracy is so excep-
tional [9] that it is sometimes qualified [10] “diabolic”.
This property will be studied in Section 7 and extended
to certain nonvanishing values of Hz, in agreement with
experiment [4].

In practice, a spin is also subject to hyperfine inter-
actions, dipole-dipole interactions and spin-phonon inter-
actions [11–13]. As a result, the minima of ωT do not
vanish. However, their location is probably not strongly
affected [13]. Since the value of ωT far from the minima
is probably not strongly modified by the interaction with
the rest of the world, this interaction will be ignored in
the present work.

The fields which allow tunneling between the pseudo-
ground state and a state which roughly corresponds to
Sz = m0 > 0 can be obtained as follows if the coefficients
B, gµBHx, gµBHy, responsible for tunneling, are small
in comparison with D. Then the approximate energies of
the two tunneling states are

E0
−s = −Ds2 + gµBHzs (3)

and

E0
m0

= −Dm2
0 − gµBHzm0. (4)

The field Hz which allows tunneling between the pseudo-
ground state and a state with Sz ≈ m0 is given by the
“level-crossing” condition E0

−s = E0
m0

or

gµBHz = D(s−m0). (5)

Relations (3–5) also hold with a good approximation if
B, gµBHx, gµBHy are not very small with respect to D,
provided s is large, so that classical mechanics are almost
valid and Sx and Sy are small in the ground state and in
the pseudo-ground state.

Although a spin 10 can easily be treated numerically
as seen in Section 7.3, it is of interest to rely on analytic

treatments which can be done of course for very small
spins (s = 1/2, s = 1...) but also for large spins.

Large spins are often treated by path integral meth-
ods [14–18] which require elaborate mathematical tech-
niques (coherent spin states, Berry phase, instantons, ...).
As a typical example, the “Wess-Zumino term”, which in-
troduces the Berry phase in the Lagrangian of a spin, is
not required in the elementary quantum theory although it
is “crucial to describe the Kramers degeneracy” [16] when
one wants to apply the path integral method. In other
words, it is a trick to avoid missing Kramers’ symmetry.
These “freely invented ideas and concepts”, these “cre-
ations of the human mind” [21], are, as Einstein said, es-
sential ingredients of theoretical physics. However, it may
be of interest to try (as much as possible) to avoid such
artificial concepts which involve a long conceptual detour
before contact with the physical reality is reached. We
hope that ignorant readers will be as happy to avoid this
detour, as the ignorant authors are.

In the present work, we apply elementary manip-
ulations to the wave function. This approach can be
compared to the WKB theory of van Hemmen and
Sütö [19,20] (who did not derive diabolic points) and to
Garg’s [22] recent article in which, independently of the
present work, “diabolic points” are addressed by means
of the “discrete WKB method” [23,24]. Our treatment is
more self-contained than Garg’s one, and it does not use
the ~→ 0 limit implied in the WKB method.

2 The Schrödinger equation

It is convenient to introduce the eigenvectors |m〉 of Sz
defined by Sz|m〉 = m|m〉, and to write the eigenvectors
of H as

|E〉 =
s∑

m=−s
µm(E)|m〉 · (6)

Inserting (6) into (1) one obtains∑
m′

〈m|H|m′〉µm′ = Eµm (7)

where the summation overm′ is from m−2 to m+2 except
for m = ±s and m = ±(s−1), with obvious modifications
in these cases.

Relation (7) can be regarded as a Schrödinger equation
for the “wave function” µm which depends on the one-
dimensional, discrete variable m.

All eigenvalues E are real since the Hamiltonian H is
Hermitian. One can choose basis vectors |m〉 such that the
matrix elements

〈m|S−|m+ 1〉 = 〈m+ 1|S+|m〉 =
√
s(s+ 1)−m(m+ 1)

=
√

(s−m)(s+m+ 1) (8)

are real.
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Using relations Sx = (S+ + S−)/2 and Sy = −i(S+ −
S−)/2, equation (7) can be written as

Bµm−2〈m|S2
+|m−2〉−2gµB(Hx− iHy)µm−1〈m|S+|m−1〉

+4µm〈m|H−E|m〉−2gµB(Hx+iHy)µm+1〈m|S−|m+1〉
+Bµm+2〈m|S2

−|m+ 2〉 = 0. (9)

We are particularly interested in the pseudo-ground state
wave function, which corresponds to a value of E close
to (3) and is concentrated in the region m ≈ −s. For a
particular value of Hz, approximately given by (5), there
is tunneling between this wave function and a wave func-
tion concentrated in the region m ≈ m0. Between these
two regions, there is a “tunneling region” where both wave
functions are small. In, particular, when H = 0, an ele-
mentary calculation given in Section 5 and in Appendix A
shows that in the tunneling region (defined in that case
by s−|m| � 1) the wave function is a sum of exponential
functions exp(±κ0m). From an analogy with the elemen-
tary theory of quantum tunneling, one can guess that the
tunnel splitting is dominated by a factor exp(−2κ0s). This
is actually the formula (35) given in the abstract and de-
rived in Section 5. However, there are corrections which
depend on the behaviour of the wave function in the re-
gions m ≈ ±s. In the forthcoming analysis, it will be
argued that these corrections have a slower variation than
an exponential.

In vanishing transverse field (Hx = Hy = 0), (9) has
two types of solutions: i) those which vanish for odd values
of m, ii) those which vanish for even values of m. These
solutions will be called, respectively, “even-valued”, and
“odd-valued”.

In weak transverse field (see formula (11) below), the
eigenfunctions are still approximately even-valued or odd
valued (Fig. 1) in the sense that the ratio

average oddness =
∑
p

|µ2p+1|2 /
∑
p

|µ2p|2 (10)

is either large or small with respect to 1. This statement
holds if the matrix elements of H between odd and even
values of m are small with respect to the difference be-
tween successive diagonal elements. The former are, for
low-lying states (|m| ≈ s) of the order of gµBHx

√
s and

gµBHy
√
s according to (9, 8), while the latter are of or-

der Ds2 −D(s− 1)2 ≈ 2Ds. Therefore the “average odd-
ness” (10) is large or small with respect to 1 if{

gµB|Hx| � D
√
s (a)

gµB|Hy| � D
√
s. (b) (11)

The field will be called “weak” if it satisfies (2, 11). The
present work is restricted to weak fields.

Equation (9) will be called E(m). The (2s + 1) equa-
tions E(−s), E(−s+ 1), ... E(s) define the components µm
and the eigenvalue E. The eigenvalues E can in principle
be obtained by writing that the determinant of the coeffi-
cients vanishes. This yields an algebraic equation of degree
(2s+ 1) in E which, for large s, is not easy to handle. To

overcome this difficulty, we shall, in a first step, ignore a
part of the equations (9), so that the remaining set can be
solved for any value of E. This is the program of the next
section.

3 Basis vectors

The advantage of considering large values of s is that,
the variation of the matrix elements (8) with m is slow
in the major part of the interval [−s, s]. More precisely,
d〈m|S−|m+ 1〉/dm� 〈m|S−|m+ 1〉 if

s− |m| � 1. (12)

If (12) is fulfilled, one can hope to find solutions of (9)
which are such that µm/µm−1 = ξ(m) varies slowly with
m. Neglecting this variation, each equation (9) becomes
an algebraic equation of degree 4 in ξ(m), which has 4 so-
lutions for each value of m, and is explicitly written and
solved in Section 5 and in Appendix A. These 4 solutions
generate 4 solutions ϕ1(m), ϕ2(m), ϕ3(m), ϕ4(m) of a sub-
set of the system (9), to be precised below. Even though
µm/µm−1 = ξ(m) is only approximately independent of
m in only a part of the interval [−s, s], the 4 functions
ϕr(m) can be defined as exact solutions of this subset of
equations (9). The maximum number of elements of this
subset can be deduced from the fact that the total num-
ber of equations (9) is (2s+1) and the subset should have
4 independent solutions. It can therefore not contain more
than (2s+ 1)− 4 = (2s− 3) equations. It is thus possible
to define 4 functions ϕ1(m), ϕ2(m), ϕ3(m), ϕ4(m) which
satisfy E(−s + 2), E(−s + 3), ... E(s − 2). The complete
definition of these 4 functions will be specified below in
this section. The system of (2s− 3) equations E(−s+ 2),
E(−s+3), ... E(s−2) will be called “truncated Schrödinger
equation”.

The true solution of the full system of (2s + 1)
equations (9) will then be obtained by inserting

µm =
4∑
r=1

urϕr(m) (13)

into the 4 remaining equations E(−s), E(−s+ 1), E(s− 1)
and E(s), which, together with the normalization con-
dition, determine the 5 variables ur and E. According
to (13), the four functions ϕr(m) may be regarded as “ba-
sis functions” or basis vectors of a 4 dimensional vector
space V(E) which depends on E, but this inconvenience
is not a dramatic one because the value of E of interest is
approximately known, and given by (3).

Insertion of (13) into (7) yields

∑
m′

〈m|H|m′〉
4∑
r=1

ur′ϕr′(m′) = E
4∑
r=1

ur′ϕr′(m). (14)

This equation is automatically satisfied for −s+ 2 ≤ m ≤
s − 2. It is satisfied for m = −s, −s + 1, s − 1, s if
E, u1, u2, u3, u4 have appropriate values. Multiplying
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Fig. 1. Ground state function µm for s = 38 and B = C in vanishing field (a) and its logarithm (b), and for Hz = Hy = 0 and

2gµBHx =
p
B(D +B) (c). Curve (b) corresponds to even values of m, while µm = 0 if m is odd.

both sides of (14) by ϕ∗r(m) and summing over m′, one
obtains

4∑
r=1

ur′
∑
mm′

ϕ∗r(m)〈m|H|m′〉ϕr′(m′) =

E
4∑
r=1

ur′
∑
m

ϕ∗r(m)ϕr′(m) (15)

or

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44


u1

u2

u3

u4

 = 0 (16)

where the elements of the 4× 4 Hermitian matrix A are

Arr′ =
∑
mm′

ϕ∗r(m)〈m|H|m′〉ϕr′(m′)−E
∑
m

ϕ∗r(m)ϕr′(m)

(17)

which directly depend on E and also indirectly because
the components ϕr(m) do.

Equations E(−s+ 2) to E(s−2) define unambiguously
the vector space V(E) of the 4 functions ϕr(m), the choice
of these 4 functions inside V(E) is still arbitrary. Most of
this ambiguity can be removed by the requirements that,
with a good approximation (Fig. 2),

– ϕ1(m) and ϕ2(m) are negative-localized,
– ϕ3(m) and ϕ4(m) are positive-localized,
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Fig. 2. a) Modulus of ϕ1(m) in vanishing field for an even value
of s. Thick line: even values of m. Thin line: odd values of m
(the sign has been changed to ensure legibility). b) Schematic
representation of ϕ1(m) for Hx = Hy = 0 and Hz 6= 0 for even
values of m.

and by the orthogonality relations∑
mm′

ϕ∗1(m)〈m|H|m′〉ϕ2(m′) =
∑
m

ϕ∗1(m)ϕ2(m)

=
∑
mm′

ϕ∗3(m)〈m|H|m′〉ϕ4(m′) =
∑
m

ϕ∗3(m)ϕ4(m) = 0.

(18)

The ambiguity in the choice of the basis functions inside
V(E) can be completely removed by optimizing the local-
ization. However, this optimization is only approximately
possible. We shall come back to this point at the end of
Section 5.

When Hx = Hy = 0, relations (18) are satisfied if ϕ1

and ϕ4 are chosen even-valued and ϕ2 and ϕ3 odd-valued.
The effect of a weak transverse field is to transform these
exact properties into approximate ones. Thus, as shown
more precisely in Appendix A.3

– ϕ1(m) and ϕ4(m) are approximately even-valued,
– ϕ2(m) and ϕ3(m) are approximately odd-valued.

The orthogonality relations (18) imply{
A12 = 0 (a)
A34 = 0. (b) (19)

The basis functions are generally not eigenfunctions of H.
However, the following theorem holds.

Theorem. If tunneling is neglected, a basis function
ϕr(m′) is an eigenfunction of H for the eigenvalue E if
and only if

Arr(E) = 0. (20)

Proof. Assume r = 1. The quantities

Y (m) =
∑
m′

〈m|H|m′〉ϕ1(m′)−Eϕ1(m) (21)

vanish for m 6= ±s or ±(s−1) because of the definition of
ϕ1. The 4 quantities Y (−s), Y (−s+1), Y (s), Y (s+1) sat-
isfy the relations

∑
m ϕr′(m)∗Y (m) = 0 for r′ = 3 and 4

because tunneling is neglected, for r′ = 2 because of (19a),
and for r′ = 1 as a consequence of (20). These 4 relations
are easily seen to be independent, so that Y (m) = 0 for
any m and ϕ1 is an eigenvector of H for the eigenvalue E.

4 Tunneling

In this section, we establish the general formulae which
yield ωT when the matrix elements Arr′ are known.

We first stress the relation between basis functions
ϕr(m), which are solutions of the truncated Schrödinger
equation, and wave functions, solutions of the full
Schrödinger equation. If the energy E is not appropriately
chosen, the basis functions are not wave functions. But
our goal is to find the right eigenvalues E, so that some
basis functions are wave functions. How many? The case
of interest is that of level-crossing. Then, for E = E0

−s,
two basis functions are solutions of the full Schrödinger
equation with a very good approximation (i.e. neglect-
ing tunneling). Which ones? Since s is an even integer,
the ground state or pseudo-ground state is, at least ap-
proximately, even-valued. Since the spin is initially in the
negative region, we identify its wave function with the
negative-localized, approximately even-valued basis func-
tion ϕ1. We wish to describe tunneling of this state with a
positive-localized state, which must have almost the same
energy, and therefore have a wave function almost iden-
tical with ϕ4 (if it is almost even-valued) or ϕ3 (if it is
almost odd-valued). In the former case, the theorem of the
previous section yields the level-crossing condition, ignor-
ing tunneling:

A11 = A44 = 0. (22)

These two equations are enough to obtain E and Hz if
Hx and Hy are given. The condition on Hz should be
approximately equivalent to (5), where m0, or (s −m0),
should be even since ϕ4 is even-valued. Odd values of s−
m0 correspond to the case

A11 = A33 = 0. (23)

Since the beginning of this section, tunneling has been
ignored. The tunnel splitting is the difference between
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two eigenvalues, which are given, according to (16), by
detA = 0. In this determinant, A11 and A44 are small,
but A22 and A33 are not, so that A23, A24, A31 and A32

can be neglected and the energy is given with a good ap-
proximation, according to (19), by∣∣∣∣∣∣∣

A11 0 A13 A14

0 A22 0 0
0 0 A33 0
A41 A42 A43 A44

∣∣∣∣∣∣∣ = 0

or

A11A44 = A14A41. (24)

If a solution (H0
z , E

(0)) of (22) is known, one can look
for solutions (H0

z + δHz, E
(0) + δE) of (24). Insert-

ing the expansions A11 = λ(δE + KδHz) and A44 =
λ′(δE − K ′δHz) into (24) one obtains for each value
of Hz two solutions δE+ and δE− whose difference
is
√

(K +K ′)2δH2
z + 4A14A41/(λλ′). The minimum, ob-

tained for δHz = 0, is the tunnel splitting

2~ωT = E+ −E− = 2|A14|/
√
λλ′. (25)

In the case of tunneling between ϕ1 and ϕ3, which corre-
sponds to odd values of (s −m0), the tunnel splitting is
given by an analogous formula with A14 replaced by A13,

2~ωT = Const× |A13|. (26)

We shall generally consider even values of (s − m0),
when (25) applies.

Formula (25) can only be useful if A14 is at least ap-
proximately known. In the next section, we give a simple
example.

5 The zero-field case

In this section, the leading factor of the tunneling fre-
quency is calculated for large, even s in the absence of a
field.

If H = 0, the Schrödinger equation (7) can be rewrit-
ten as a recursion formula for the ratio Xm = µm/µm−2 =
ξ(m)ξ(m− 1), namely

Xm+2 = −Km(E) − Lm
Xm

(27)

where the expressions of Km(E) and Lm are easily de-
duced from the textbook formulae (8) and are given in
Appendix C. In this section, we shall use the approximate
expressions for s− |m| � 1, namely
Km(E) = 4

B(s2−m2)

[
−Dm2

+ B
2 (s2 −m2)−E

]
(a)

Lm = 1. (b)
(28)

Replacing E by (3), and making the approximation
Xm+2 = Xm, (27) yields Xm = X , a value independent
of m given by X2 + 2(1 + 2D/B)X + 1 = 0, or

X = ξ2 = −e±2κ0

= −[1 + (2D/B) + 2
√

(1 +D/B)D/B]±1 (29)

where we have introduced the notation

e±κ0 =

√
1 +

D

B
±
√
D

B
· (30)

In this approximation, we have obtained 4 independent
solutions µ(a)

m , µ(b)
m , µ(c)

m , µ(d)
m , of (7), which all have a

constant ratio µm/µm−1 = ξ =
√
X. The values of ξ cor-

responding to the 4 solutions are

ξa = ie−κ0 , ξb = −ie−κ0 , ξc = ieκ0 , ξd = −ieκ0 .
(31)

Since these values are independent of m, the assumption
of a slowly varying ratio µm/µm−1 = ξ(m) is justified, but
of course only if (12) is fulfilled, otherwise the approxima-
tion (28) would not be correct.

From the above values of ξ one can deduce 4 basis
functions of the form exp[−κ0m ± iπ/2] and exp[κ0m ±
iπ/2], but it is more convenient to choose the real linear
combinations

ϕ1(m) = e−κ0(s+m) cos(mπ/2),

ϕ2(m) = e−κ0(s+m) sin(mπ/2),

ϕ3(m) = e−κ0(s−m) cos(mπ/2),

ϕ4(m) = e−κ0(s−m) sin(mπ/2). (32)

These expressions can be multiplied by a normalization
factor when appropriate. The factor e±κ0s ensures that
the normalization factor has a finite limit for infinite s.

Formulae (32) show that, in agreement with the pre-
scription of Section 3

– ϕ1(m) is negative-localized (with just a small tail in
the region m > 0) and strictly even-valued.

– ϕ2(m) is negative-localized and strictly odd-valued;
– ϕ3(m) is positive-localized and strictly odd-valued;
– ϕ4(m) is positive-localized and strictly even-valued.

Although expressions (32) are only valid if (12) is ful-
filled, functions ϕr(m) are strictly even- and odd-valued,
for the reasons explained in Section 2. It follows from this
fact and the definition (17) that off-diagonal elementsArr′
vanish except if ϕr and ϕr′ have the same parity, i.e. only
A14 = A41 and A23 = A32 do not vanish. Therefore, the
equation detA = 0, which yields the eigenvalues E, ex-
actly reduces to (24), which in the general case is but
approximate.

To put (24) and the equivalent formula (25) into a
more transparent form, one can write the definition (17)
as A41 =

∑
m ϕ
∗
4(m)Y (m). The quantity Y (m) defined

by (21) vanishes for −(s − 1) < m < s − 1. It also van-
ishes (with a very good approximation) for m = −s and
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−(s − 1) if E and ϕ1(m) are such that A11 = 0 (this is
relation (20) and the corresponding theorem). Finally, for
H = 0, ϕ1(m) is strictly even-valued and Y (s − 1) van-
ishes, so that

A41 = ϕ∗4(s)Y (s) = ϕ∗4(s)(〈s|H|s〉 −E)ϕ1(s)
+ ϕ∗4(s)〈s|H|s− 2〉ϕ1(s− 2). (33)

In this expression, ϕ∗4(s) is of order unity and, in the limit
of large spins, just contributes a constant, s-independent
factor in the expression (25) of ωT. The factor

√
λλ′ in

that expression is also a constant factor. Furthermore, the
energy E is the ground state energy, which should not
be very different from 〈s|H|s〉, so that a correct order of
magnitude is obtained by dropping the first term of (33).
With these approximations (25, 33) yield

2~ωT ≈ Const×Bs|ϕ1(s− 2)|. (34)

Insertion of (29, 32) into (34) yields the tunnel splitting

2~ωT ≈ 2Ds
[
1 + (2D/B) + 2

√
(1 +D/B)D/B

]−s
(35)

but formula (32), which has been applied to m = s − 1,
is only valid in the tunneling region. In reality, the ra-
tio Xr(m) = ϕr(m)/ϕr(m − 2) = ξ(m)ξ(m − 1) deduced
from (27) is not constant. It differs from (29) by a factor
which is appreciably different from 1 in a narrow region
near m = −s and m = s. Taking these regions into ac-
count would just contribute to the constant in (34). How-
ever, as seen in Appendix C, even in the tunneling region,
the weak correction to Xr(m) yields a divergent factor
in the function ϕr(m) = Const ×

∏
qXr(q). The diver-

gence, however, is a power of s, weaker than exponential.
Thus, our calculation correctly gives the dominant contri-
bution to the tunnel splitting for large s. This dominant
factor is in agreement with the result obtained by path
integrals, as can be seen for instance from formula (31a)
of Schilling [16].

The basis functions out of the tunneling regions can
be derived from (27). The energy E could be obtained by
perturbation theory, but expression (3) is already a good
approximation. For instance X4(m) can be most conve-
niently deduced from X4(−s+2). If B/D is not too large,
e.g. B/D < 1) and if −X4(−s + 2) is large enough (e.g.
X4(−s+ 2) < −1, it is easy to prove recursively from (27)
that X4(m) < −1 for any m. This is done in Appendix E.
The resulting value of |ϕ4(m)| is therefore an increasing
function of m. On the other hand, in the tunneling region,
it is a linear combination eκ0m + ke−κ0m. The fact that it
is an increasing function of m implies that k is very small,
so that the resulting function ϕ4(m) satisfies the required
conditions in spite of the ambiguity on the starting point
X4(−s+2) of the recursion procedure. In practice, a possi-
ble choice is X4(−s+ 2) =∞. Numerical solution of (27)
with this starting point shows a regular convergence to
X4 = e2κ0 .

6 Weak fields

6.1 The tunneling region

In this section, the results given in the previous sections
in zero field are extended to the case of weak fields which
satisfy (2) and (11). One can look for solutions of the
truncated Schrödinger equation (7) in the tunneling re-
gion, for which the ratio µm/µm−1 = ξ(m) varies slowly
with m. The resulting equation is of the fourth degree and
can be solved approximately for small fields. The calcu-
lation is given to lowest order in Appendix A. One thus
finds 4 (complex) solutions µ(a)

m , µ(b)
m , µ(c)

m , µ(d)
m , with ra-

tios ξa(m), ξb(m), ξc(m), ξd(m) which are close to the
values (31). In the case Hy = 0, these functions can be
combined to obtain real basis functions as in Section 5.
The results, which generalize (32), are

ϕr(m) = Const× e−κ0(s+m) exp[−hzΨ(m/s)]
× cos[mπ/2− hxΦ(m/s) + αr] (r = 1, 2) (36)

and

ϕr(m) = Const× e−κ0(s−m) exp[hzΨ(m/s)]
× cos[mπ/2− hxπ + hxΦ(m/s) + αr] (r = 3, 4) (37)

where the reduced fields are

hx =
gµBHx

2
√
B(B +D)

, (38)

and

hz =
gµBHz

2
√
D(B +D)

, (39)

and the meaning of the various functions is explained be-
low. The most important one is Φ, which is a sum of phase
shifts corresponding to the various values of m. The typi-
cal phase shift value is small with respect to unity, as seen
in Appendix A, if

|hx| � s. (40)

If this inequality is satisfied, the sum of the phase shifts
can be replaced by an integral, and one obtains, as seen
in Appendix A,

Φ(v) =
∫ v

−1

du√
1− u2

· (41)

The function Ψ is a sum of corrections to κ0. If the sum
is replaced by an integral, one finds

Ψ(v) =
∫ v

0

du
1− u · (42)

We now discuss the phases αr. In agreement with the
requirements of Section 3, ϕ1(m) and ϕ4(m) must have
a small average oddness, and therefore be almost even-
valued in the region where these functions are large,
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but also on the corresponding edge of the tunneling re-
gion. Thus, hxΦ(−1) +α1 and π− hxΦ(1) +α4 should be
close to 0 or (since Φ(−1) = 0 and Φ(1) = π)

α1 ≈ α4 ≈ 0. (43)

Similarly, since ϕ2(m) and ϕ3(m) are approximately odd-
valued,

α2 ≈ α3 ≈ π/2. (44)

These relations are consistent with (19). They can also
be obtained by noticing that, for H = 0, (36, 37) should
reduce to (32), and this implies α1 = α4 = 0 and α2 =
α3 = π/2.

Relations (43, 44) hold only if (11) is satisfied. For
fixed values of B and D, this condition is more stringent
than (40) in the limit s→∞.

In the case Hy 6= 0, (36) is replaced, for r = 1, by the
following expression derived in Appendix A.

ϕ1(m) = Const× exp [−κ0(s+m) + hzΨ(m/s)]
× {cos [mπ/2− hxΦ(m/s) + α1] cosh [hyΦ(m/s)]

+ i sin [mπ/2− hxΦ(m/s) + α1] sinh [hyΦ(m/s)]} (45)

where

hy =
gµBHy

2
√
BD

· (46)

Formulae analogous to (45) can easily be obtained for r =
2, 3, 4.

The remarkable feature in formulae (36, 37) is the
phase hxΦ(m/s). Even if Hx satisfies (11a), this phase
can be locally large. In particular, it can be equal to π/2
for some value of m, so that ϕ1, for instance, is locally
odd-valued although it has been defined as having a small
average oddness.

In particular, if one applies formula (34) for the tunnel
frequency, and if ϕ1(s − 2) is calculated from (36), ωT is
found to vanish for hxΦ(1) = (2n+1)π/2. In the next sec-
tion, this conclusion will be seen to be correct although a
more elaborate proof is necessary, since (36) is not appli-
cable outside the tunneling region, and in particular for
m = s− 2.

6.2 Tunnel frequency

The tunnel splitting is related, through (25), to A41. This
quantity is approximately given by (33). An exact expres-
sion would include additional terms containing ϕ∗4(s− 1),
but these terms are small because ϕ4(s−1) is almost even-
valued for weak fields, and (s− 1) is odd.

To exploit (33), one needs the expression of ϕ1(m)
outside the tunneling region, for m ≈ s. In weak field,
the tunneling region includes almost the whole interval
−s < m < s, the excluded region is very narrow and the
field can be treated as a weak perturbation in this region.
This strategy is applied below.

Let m2 be the upper boundary of the tunneling region,
which is somewhat arbitrary and can therefore be assumed
to be an even integer. Form ≤ m2, ϕ1(m) is given by (45).
For m > m2, it is not, but is is in principle given by equa-
tions E(m2 − 1) E(m2 − 1), E(m2) E(m2 + 1), ... E(s− 2)
defined in Section 2. Since these equations depend on H,
any solution ϕ(m) of E(m) for m2−3 ≤ m < s−1 depends
on H. It also depend on the energy (E−E(0)

s ) counted from
the ground state energy. Finally it depends on the ini-
tial conditions and, for given values of ϕ(m2− 2)/ϕ(m2),
ϕ(m2 − 3)/ϕ(m2 − 1) and ϕ(m2 − 1)/ϕ(m2), it is propor-
tional to ϕ(m2) since equations E(m) are linear. Thus

ϕ(m) = ϕ(m2)fm
(ϕ(m2 − 2)

ϕ(m2)
,
ϕ(m2 − 3)
ϕ(m1)

,

ϕ(m2 − 1)
ϕ(m2)

,Hx,Hy,Hz, E −E(0)
s

)
(47)

where fm is a function of m, E, H and the initial
conditions.

In weak field, we shall replace Hx,Hy,Hz by 0. This
is a rather poor approximation, which will be refined
in the next sections. The ratios ϕ(m2 − 2)/ϕ(m2) and
ϕ(m2−3)/ϕ(m2−1) are both approximately equal to e2κ0

according to (45). Since the interest is focussed on tunnel-
ing at low temperature, the energy of interest is that of
the pseudo-ground state, E = E

(0)
−s . Thus, (47) reads

ϕ(m) = ϕ(m2)

× fm
(

e2κ0 , e2κ0 ,
ϕ(m2 − 1)
ϕ(m2)

, 0, 0, 0, E(0)
−s −E(0)

s

)
.

(48)

Let f ev
m be the even-valued solution of E(m2), E(m2 + 2),

... E(s−2) for H = 0, ϕ(m2) = 1 and ϕ(m2−2)/ϕ(m2) =
e2κ0 . Let fodd

m be the odd-valued solution of E(m2 − 1),
E(m2 + 1), ... E(s− 2− 1) for H = 0, ϕ(m2 − 1) = 1 and
ϕ(m2 − 3)/ϕ(m2 − 1) = e2κ0 . It is easily seen that ϕ(m)
is a linear combination of f ev

m and fodd
m , so that (48) takes

the form

ϕ(m) = ϕ(m2)f ev
m

(
E

(0)
−s −E(0)

s

)
+ ϕ(m2 − 1)fodd

m

(
E

(0)
−s −E(0)

s

)
. (49)

This formula can be applied to function ϕ1(m) and in-
serted into (33). The contribution of the second, odd-
valued term of (49) vanishes and one obtains

A41 = F
(
E

(0)
−s −E(0)

s

)
ϕ1(m2) (50)

where F (E) is a real function. Expression (45) can be
substituted for ϕ1(m2), where Φ(m2/s) can be replaced
by Φ(1) = π. Replacing α1 by 0, one obtains

A41 = (−1)m2/2e−κ0(s+m0)G̃s
(
E

(0)
−s −E(0)

s

)
× [cos (hxπ) cosh (hyπ)− i sin (hxπ) sinh (hyπ)] (51)
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where G̃s(E) is a real quantity, whose behaviour as a func-
tion of s for large s is smoother than an exponential. In-
sertion of (51) into (25) yields

2~ωT = e−κ0(s+m0)Gs
(
E

(0)
−s −E(0)

s

)
×
∣∣ cos (hxπ) cosh (hyπ)− i sin (hxπ) sinh (hyπ)

∣∣ (52)

where Gs(E) differs from G̃s(E) by the factor
√
λλ′ which

is independent on s. The argument (E(0)
−s−E

(0)
s ) is approx-

imately equal to 2Hzs. The dependence on Hx and Hy is
thus contained in the last factor of (52). The consequences
will be seen in the next section.

7 Diabolic fields

7.1 Approximate argument

“Diabolic fields” have been defined in Section 1 as those
for which the pseudo-ground state is exactly degenerate
with a positive-localized state. This implies two condi-
tions. The first one is a level-crossing condition, which is
essentially a condition on Hz, approximately given by (5),
or more precisely by (22) if m0 is even and by (23) if m0

is odd. Usually, there is a non-vanishing coupling A41 (in
the former case) or A31 (in the latter case) between the
negative- and positive-localized wave functions, and there
is a tunnel splitting which is proportional to this coupling,
as seen, in the former case, from (25), and in the latter
case, from (26). It is said that “levels repel each other”.

However, if this coupling vanishes,

A41 = 0 (53)

the tunnel splitting vanishes and the degeneracy of two
states is perfect. According to (52), this occurs for even
values of m0 if the “zero-coupling conditions”

Hy = 0 (54)

and

gµBHx = (2n+ 1)
√
B(B +D) (55)

are simultaneously satisfied, together with the level-
crossing condition (22).

If m0 is odd, the level-crossing condition is (23) and
the zero-coupling condition is

A31 = 0 (56)

which is easily found to be approximately equivalent
to (54) again, together with

gµBHx = 2n
√
B(B +D). (57)

Both families of diabolic fields are displayed in Figure 3.
Formula (55) has been obtained for the first time by

Garg [6]. The existence of diabolic fields has also been
predicted by Chudnovsky and Di Vicenzo [25], Kalatski

0

Hz

Hx

Fig. 3. Diabolic points in the plane (Hx,Hz). They consist
of two families. i) The intersections (full dots) of curves (full
lines) approximately given by (55, 5), where (s−m0) is an even
integer. ii) The intersections (empty dots) of curves (dotted
lines) approximately given by (57, 5), where (s−m0) is an odd
integer. The component Hy is zero.

et al. [26], Tupitsyn et al. [27]. Formulae (55, 57) are con-
sistent with (11) if n�

√
Ds/B.

The derivation of (55) given in the previous section is
approximate, and does not warrant that the tunnel split-
ting 2~ωT exactly vanishes. Instead, it might just have
minima. In the next subsection, we show that ωT does
vanish for values of H which are close to those given above
in the present subsection.

7.2 Does the tunnel frequency exactly vanish?

In the previous subsection, the “diabolic” fields which al-
low perfect degeneracy have been determined by means of
approximate relations. It is easy to obtain under which ex-
act conditions the matrix A has two eigenvectors for the
eigenvalue 0. This is done in Appendix D, where exact,
necessary and sufficient conditions of diabolic degeneracy
of (16) are shown to be

A11 −
A31A13A22

A22A33 −A32A23
= 0, (58)

A41 +
A42A23A31

A22A33 −A32A23
= 0, (59)

and

A44 −
A42A24A33

A22A33 −A32A23
= 0. (60)

If A22 and A33 are not small, the second term of the
denominator can be neglected with a very good ap-
proximation, and (22, 53) are obtained as approximate
forms of (58, 60). Similarly, if A22 and A44 are not
small (23, 56) are obtained as approximate forms of the
same equations (58–60). We shall focus on the former case
and assume Hy = 0.

In the following of this subsection, we assume Hy = 0.
The three left hand sides of (58–60) are real, as seen from
the definition (17). Thus, there are 3 equations for 3 pa-
rameters E, Hx and Hz. It will be shown below that these
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equations have exact solutions in the vicinity of the ap-
proximate ones found in the previous subsection.

To first order in ωT (58, 60) are identical with (22).
These two equations have a solution for the same value of
E on surfaces of the (Hx,Hy,Hz) space which are roughly
planes defined by (5), where (s −m0) is an even integer.
The small additional term absent in (22), which appears
in (58, 60), cannot alter this statement. In particular, these
surfaces include the plane Hz = 0. That one is exactly a
plane, for symmetry reasons.

To first order in ωT, (59) is identical with (53). Instead
of showing, as is the previous subsection, that A41 is very
small for hx = n+1/2, one can show thatA41 changes sign
when hx goes continuously from n to n+ 1. This property
follows from (51) which, for Hy = 0, reads

A41 = (−1)m2/2e−κ0(s+m0)G̃s
(
E

(0)
−s −E(0)

s

)
× cos (hxπ) cosh (hyπ) . (61)

While that formula is not accurate enough to warrant a
strictly vanishing value of A41 for a well-defined field, it
is precise enough to show that A41 has different signs for
hx = n and hx = n+ 1. The left hand side of (59), which
only differs from A41 by a tiny amount, has the same
property. Since this variation from a positive to a negative
value is continuous, there is a value of hx where (59) is
exactly satisfied.

The conclusion is that, for Hy = 0 and any value of
Hz satisfying (2), A41 = A14 vanishes on curves of the
(Hx,Hz) space which are roughly straight lines defined
by (55). The intersections of these curves with the sur-
faces defined by (58, 60) are the “diabolic” fields for which
the negative-localized pseudo-ground state has exactly the
same energy as a positive-localized state (Fig. 3).

The other diabolic family, approximately given
by (57, 5) with odd values of m0, can be treated in a
similar way and level degeneracy is found to be exact.

7.3 Small spins

Our derivation of (55, 57) is approximate, and only valid
for large spins. It is of interest to test the results for
small spins. The case s = 1 is easily treated analyti-
cally (Appendix B). The tunnel frequency vanishes for a
single value of |Hx|, which is exactly given by (55) with
n = 0. We have calculated numerically the tunneling fre-
quency of (1) for Hy = Hz = 0, a ratio B/D = 0.19,
and all integer values of s from 1 to 10. Our numerical re-
sults (Fig. 4) are in agreement with those of Wernsdorfer
and Sessoli and suggest that (55) might actually be exact.
So far as we understand, there is no explanation of this.
Our treatment is obviously approximate, and more elab-
orate calculations, for instance by Garg [6] are not exact
either.

The number nd of zeros of the tunnel frequency when
Hx goes from 0 to ∞ is obviously not infinite. According
to our numerical study, nd = 2s (i.e. s for each sign) for
Hz = 0. In view of condition (40), this is not in disagree-
ment with our analytic argument results. Moreover, this

coincides with the analytic result derived by Garg [28] in
the case D� B.

8 Conclusion

Elementary, approximate methods have been used to cal-
culate the tunnel frequency of large spins. In vanish-
ing field, the dominant factor (35) is that obtained by
path integrals [16] and the first correction, as shown in
Appendix C, is a power sQ, in agreement with path inte-
gral methods [16]. We did not check the value of the expo-
nent Q, which is 3/2 according to Schilling, but probably
depends on B/D in our treatment.

We have rederived Garg’s result that the tunnel fre-
quency of model (1) for Hy = Hz = 0 vanishes for certain
values of Hx.

In addition, we have argued that the tunnel frequency
in weak fields can completely vanish for Hy = 0 when
Hx satisfies (55) or (57), and Hz satisfies the usual level-
crossing condition, not only for Hz = 0. These results are
in agreement with experiments of Wernsdorfer and Sessoli,
but the present theoretical derivation is, to our knowledge,
the first one. Our derivation is based on the impossibility
of matching an even-valued wave function with an odd-
valued one. It should be stressed that our analysis in the
caseHz 6= 0 is not so complete as forHz = 0. In particular,
the behaviour of the wave function and basis functions out
of the tunneling region is much more complicated than the
behaviour described in Section 5 and in Appendix E.

The present attempt to derive the tunnel frequency by
elementary methods is moderately successful. Our argu-
ment is not so simple as we had wished, and our argument
holds only for weak fields which satisfy (2, 11). In contrast,
numerical calculations reported in the present work or be-
fore [4,6,8] show that the diabolic conditions (55, 57) also
hold for fields which do not satisfy (11). To our knowl-
edge, there is no analytic explanation of this fact, except
for D � B. Another point which has not been clarified
in the case B/D ≤ 1 is the number nd of diabolic values
of Hx.

Our method consists in analyzing the properties of the
spin wave function, which is written as a sum of two local-
ized wave functions ϕ1(m) and ϕ4(m). It turns out that a
rather poor knowledge of ϕ1(m) and ϕ4(m) is sufficient to
provide satisfactory informations on the tunnel frequency.
More precisely, the tunneling frequency is dominated by a
factor which can be deduced from the study the tunneling
region s − |m| � 1 alone. In that region, the behaviour
of the wave function is simple and does not depend very
much on the energy E, so that the study is rather easy.

The limit of large spins is not adequate to a compari-
son with experiments in molecular magnets of spin s = 10.
Numerical methods are much more efficient in practice.
They lead to large deviations of the tunnel frequency from
formula (35) and even from improved forms derived from
more quantitative calculations [16]. In contrast, the values
of diabolic fields obtained from numerical methods, in the
present paper of by other authors [4,8], are even for small
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Fig. 4. Tunnel splitting, in Kelvin, as a function of 2hx = gµBHx/
p
B(B +D) for the HamiltonianH = −DS2

z+BS2
x−gµBHxSx

in the neighbourhood of the first three zeros for s = 1, 2, 3, 4 (a), s = 5, 6, 7 (b), and s = 8, 9, 10 (c).

spins in surprisingly good agreement with (55). The ex-
plication has been quite recently given by Keçecioğlu and
Garg [29].

This agreement is not so good with experimental data.
According to experiments [4], the “diabolic” fields which
allow perfect degeneracy are almost equidistant, in agree-
ment with (55), but the distance is different by a factor√

2. This discrepancy has been attributed to higher or-
der terms. The consequences of fourth order terms, for
instance, is briefly discussed in Appendix A.4. The 4 in-
dependent solutions of the Schrödinger equation in the
tunneling regions, described by (31) would be replaced by
8 solutions, given by an equation of degree 8, and the cor-
responding ratios ξα(m) would depend on m. The equidis-
tance of the diabolic fields should be destroyed.

If higher order terms are small and if s is large, they
can be treated pertubatively, as seen in Appendix A.4, by
a slight extension of the methods used in the present work.
In the case of Fe8, the spin s = 10 may not be large enough
to warrant the correctness of the perturbative treatment.
The pretty large discrepancy of a factor

√
2 between for-

mula (55) and the experimental data suggests that per-
turbation theory can be only qualitatively successful. On
the other hand, the approximate equidistance of the di-

abolic fields, which is experimentally observed, suggests
that higher order terms have no dramatic effect. The al-
gebra related to higher order terms is heavy, and their
investigation is left for future investigation. Anyway, for
s = 10, the precise determination of diabolic fields is best
done numerically.

Another goal for future work could be the extension of
the present method to antiferromagnets, where diabolic
points have been detected, using coherent spin states and
the Berry phase, by Golyshev and Popkov [30].

Before Wernsdorfer and Sessoli [4] published their
experiments on Fe8, the search for diabolic points was
perhaps discouraged by the experimental observation of
maxima of the relaxation rate in Mn12O12-acetate as a
function of the longitudinal field Hz when (5) is satisfied
for odd values of (s − m0) and a “nominally” vanishing
transverse field. This is surprising, because level crossing
occurs between the even-valued vave function ϕ1 and the
odd-valued vave function ϕ3, so that (56) holds and the
tunnel splitting should vanish. The maximum which is ex-
perimentally observed may be a result of hyperfine inter-
actions, which are much stronger in Mn12O12 than in Fe8.
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Appendix A: Behaviour of the wave function

A.1 General properties

In this appendix we study the behaviour of the wave func-
tion µm for

s− |m| � 1 (A.1)

when E is close to the energy of the pseudo-ground state,
approximately given by (4), or a weakly excited state. It
follows that

〈m|H −E|m〉 = D(s2 −m2)−Hz(s+m) +B
〈
m|S2

x|m
〉

(A.2)

or, according to (A.1),

〈m|H −E|m〉 = D(s2 −m2)−Hz(s+m) +
B

2
(s2 −m2).

(A.3)

The wave function has usually a large amplitude only in
a localized region of the interval −s < m < s, except if
tunneling occurs. In that case, which is of interest for us,
there are two regions where the amplitude is large. One
corresponds to m < 0 and the other one to m > 0. These
regions will be called “regions of high probability” and
are separated by a broad region called “tunneling region”
where the wave function has a low amplitude.

A.2 Behaviour of the wave function in the tunneling
region

We now look for solutions of (9) which, if (A.1) is satisfied,
are such that µm/µm−1 = ξ(m) varies slowly with m.
Neglecting this variation between (m−2) and (m+2), (9)
can be written with the help of (A.3) and (8) as

F (ξ) = −4D
B

+ η (A.4)

where

F (ξ) =
(
ξ + ξ−1

)2
(A.5)

and

η =
2Hx

B

ξ + ξ−1

√
s2 −m2

+
2iHy

B

ξ − ξ−1

√
s2 −m2

+
4Hz

B(s−m)
·

(A.6)

Since the fields are assumed to be small (relations (2, 11)),
it is of interest to solve first the zero field case, when η = 0
and (A.4) reduces to i.e. ξ2 ± 2iξ

√
D/B + 1 = 0. The

solution of this second degree equation yields the 4 solu-
tions (31) which can be written as

ξ0r = iεreκ0εr (A.7)

where κ0 is given by (30) and

εa = −εb = εc = −εd = −ε′a = −ε′b = ε′c = ε′d = 0. (A.8)

In weak, but nonvanishing field, one can replace ξ by ξ0r
in (A.6), thus obtaining 4 values

ηr =
2Hx

B

ξ0r + ξ−1
0r√

s2 −m2
+

2iHy

B

ξ0r − ξ−1
0r√

s2 −m2
+

4Hz

B(s−m)
·

(A.9)

Inserting

ξr = ξ0r exp(δκr) (A.10)

into (A.4) yields, to first order in δκr

δκr =
ηr

ξ0rF ′(ξ0r)
(A.11)

or, using (A.5),

δκr =
ηr

ξ2
0r − ξ−2

0r

· (A.12)

Formulae (A.10, A.12, A.9, A.7) yield the four solutions
of (A.4)

ξr(m) = exp
[
ε′rκ0 + iεrπ/2− iεr

Hx

2
√
B(B +D)(s2 −m2)

− εrε′r
Hy

2
√
BD(s2 −m2)

− ε′r
Hz

2(s−m)
√
D(B +D)

]
·

(A.13)

It is convenient to introduce solutions of the truncated
Schrödinger equation (9) (for m 6= ±s,±(s − 1)) which
reduce to (32) when the field vanishes. For instance

ϕ̃1(m) = Const×
{

m∏
p=−s

ξa(p) +
m∏

p=−s
ξb(p)

}

= Const× e−κ0(s+m)
{

exp
[
imπ/2− i

m∑
p=−s

hx√
s2 − p2

+
m∑

p=−s

hy√
s2 − p2

+
m∑

p=−s

hz
s− p

]
+ exp

[
− imπ/2 + i

m∑
p=−s

hx√
s2 − p2

−
m∑

p=−s

hy√
s2 − p2

+
m∑

p=−s

hz
s− p

]}
(A.14)

where hx, hy, hz are defined by (38, 46, 39). A func-
tion ϕ̃2(m) can be defined by replacing the sum of ex-
ponentials in (A.14) by their difference. Functions ϕ̃3(m)
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and ϕ̃4(m) can be defined analogously to ϕ̃1(m) and
ϕ̃2(m) by replacing ξa and ξb by ξc and ξd.

The typical term in the sums between brackets
in (A.14) is of the order of hα/s, so that the replacement
of the sums by integrals is allowed if hα � s. In the discus-
sion of the phase of the wave function, this leads to (40).

A.3 Orthogonality relations

Because ϕ̃1 and ϕ̃4 are almost even-valued and ϕ̃2 and
ϕ̃3 are almost odd-valued, they almost satisfy the orthog-
onality relations (18). These relations are exactly satis-
fied by functions ϕ1(m) = ϕ̃1(m) + λϕ̃2(m), ϕ2(m) =
µϕ̃1(m)+ϕ̃2(m), ϕ3(m) = ϕ̃3(m)+λ′ϕ̃4(m) and ϕ4(m) =
µ′ϕ̃3(m) + ϕ̃4(m), where the small corrections λ, µ, λ′, µ′
can be obtained by inserting these relations into (18).

When s goes to∞, the sums in (A.14) can be replaced
by the integrals (41, 42), so that (A.14) reads

ϕ̃1(m) = Const× exp
[
− κ0(s+m) + hzΨ(m/s)

]
×
{

cos
[
mπ/2− hxΦ(m/s)

]
cosh

[
hyΦ(m/s)

]
+ i sin

[
mπ/2− hxΦ(m/s)

]
sinh

[
hyΦ(m/s)

]}
·

A similar expression can be obtained for ϕ̃2. Insertion into
ϕ1(m) = ϕ̃1(m) + λϕ̃2(m) yields (45), with tanα1 = −λ.

Similar expressions of ϕ2(m), ϕ3(m) and ϕ3(m) can be
derived. These expressions are only valid in the tunneling
region. However the functions ϕr(m) can in principle be
deduced for all values ofm from the truncated Schrödinger
equation if their form is known in the tunneling region.

A.4 Higher order terms

The above formalism can be extended to spin Hamilto-
nians which contain a fourth order term H4 = −AS4

z −
A′(S4

− + S4
+)−A′′S4

x. Assuming A′′ = 0, formula (A.5) is
modified as

F (ξ) =
(
ξ + ξ−1

)2 − 4A
B

(s2 +m2)

− 4A′

B
(s2 −m2)

(
ξ4 + ξ−4

)
. (A.15)

For A = A′ = A′′ = 0, the tunneling frequency was found
to be dominated by a factor which can be deduced from
the study of the tunneling region s−|m| � 1 alone, which
was done in the second part of this appendix. The fourth
order terms probably do not alter this property.

If A′ = 0, but A 6= 0, the methods of this appendix
can be transposed at the cost of minor algebraic com-
plications. In particular, the solutions ξ0(m) of (A.4) de-
pend on m. It follows that the basis functions ϕr(m) are
given by formulae which are appreciably more complicated
than (45). The dependence in m is not exponential even
for Hz = 0. The expression of the tunnel frequency is
more complicated than (35). However, for Hy = 0 and
weak fields, the basis functions ϕr(m) still depend on Hx

through the single factor cos [mπ/2− hxΦ(m/s) + αr], so

that diabolic fields are still given by a condition on hxΦ(1).
The same analysis as above shows that this condition is
still hxΦ(1) = (2n + 1)π/2. The expression of Φ(m/s) is
modified, so that (55) does not hold, but the zeros of the
tunneling frequency are still equidistant.

The term in A′ in (A.15) has a more severe effect be-
cause ξ0(m) is now given by an algebraic equation of de-
gree 8, not 4. Thus, 8 basis functions are needed. The
expected effect are that the zeros of the tunneling fre-
quency are no longer equidistant, and this expectation is
confirmed by numerical simulations. However, if A′ is not
very large, there are 4 basis functions which decay very
rapidly and give a negligible contribution to the tunnel
frequency. The 4 other basis functions can be treated per-
turbatively, replacing

(
ξ4 + ξ−4

)
by
(
ξ4
0 + ξ−4

0

)
in (A.15).

The resulting complications are the same as those which
result from the AS4

z term.

Appendix B: Diabolic point of a spin 1

In this appendix, model (1) is considered in the case s = 1
and Hy = Hz = 0. Using (8), the matrix 〈m|H|m′〉 is
found as

H =

−D +B′ −H ′ B′

−H ′ 2B′ −H ′
B′ −H ′ −D +B′

 (B.1)

with H ′ = gµBH/
√

2 and B′ = B/2. The antisymmetric
eigenvector (1, 0,−1) has obviously the eigenvalue −D.
The symmetric eigenvectors (u, v, u) are given by−D +B′ −E −H ′ B′

−H ′ 2B′ −E −H ′
B′ −H ′ −D +B′ −E

uv
u

 = 0

(B.2)

or [
−D + 2B′ −E −H ′
−2H ′ 2B′ −E

] [
u
v

]
= 0

hence∣∣∣∣−D + 2B′ −E −H ′
−2H ′ 2B′ −E

∣∣∣∣
= (−D + 2B′ −E)(2B′ −E)− 2H ′2 = 0. (B.3)

Exact degeneracy occurs if the antisymmetric eigenvalue
E = −D is solution of (B.3), i.e. 2B′(2B′+D)−2H ′2 = 0.
Substitution of H ′ = gµBH/

√
2 and B′ = B/2 yields

gµBHx =
√
B(D +B) (B.4)

which is identical with (55) with n = 0.

Appendix C: Corrections

In this appendix, the form of the dominant correction
to (35) for large s will be obtained in zero field. One can
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use (27) with the exact values

Km(E)=
〈m|H −E|m〉

B
〈
m|BS2

y |m+ 2
〉

=
2(B + 2D)(s2 −m2)− 4εs

B
√

(s−m)(s−m− 1)(s+m+ 1)(s+m+ 2)
(C.1)

and

Lm =
〈m|S2

+|m− 2〉
〈m|S2

−|m+ 2〉

=

√
(s−m+ 1)(s−m+ 2)(s+m)(s+m− 1)
(s−m)(s−m− 1)(s+m+ 1)(s+m+ 2)

, (C.2)

where the notation

εs = E − Bs

2
+Ds2, (C.3)

has been introduced
For s− |m| � 1, (C.1, C.2) can be approximated by

Km(E) ' Km
(0) +

Km
(1)

s−m +
K ′m

(1)

s+m
(C.4)

and

Lm ' 1 +
Lm

(1)

s−m +
L′m

(1)

s+m
(C.5)

where K(0)
m , etc., are constants.

Inserting (C.4, C.5) into (27), the solutions are seen to
have the form

X±(m) ' −e±2κ0

[
1 +

A±

s−m +
B±

s+m

]
(C.6)

where A± and B± are constants. Therefore, for an even
spin s,

ϕ1(2q) = (−1)qϕ1(−s)
q∏

p=−s/2+1

X−(2p)

= (−1)qϕ1(−s) exp

 q∑
p=−s/2+1

lnX−(2p)


or, using (C.6) and replacing the sums by integrals,

ϕ1(2q) ' (−1)qϕ1(−s) exp
[
− κ0(2q + s)

+
1
2

∫ 2q

−s

A−du
s− u +

1
2

∫ 2q

−s+2

B−

s+ u

]
= (−1)qϕ1(−s) exp

[
− κ0(2q + s)

+
A−

2
ln
s− 2q

2s
+
B−

2
ln(s+ 2q)

]
. (C.7)

The quantity A41, which appears in the expression of the
tunnel splitting, is dominated by the factor

ϕ1(s) ' ϕ1(−s) exp
[
−2κ0s−

A−

2
ln(2s) +

B−

2
ln(2s)

]
≈ exp(−2κ0s)s(B−−A−). (C.8)

It follows that

~ωT = Const× exp(−2κ0s)sQ (C.9)

where Q = B− −A−
The factor e−2κ0s corresponds to (35) and the next fac-

tor is a correction which, as expected, has a slower varia-
tion than an exponential.

The calculation of the constant in (C.9) would require
an analysis of the region m ≈ ±s. This might be expected
to be unavoidably numerical, but Garg [31] seems to have
found an analytic way.

Appendix D: Condition for total degeneracy

In this appendix, it is shown that (16) can has two inde-
pendent eigenvectors for the eigenvalue 0 if certain con-
ditions are satisfied. The two vectors can be written as
(u1, u2, 1, 0) and (v1, v2, 0, 1). Equation (16) will be split
into 2, namely

(
A11 0 A13 A14

0 A22 A23 A24

)u1

u2

1
0

 =

(
A11 0 A13 A14

0 A22 A23 A24

)v1

v2

0
1

 = 0 (D.1)

and

(
A31 A32 A33 0
A41 A42 0 A44

)u1

u2

1
0

 =

(
A31 A32 A33 0
A41 A42 0 A44

)v1

v2

0
1

 = 0. (D.2)

The solution of (D.1) is

u1 = −A13/A11, u2 = −A23/A22,

v1 = −A14/A11, v2 = −A24/A22. (D.3)

Insertion of (D.3) into (D.2) yields

A31A13A22 +A32A23A11 −A11A22A33 = 0, (D.4)

A41A13A22 +A42A23A11 = 0, (D.5)
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A41A14A22 +A42A24A11 −A11A22A44 = 0 (D.6)

and

A31A14/A22 +A32A24/A11 = 0. (D.7)

However (D.7) is the complex conjugate of (D.5), and
therefore a consequence of (D.5). We are left with two
real equations (D.4, D.6) and a complex equation (D.5).
In other words, there are 4 real equations for 4 real pa-
rameters E, Hz, Hx and Hy.

It is convenient to rewrite (D.4) in the form (58). Inser-
tion of (58) into (D.5) yields (59). Equation (60) can be de-
duced from (58, 59), but is more easily obtained from (58)
by a permutation of the indices (1234) into (4321).

Appendix E: The zero-field ground state
out of the tunneling region

For large s, and ε = 0, (C.1) and (C.2) read for m < 0

Km(E) =
2(1 + 2D/B)√
1− 1/(s+m)

Lm (E.1)

and

Lm =

√
(s+m)(s+m− 1)

(s+m+ 1)(s+m+ 2)
· (E.2)

Formula (27) now reads

|Xm+2| = Km(E) − Lm
|Xm|

= Lm

[
2(1 + 2D/B)√
1− 1/(s+m)

− 1
|Xm|

]
· (E.3)

If |Xm| > 1, (E.3) implies

|Xm+2| > Lm [2(1 + 2D/B)− 1] = (1 + 4D/B)Lm.
(E.4)

The values of Lm are Ls + 2 = 0.41, Ls + 4 = 0.63,
Ls + 6 = 0.73, Ls + 8 = 0.79, with a regular convergence
to 1. Thus, if D/B is large enough, e.g. D/B > 1, (E.4)
implies |Xm+2| > 1. If X−s+2 is arbitrarily chosen to sat-
isfy X−s+2 < −1, then (27) generates an increasing func-
tion ϕ(m) which can be identified with ϕ4(m) as stated
in Section 5.
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