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SU(2) Instantons with Boundary Jumps and Spin Tunneling in Magnetic Molecules
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Coherent state path integrals are shown in general to contain instantons with jumps at the boundaries,
i.e., boundary points lying outside classical phase space. Inclusion of these instantons is shown to resolve
the “missing quench paradox” in the magnetic molecule Fe8, i.e., the fact that the tunneling between the
ground Zeeman states of this molecule is quenched at only four magnetic field values, instead of the ten
that would be expected from the topological Berry phase between interfering instantons. An approximate
formula is found for the location of the four remaining quenches.
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The purpose of this paper is to discuss two problems, a
specific one and a general one. The specific problem con-
cerns quantum tunneling between Zeeman levels of certain
magnetic molecules [1]. The general problem concerns the
nature of tunneling paths, or instantons, in coherent state or
phase space path integrals [2]. As a rule, such paths can be
found only if one complexifies phase space, i.e., allows the
momenta, or the coordinates, or both, to become complex.
However, in all previous studies of which we are aware,
the instantons always start and end in real phase space, at
the points corresponding to the classical energy minima.
The new instantons reported here, by contrast, do not even
have end points in real phase space. We refer to these as
boundary jump instantons. Such paths are a basic part of
the formal structure of coherent state and phase space path
integrals [3,4], but there has never been a need to include
them in tunneling problems, as paths without jumps have
always been available [5]. This, as we shall show, is not
an accident. Boundary jump instantons are analogous to
extra saddle points in the method of steepest descents for
one-dimensional integrals, and like them, may or may not
be relevant in any given situation. But, one cannot ignore
them a priori. In this paper we give the rules for finding
these extra paths and their contribution to tunneling, and
apply them to our illustrative example.

Inclusion of the jump instantons also resolves our spe-
cific problem, namely, the “missing quench paradox” in
the magnetic molecule Fe8. Tunneling between the ground
Zeeman levels of Fe8 is quenched at certain magnetic
fields. This effect is widely viewed as being due to in-
terference between two instantons, or Feynman paths, for
the spin [6,7]. The relative phase between these paths is
like a Berry phase, and its topological properties imply that
there have to be 10 quenching fields. But, numerical di-
agonalization of a realistic Hamiltonian for Fe8 including
fourth order anisotropy energy reveals (see Fig. 1) only 4
quenches [1]. The Berry phase argument still applies, so
it is puzzling how a quantitative detail (the fourth order
terms) can produce qualitatively new behavior.

Let us now describe the Fe8 system in more detail. The
molecular ion ��tacn�6Fe8O2�OH�12�81 forms a solid in
5-1 0031-9007�02�88(23)�237205(4)$20.00
which different Fe8 groups are essentially independent,
and each behaves as a single spin of magnitude J � 10
in its ground manifold. The degeneracy of the 21 Zeeman
levels is partly lifted by spin-orbit effects. In an exter-
nal magnetic field H, the system is well described by the
anisotropy Hamiltonian [8]

H � k1J2
z 1 k2J2

y 2 C��Jz 1 iJy�4 1 H.c.�

2 gmBJzH , (1)

where J � �Jx , Jy , Jz� is a spin operator, k1 . k2 . 0,
and C $ 0. For future use, we define reduced variables
l � k2�k1, l2 � CJ2�k1, and h � H�Hc, with Hc �
2k1J�gmB. Measurements yield g � 2, k1 � 0.338 K,
k2 � 0.246 K, and C � 29 mK [1,9].

If H � 0, the spin has degenerate classical minima
along 6x̂, which cant symmetrically toward ẑ for H . 0.
The ground level tunnel splitting D�H� is quenched at cer-
tain H as already mentioned. The two instantons that in-
terfere to cause this wind about ẑ in opposite directions.
Their actions differ by iJA, where A is a real Berry
phase equal to the area enclosed between the two paths on
the complexified unit sphere. Hence, D�H� � 0 whenever
JA�H� is an odd multiple of p. At H � 0, A�H� � 2p

(half the full solid angle) by symmetry, so (for J � 10) as
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FIG. 1. ReS for the Fe8 instantons, marked 1–4 as shown. S3
and S4 are purely real. Also shown is the ground pair splitting
D�h�.
© 2002 The American Physical Society 237205-1



VOLUME 88, NUMBER 23 P H Y S I C A L R E V I E W L E T T E R S 10 JUNE 2002
H increases, JA�H� has to pass through 19p, 17p, . . . ,
p at some H, yielding 10 zeros of D for H . 0.

The number of zeros would appear to be robust against
small perturbations that preserve the symmetry of H .
For C � 0, there is no problem: quenches occur at
H � ��2J 2 k��2�DH, with k � 1, 3, 5, . . . , 4J 2 1,
and DH � �1 2 l�1�2Hc�J � 0.263 T [7,10]. However,
even a minute positive C has a dramatic effect. With
the value for Fe8, e.g., numerical diagonalization of H

reveals only 4 zeros. Further, the spacing between zeros
is increased by �50%. Since the C term is very small
�l2 � 8.58 3 1023�, and it produces qualitatively new
effects, it has all the hallmarks of a singular perturbation.

To analyze this problem, let us first review instantons
for SU(2). In this method, one seeks a propagator such as
Kfi � �zf jexp�2H T � jzi	 via the path integral

Kfi �
Z

d�z�d�z̄�e2S�z̄�t�,z�t�� (2)

in the limit T ! `. Here, jzi,f	 are (unnormalized) spin
coherent states defined for any complex number z by
jz	 � ezJ2jJ,J	, where J2jJ, J	 � J�J 1 1� jJ, J	 and
JzjJ, J	 � JjJ, J	. Further, if n̂ has spherical polar co-
ordinates �u, f�, and z � tan�u�2�eif, J ? n̂jz	 � Jjz	.
We will take the points zi and zf to be degenerate minima
of the classical energy. S is the action for a path specified
by z�t� and z̄�t�, and is given by (see Ref. [11], e.g.)

S � 2
Z T�2

2T�2

∑
J

�̄zz 2 z̄ �z

1 1 z̄z
2 E�z̄, z�

∏
dt , (3)

where z̄ is the formal complex conjugate of z, and
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E�z̄0, z� � �z0jH jz	��z0 j z	 . (4)

For H ’s such as (1) that are polynomial in Ji, E�z̄0 , z�
is holomorphic in z and antiholomorphic in z0 [12]. In
Eq. (3), the first term is the Wess-Zumino or Berry phase
term. We will refer to the two terms in S as the kinetic and
dynamical terms, SK and SD .

To avoid confusion in what follows, the coordinates for
a complex path must be clearly understood. In terms of
u and f, this means that both u and f may be complex.
Since z � tan�u�2�eif and z̄ � tan�u�2�e2if, it follows
that z̄ need not equal z�, the true complex conjugate of
z. A point on the complex unit sphere (a four-dimensional
manifold) is fixed by giving both z and z̄. The real unit
sphere is the submanifold with z̄ � z�, and points on it
may be specified by giving z alone (as we have done in
speaking of “the points zi and zf” already).

Instantons are paths that start at zi and end at zf , and
obey the Euler-Lagrange (EL) equations,

�̄z �
�1 1 z̄z�2

2J
≠E
≠z

, �z � 2
�1 1 z̄z�2

2J
≠E
≠z̄

. (5)

Along these paths energy is conserved, i.e., dE�z̄, z��dt �
0. Hence, and because zi and zf are energy minima,
one cannot find a solution lying on the real unit sphere.
We must complexify the path, i.e., allow z̄�t� to differ
from z��t�. But, since E�z̄�t�, z�t�� � Emin (the mini-
mum energy value) on the instanton, and since E�z�

i , zi� �
E�z�

f , zf � � Emin, one can always find an instanton with
end points on the real sphere.

Let us illustrate this using Eq. (1) with C � 0. Then,
E�z̄, z� � k1J2

∑
�1 2 z̄z�2 2 l�z 2 z̄�2 2 2h�1 2 z̄2z2�

�1 1 z̄z�2

∏
. (6)
The minima are at z̄ � z � 6z0 where z0 � ��1 2

h���1 1 h��1�2. From E�z̄, z� � Emin �� 2k1J2h2�
we get

z̄ �

p
l z 6 �1 2 h�

p
l 6 �1 1 h�z

. (7)

This relation connects z̄ and z at every point along the
instanton trajectory. For general z, z̄ fi z�, but if z � 6z0,
z̄ � z�. Thus the instanton end points are on the real
sphere, but other points are not. From Eq. (7), we can
now evaluate S, and recover previous results, along with
the expected number of zeros in D (10 for H . 0) [7].

When C is turned on, the solutions (7) evolve smoothly,
and continue to have classical end points, and to interfere.
When we find the fields where D vanishes by calculating
JA numerically, we continue to find (incorrectly) 10 zeros
as per the Berry-phase argument.

The problem is that we have not formulated the princi-
pal of least action (or Hamilton principal function, to be
precise) sufficiently carefully [3,4,11]. One must in fact
include an explicit boundary term SB in S:
SB � J ln

∑
�1 1 z̄�2T�2�zi � �1 1 z̄fz�T�2��

�1 1 z�
i zi� �1 1 z̄f z̄�

f �

∏
. (8)

If we now vary S � SK 1 SD 1 SB including the end
points, and set dS to 0, we discover of course the EL
equations (5), but also that dS has no terms in dz̄�2T�2�
and dz�T�2�. This implies the boundary conditions

z�2T�2� � zi , z̄�T�2� � z̄f , (9)

on Eq. (5), i.e., z̄i 
 z̄�2T�2� and zf 
 z�T�2� must be
left free. Otherwise, we would have four boundary condi-
tions on a second order system of differential equations,
and the problem would be overdetermined. The term SB

can also be found by careful time slicing of the propagator.
Its inclusion in S has many other nice consequences:
e.g., the Hamilton-Jacobi equations ≠Scl�≠z̄f �
2J��z̄f 1 z21

f �, and ≠Scl�≠zi � 2J��zi 1 z̄21
i �.

Since z̄i and zf are not fixed, Eqs. (5) and (9) may have
solutions with z̄i fi z�

i , zf fi z̄�
f . These are the boundary

jump instantons. Their velocities �z and �̄z do not vanish at
the end points because ≠E�≠z and ≠E�≠z̄ are not zero.
237205-2
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Thus the instanton duration is finite, and although the
energy E�z̄, z� is still a constant of motion, its value is not
obvious. In fact, since SD �

R
E�z̄, z� dt, we must choose

E � Emin. Otherwise, when we sum multi-instanton
terms, the instantons with jumps will trivially dominate
or be dominated by those without jumps. This point
also emerges in Klauder’s formulation. He argues that
the continuum path integral is a formal construct with
meaning only as a limit of its discrete version. So one
may add a term to the integrand for S that is quadratic in
�̄z and �z, with an infinitesimal coefficient e that is sent to
0 at the end. The EL equations are then a fourth order
system, and one may specify all four zi, z̄i, z̄f , and zf .
The jump instantons then appear as solutions to the EL
equations with internal boundary layers of thickness O�e�
since the terms in z̈ and ¨̄z have coefficients e. Energy is
conserved in these boundary layers too, and when one
takes the e ! 0 limit, they yield a contribution that is
explicitly independent of e (which makes the procedure
legitimate), and is precisely equal to SB above. Note that
SB � 0 for an instanton without jumps.

Hence the general procedure for finding all instantons is
as follows. For any H with degenerate minima, we first
find Emin, and the classical minima �z�

i , zi�, �z�
f , zf �. We

then find the allowed z̄i values by solving the equation

E�z̄, zi� � Emin . (10)

This has a double root at z̄ � z�
i , since ≠E�≠z and ≠E�≠z̄

both vanish at �z̄, z� � �z�
i , zi�. However, it may also have

extra roots at z̄ fi z�
i , which will then be the end points

of instantons with jumps. (The procedure for zf is analo-
gous.) We then obtain z̄�z� for all instantons from energy
conservation, making sure that they connect onto the ap-
propriate end points. This is enough to compute SK and
SB for each instanton (the time dependence is not needed),
and SD � EminT for all of them. If we label the various
instantons by a, we can write

D �
X
a

gae2Sa , (11)

where ga is the prefactor arising from integrating over
Gaussian fluctuations about each instanton. On physical
grounds we expect ga to be of the same order for all a for
smooth Hamiltonians, and it may be estimated as the small
oscillation frequency about the minimum. (For instantons
without boundary jumps, Ref. [13] formulates how to find
ga .) Hence, the relative importance of various instantons
is determined largely by the actions Sa.

Let us now return to our model (1). It may be verified
that E�z̄, z� � P�z̄, z���1 1 z̄z�4, where P is a polynomial
of degree 4 in z̄ and also in z. Thus Eq. (10) is a quartic
in z̄. Two of its roots are indeed z�

i , and connect on to
instantons without jumps, but two are different and dis-
tinct and connect to instantons with jumps. The equation
E�z̄, z� � Emin is also a quartic and the solution z̄�z� has
four branches, corresponding to the different instantons.
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FIG. 2. Components of the spin vector J for jump instanton
No. 3, for H � 0.1Hc.

We label the first two instantons, which have ImS fi 0,
and interfere with each other, 1 and 2, and the last two,
which have jumps and ImS � 0, 3, and 4. An instanton
with a jump at one end also has a jump at the other end.
A 180± rotation about ẑ sends instanton 1 into 2, which
guarantees ReS1 � ReS2, g1 � g2. We show instanton 3
in Fig. 2, 1 and 2 in Fig. 3 (all for h � 0.1), and ReSa�h�
in Fig. 1. For any h, the dominant instanton is that with
the least ReS. Hence, except in the immediate vicinity of
h0, only instantons 1 and 2 are relevant for h , h0, and
only 3 is relevant for h . h0. This explains why D does
not oscillate for h . h0.

We can find the quenching fields numerically, but we
have also found an analytic approximation, based on the
small parameter z 
 4l2h2, which explains why they are
so regularly spaced. This result may also be of wider in-
terest, since D oscillations have now been seen in another
system [14]. To derive this, it is better to use polar coor-
dinates. With u 
 cosu, s 
 sinf, and

Z�s� 
 4l2�1 1 6s2 1 s4� , (12)

R�s� 
 1 2 ls2 1 12l2s2 1 4l2s4, (13)

W �s� 
 g0 1 h2 1 ls2 2 2l2s4, (14)
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FIG. 3. A jump-free instanton for H � 0.1Hc . All compo-
nents Ji are now complex, so their absolute values are shown.
Jy slowly asymptotes to 0 as t ! 6`.
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the energy conservation condition reads

g�u, s� � 2
1
2 Z�s�u4 1 R�s�u2 2 2hu 1 W�s� � 0 .

(15)

Here, g0 � 2�l 1 h2� 2 Emin � 2l2h4. g�u, s� has
four roots u�s�. Regarding s as real, we are interested
in the complex conjugate pair of roots which tend to
the energy minima u � u0, as s ! 0. Let the real and
imaginary parts of these roots be A�s� and B�s�, i.e., let
u�s� � A�s� 6 iB�s�. The imaginary part of Eq. (15)
gives

B2 � A2 2 �R�Z� 1 �h�AZ� , (16)

and if we substitute this result for B into the real part, we
get an equation for A alone:

4Z2A6 2 4RZA4 1 �R2 1 2WZ�A2 2 h2 � 0 . (17)

We now make the self-consistently verifiable assumption
that A � O�h�. Then the terms ZA4 and Z2A6 are O�z �
and O�z 2� relative to the remaining terms, and may be
dropped. This yields A � h�R2 1 2WZ�21�2. The quan-
tity R2 1 2WZ can be seen to be a fourth order polyno-
mial in s, and depends on h only through the combination
l2�h2 1 g0�, which is O�z �. If we neglect this weak h
dependence, we get

A�f� � h�1 1 P2 sin2f 1 P4 sin4f�21�2, (18)

P2 � 22l 1 24l2 1 8l2l , (19)

P4 � l2 1 8l2 1 24ll2 1 128l2
2 . (20)

Since SK � iJ
R

�1 2 cosu� �f dt in u, f variables, A �
2p 2

R2p
0 A�f� df. If we keep only instantons 1 and

2, D � 2g1 exp�2ReS1� cos�JA�2� up to a phase factor.
Using Eq. (18), we see that the zeros of D are equally
spaced with spacing DH � pHc�JI�l, l2�, where

I�l,l2� �
Z p

0

df

�1 1 P2 sin2f 1 P4 sin4f�1�2 . (21)

For the Fe8 parameters, I � 3.88, implying
DH � 0.409 T. The experimental value is 0.41 T.

We conclude with some general remarks about instan-
tons with boundary jumps (or internal boundary layers, in
the Klauderian view). It is clear that they must be present
in all coherent state path integrals, not just for spin, and
our discussion is easily extended to these cases. It would
be interesting to find other concrete instances where they
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occur, both in quantum mechanics, and in field theories. It
would also be interesting to reexamine problems such as a
particle in a one-dimensional potential well in a coherent
state formulation.
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