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Quantum Phase Interference and Parity Effects in Magnetic
Molecular Clusters
W. Wernsdorfer 1* and R. Sessoli 2

An experimental method based on the Landau-Zener model was developed to measure very small
tunnel splittings in molecular clusters of eight iron atoms, which at low temperature behave like a
nanomagnet with a spin ground state of S = 10. The observed oscillations of the tunnel splittings
as a function of the magnetic field applied along the hard anisotropy axis are due to topological
quantum interference of two tunnel paths of opposite windings. Transitions between quantum
numbers M = S and (S  n), with n even or odd, revealed a parity effect that is analogous to the
suppression of tunneling predicted for half-integer spins. This observation is direct evidence of
the topological part of the quantum spin phase (Berry phase) in a magnetic system.
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Studying the limits between classical and quantum physics has become a very attractive field of
research; this field is known as "mesoscopic" physics because the typical length scales are
situated between microscopic and macroscopic. New and fascinating mesoscopic effects can
occur when characteristic system dimensions are smaller than the length over which the quantum
wave function of a physical quantity remains sensitive to phase changes. Quantum interference effects in mesoscopic systems
have, until now, involved phase interference between paths of particles moving in real space as in superconducting quantum
interference devices (SQUIDs) or mesoscopic rings (1, 2). For magnetic systems, similar effects have been proposed for spins
moving in spin space, such as magnetization tunneling out of a metastable potential well or coherent tunneling between
classically degenerate directions of magnetization (3).
Up to now, magnetic molecular clusters have been the most promising candidates to observe these phenomena because they
have a well-defined structure with well-characterized spin ground state and magnetic anisotropy. These molecules are regularly
assembled in large crystals where often all molecules have the same orientation. Hence, macroscopic measurements can give
direct access to single molecule properties. The most prominent examples are a dodecanuclear mixed-valence manganese-oxo
cluster with acetate ligands, Mn12ac (4), and an octanuclear iron(III) oxo-hydroxo cluster of formula [Fe8O2(OH)12(tacn)6]8+, Fe8
(5), where tacn is a macrocyclic ligand. Both systems have a spin ground state of S = 10 and an Ising-type magneto-crystalline
anisotropy, which stabilizes the spin states with quantum numbers M = ±10 and generates an energy barrier for the reversal of
the magnetization of about 67 K for Mn12ac and 25 K for Fe8.

Strong evidence now exists for thermally activated quantum tunneling of the magnetization in both systems (6-8). Theoretical
discussion of this tunneling assumes that thermal processes (principally phonons) promote the molecules up to high levels with
small M , not far below the top of the energy barrier, and the molecules then tunnel inelastically to the other side. Thus, the
transition is almost entirely accomplished through thermal transitions, and the characteristic relaxation time is strongly
temperature dependent. For Fe8, however, the relaxation time becomes temperature independent below 360 mK (8, 9), showing
that a pure tunneling mechanism between the only populated M = ±10 states is responsible for the relaxation of the
magnetization. On the other hand, in the Mn12ac system, one sees temperature-dependent relaxation even down to 60 mK (10);
that is, no clear quantum regime exists. In addition, the Fe8 complex is particularly interesting because of its biaxial anisotropy
(11), which allows us to observe directly the existence of what in a semiclassical description is the quantum spin phase [or Berry
phase (12, 13)] associated with the magnetic spin of the cluster.
The importance of the topological interference term of the Berry phase for the problem of spin tunneling was elucidated by Loss
et al. (14). This term leads to constructive (S integer) or destructive interference (S half-integer) between spin paths of opposite



windings (14), which can be directly evidenced by measuring the tunneling splitting  as a function of a magnetic field applied
along the hard anisotropy axis (15, 16). Furthermore, we observed the predicted parity effects when comparing the transitions
between different energy levels of the system, which are analogous to the parity effect between systems with half-integer or
integer spins (14).
The simplest model describing the spin system of Fe8 molecular clusters (called the giant spin model) has the following
Hamiltonian:

(1)

where Sx, Sy, and Sz are the three components of the spin operator (inset in Fig. 1), D and E are the anisotropy constants, !B is
the Bohr magneton, and the last term of the Hamiltonian describes the Zeeman energy associated with an applied field H. This
Hamiltonian has an energy level spectrum with (2S + 1) = 21 values, which, in first approximation, can be labeled by the
quantum numbers M = 10, 9, ... , 10. In the low-temperature limit (T < 0.36 K), only the two lowest energy levels with
M = ±10 are occupied. The level anticrossing around Hz = 0 is due to transverse terms containing Sx or Sy spin operators. The
spin S is "in resonance" between two states when the local longitudinal field is close to the level anticrossing (<10 8 T). The
energy gap, the so-called tunnel splitting , can be tuned by an applied field in the xy plane (inset Fig. 1) through the SxHx and
SyHy Zeeman terms. It turns out that a field in Hx direction (hard anisotropy direction) can periodically change the tunnel splitting 

. In a semiclassical description, these oscillations are due to constructive or destructive interference of quantum spin phases of
two tunnel paths (inset in Fig. 1). The period of oscillation is given by (15)

(2)

where g  2 and kB is Boltzmann's constant. The most direct way of measuring the tunnel splitting  is by the use of the
Landau-Zener model (17), which gives the tunneling probability P when sweeping the longitudinal field Hz at a constant rate over
the energy level anticrossing:

(3)

Here, dH/dt is the constant field sweeping rate, g  2, and  is Planck's constant. This method is particularly adapted for
molecular clusters because it works even in the presence of dipolar and hyperfine fields, which spread the resonance transition

provided that the field sweeping rate is not too small.

Fig. 1. Magnetic hysteresis curves for a crystal of molecular Fe8 clusters at several temperatures
for field sweeping rates of 0.14 T/s. Resonant tunneling is evidenced by six equally separated
steps. Below 0.4 K, the hysteresis loops are temperature independent, demonstrating the pure
quantum regime. (Inset) Unit sphere showing degenerate minima A and B, which are joined by
two tunnel paths (heavy lines). The hard, medium, and easy axes are taken in x, y, and z
directions, respectively. The transverse field Htrans is applied in the xy plane at an azimuth angle 

. At zero applied field, the giant spin reversal results from the interference of two quantum spin paths of opposite windings in
the easy anisotropy plane yz. By the use of Stokes' theorem, it has been shown (15) that the path integrals can be converted in an
area integral,  given that destructive interference, that is, a quench of the tunneling rate, occurs whenever the shaded area is k
/S, where k is an odd integer. [View Larger Version of this Image (25K GIF file)] 

Our measurements were made with an array of micro-SQUIDs with a very high sensitivity (18), allowing us to study single Fe8
crystals (19) on the order of 10 to 500 !m that are placed directly on the array.
Measurements of magnetic hysteresis curves for a crystal of molecular Fe8 clusters as a function of temperature (Fig. 1) reveal the
quantum regime, which is demonstrated by the temperature independence below 0.4 K. Resonant tunneling is evidenced by six
equally separated steps of Hz  0.22 T, which, at T < 360 mK, correspond to tunnel transitions from the state M = 10 to M =
10  n, with n = 0, 1, 2, ... The resonance widths of about 0.05 T are due to mainly dipolar fields between the molecular clusters
(9, 20). To apply the Landau-Zener formula (Eq. 3), we first saturated the sample in a field of Hz = 1.4 T. Then, we swept the
applied field at a constant rate over one of the resonance transitions and measured the fraction of molecules that reversed their
spin. This procedure yields the tunneling rate P and thus the tunnel splitting  (Eq. 3). We checked the predicted Landau-Zener
sweeping field dependence of the tunneling rate (Eq. 3) and found a good agreement for sweeping rates between 0.5 and
0.001 T/s (21). We also compared the tunneling rates found by the Landau-Zener method with those found by a square-root
decay method (19) that was proposed by Prokof'ev and Stamp (22) and again found a good agreement.
Studies of the tunnel splitting , at the tunnel transition between M = ±10, as a function of transverse fields applied at different
angles  [defined as the azimuth angle between the anisotropy hard axis and the transverse field (inset in Fig. 1)],  show that for



small  angles the tunneling rate oscillates with a period between minima of 0.41 T, whereas no oscillations showed up for large 
 angles (Fig. 2A). In the latter case, a much stronger increase of  with transverse field is observed. The transverse field

dependence of the tunneling rate for different resonance conditions between the state M = 10 and (S  n) can be observed by
sweeping the longitudinal field around Hz = n × 0.22 T with n = 0, 1, 2, ... The corresponding tunnel splittings  oscillate with
almost the same period of 0.41 T (Fig. 2B). In addition, comparing quantum transitions between M = S and (S  n), with n even
or odd, revealed a parity effect that is analogous to the (Kramers) suppression of tunneling predicted for half-integer spins (14).
This behavior was observed for n = 0 to 4. A similar strong dependence on the azimuth angle  was observed for all of the

resonances.

Fig. 2. Measured tunnel splitting  as a function of transverse field. (A) For several azimuth angles  and
for the quantum transition between M = ±10. (B) For   0° and for quantum transition between M = 10
and (S  n). Note the parity effect, which is analogous to the suppression of tunneling predicted for
half-integer spins (14). It should also be mentioned that internal dipolar and hyperfine fields hinder a
quench of  (26), which is predicted for an isolated spin (see Fig. 3). Note the strong dependence of  on
the angle . This strong tuning effect of the tunnel probability might be interesting for applications: By
separately driving the two components of the applied field, Hz parallel to the easy axis and Hx parallel to
the hard axis, at any resonance condition of Hz, the relaxation of magnetization can be hampered or not
depending on the value of Hx. Hence, the magnetization reversal is completely controlled by appropriately

sweeping the field in two dimensions. [View Larger Version of this Image (26K GIF file)] 

In the frame of the simple giant spin model (Eq. 1), the period of oscillation (Eq. 2) is H = 0.26 T for D = 0.275 K and
E = 0.046 K as in (5). This value is substantially smaller than the experimental value of 0.41 T. To quantitatively reproduce the
observed periodicity, we included fourth-order terms in the spin Hamiltonian (Eq. 1) as recently used in the simulation of inelastic
neutron scattering measurements (23) and performed a diagonalization of the [21 × 21] matrix describing the S = 10 system.
However, as the fourth-order terms are very small,  only the term in C(S+4 + S 4) (where C is an adjustable parameter), which is
the most efficient in affecting the tunnel splitting , was considered for the sake of simplicity. The calculated tunnel matrix
elements for the states involved in the tunneling process at the resonances n = 0, 1, and 2 are reported in Fig. 3, showing the
oscillations as well as the parity effect for odd resonances. The period is reproduced with D = 0.292 K and E = 0.046 K as in
(23), but with a different C value of 2.9 × 10 5 K. The calculated tunneling splitting is, however, about three times smaller than
the observed one. These small discrepancies are not surprising. In fact, with the C parameter, we took into account the effects of
the neglected higher order terms in Sx and Sy of the spin Hamiltonian, which, even if very small,  can make an important
contribution to the period of oscillation and markedly affect , as first pointed out by Prokof'ev and Stamp (22). In addition, the
nuclear spins could affect the value of  (24). Finally, the total quantum spin phase is built up from all magnetic spins of the
system. For Fe8, the total spin S = 10 results from a complex antiferromagnetic exchange topology and can be schematized by
eight spins with spin values of s = 5/2 where six spins are aligned parallel and antiparallel to the other two spins (25). It should

also be mentioned that internal dipolar and hyperfine fields hinder a quench of  (26).

Fig. 3. Calculated tunnel splitting  (Eq. 3) as a function of transverse field. (A) For quantum transition
between M = ±10 and for several azimuth angles . (B) For quantum transition between M = 10 and (10 
 n) at  = 0°. These simulations are in good agreement with our measurements presented in Fig. 2. 
[View Larger Version of this Image (28K GIF file)] 

Our measurement technique is opening up a way of directly measuring very small tunnel splittings on the order of 10 8 K that
are not accessible by resonance techniques. We have found a very clear oscillation in the tunnel splittings , which is direct
evidence of the role of the topological spin phase in the spin dynamics of these molecules (14). We have also observed an
"Aharonov-Bohm" type of oscillation in a magnetic system, analogous to the oscillations as a function of external flux in a SQUID
ring (1). A great deal of information is contained in these oscillations, both about the form of the molecular spin Hamiltonian and
about the dephasing effect of the environment. We expect that these oscillations should thus become a very useful tool for
studying systems of nanomagnets.
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