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Spin tunneling in magnetic molecules: Quasisingular perturbations
and discontinuous SW2) instantons
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Spin coherent state path integrals with discontinuous semiclassical paths are investigated with special ref-
erence to a realistic model for the magnetic degrees of freedom in ghadtecular solid. It is shown that such
paths are essential to a proper understanding of the phenomenon of quenched spin tunneling in these mol-
ecules. In the Reproblem, such paths are shown to arise as soon as a fourth-order anisotropy term in the
energy is turned on, making this term a singular perturbation from the semiclassical point of view. The
instanton approximation is shown to quantitatively explain the magnetic field dependence of the tunnel split-
ting, as well as agree with general rules for the number of quenching points allowed for a given value of spin.
A fairly accurate approximate formula for the spacing between quenching points is derived.
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[. INTRODUCTION standing of the spin-coherent-state path integral. In turn, we
A Overview can now see that discontinuous paths exist in all other

coherent-state path integrals too, and this may prove to be of
Among the several advances in the study of large-spimuse in situations where such path integrals are the natural
molecular magnets in the last few yeanserhaps the most analytic tool.
remarkable is the observation of quenching of spin tunneling There are, therefore, two points to this paper. The first, as
in the molecule[ Fe;0,(OH),(tacn)]®* (or just Fg for already stated, is to advance our understand_mg o_f the spin-
brevity) by Wernsdorfer and SesséWS).23 The spin of this coherent-state path_ integral. Sec_:ond, we obtajoantitative
molecule can tunnel between classically degenerate orient@n@lytical explanation for additional aspects of WS's data
tions, but for certain values of the applied magnetic field it isthat are not captured by the simple model, and that have up
found that the tunneling is eliminated, or quenched. Betweeintil now been only understood numerically. This is desir-
quenching points, the tunnel splitting oscillates as a functiorfble as the oscillations seen ingFare, to date, the clearest
of applied field. The simplest model that is capable of de-evidence for spin tunneling of a spin of such large magni-
scribing this effect has been studied by many workergude. )
now/ ™ and it is well understood qualitatively in terms of an _ This may be a good point to ask why one should bother
interference between tunneling Feynman paths. Such inteVith an analytical explanation at all. After all, the model
ference can also arise for massive particles in more than orfd@miltonian[Eq. (1.4)] given below can be numerically di-
dimension'? It arises in the case of a single spin because th@gonalized with minimal effort. A numerical diagonalization
kinetic term in the path integral has a geometrical or BernPY itself gives no insight into the results, however, and if it
phase structurgd®14 were the only way we had of solving the problem, the oscil-
There is, however, yet another aspect of thg Eeperi- Iatlpns in the splitting quld be a pomplgte mystery. If one
ments that has not been widely appreciated, because gfelleves that the'mental picture oflnterfermg tunneling paths
which the physical explanation for the tunnel splitting oscil- 1S useful, then it is surely important to know if and when and
lations is significantly incomplete. This is because if we viewhoW this picture breaks down. Second, the numerical ap-
the tunneling in terms of just the interfering paths, the geoproach cannot by itself explain the scale of the tunnel split-
metrical interpretation of the relative phase between theniNg- . .
inevitably predicts a certain number—ten—of quenching A shorte;r paper with our results has been published
points. Experimentally, and by a numerical diagonalizationPreviously:” In the present paper, in addition to providing
of the appropriate model Hamiltonian, only four quenchingthe deta_|ls of t_he work, we explain how to_flnd the end points
points are seen. We will show in this paper that the resolutio?f the discontinuous paths or boundary jump instantons, as
of this apparent paradox requires that we include paths tha¥e refer to them. We also discuss the general model for
havediscontinuitiesat the end points. As a general point, the Parameter values other than those relevant toifrerder to-
necessity of including such paths in the spin-coherent-statirther test the scenario for the elimination of quenching
path integral has in fact been known for some tih&but ~ POINts. Flnally, we show that the number of guenching points
the significance of this idea has not progressed much beyoriflat remain must be even or odd depending on the value of
the purely formal level, and the one concrete problem wheré€ spin,J, and how this comes about from the instanton
discontinuous paths are known to be needed—Larmor preanalysis.
cession in a constant magnetic field—is so well understood
to begin with, that few people have pursued this line of in-
quiry further. The Fgproblem has provided us with a strong  The main facts about keare as follows. The cluster of
motivation for doing just that, thus enhancing our under-eight F€™ ions in one molecule has an approximBtgsym-

B. Basic facts about Fg
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TABLE I. Important parameter combinations.
Quantity Formula
HC 2k1‘]/gMB

N ko /Ky

Np CX%/k,

h H/H,

4 4\ ,h?

0 01 02 03 04 03
metry. Competing exchange interactions among the ionic h

spins in one molecule lead to a ground state with a total SPIN' £1G. 1. Tunnel splittingA between the ground level pair for
of Q=;I.O. The compound for_ms a well ordered crystalline 5 mijtonian (1.4) with C=0 (solid line and C=29 uK (dotted
solid, in which the magnetic ions in one molecule are kepljng).

well separated from those in another molecule by large or-

ganic ligands. The magnetic degrees of freedom may thus e Hamiltonian consistent with the symmetry of the mol-
treated as a set of non-interacting spins, each W#h0. To  ecyle, and by trial and error and numerical diagonalization of
a first ap_proxmanon, the_anls_otropy of each molecule may; 21% 21 matrix, they discover that their data can be very
be described by the Hamiltonian well fit by the following model Hamiltonia®

Ho=—kpd7+ (ki —kp) I{—gugd-H. (1.9) H=—kJ2+ (Ky — kp)I2— C[ % +3* ] —gugd-H.

Hereg is the gyromagnetic ratiqug is the Bohr magneton, 1.4
andk,>k,>0 are anisotropy parameters. Equatidnl) is  The parameterg, k; andk, are known through a variety of
the simplest Hamiltonian that can describe the quenchingxperimental evidencg2*We will use the values used by
effect. Viewed as a classical Hamiltonian, it has two degenws: g=2, k,;=0.338 K, k,=0.246 K, andC=29 uK. It
erate ground states at the poidts = Jz in the absence of an turns out to be important that one negds 0. This, then,
applied field. These states are separated by a bagiEr  describes the problem that we wish to solve. One point to
along they axis, andk,J? along thex axis. Quantum me- note is that the dimensionless strength of the fourth order
chanics admixes these states via tunneffigihen the field anisotropyC is

is non-zero, the classical minima are no longer alargy but

they are still degenerate HL z, the easy axis, and one can
have tunneling between the corresponding quantum meFor the Fg parameter values,,=8.580x 10 3. That such a
chanical states. More generally, one can have tunneling besmall term should have such a large effegimination of six

tween excited states in the two wells. In this paper, howeveruenching points, 50% increase in pepiosliggests that it is

we will 0n|y Considen{”)’zy and tunne”ng between the lowest & Singular perturbation. We shall see that this is indeed true

two states. In this case, the quenching points are perfectlf¥hen we analyze its effect on the semiclassical paths, al-
regularly spaced, and are located at though the perturbation is perfectly well behaved from the

guantum mechanical operator point of view.

No=CJ%/K,. (1.5

gH,=(J-n-$HAH®, n=01,...,2-1, (1.2

where the spacing or period is given by C. Plan of paper

The plan of the paper is as follows. In Sec. Il we briefly
©) J1—\ review the formalism of S(2) instantons with special em-
AH, :THCI (1.3 phasis on the jump instantons. To this end, we first discuss
(Sec. Il A) stereographic coordinates for the unit sphere, the
where\ =k, /k,, andH.=2k,J/gug . (These, and other im- corresponding parametrization of spin coherent states, and
portant parameter combinations, are tabulated in Taple I. how paths on the complexified unit sphere are represented in
We note in passing that although this and similar resultderms of stereographic as well as the usual spherical polar
for other quenching points were initially obtained by variouscoordinates. We then discu&3ec. Il B the action functional
semiclassical approximatiofiS;’ they are in fact exattfor  for spin, and show that unless one includes a “boundary
model(1.2). term” that depends explicitly on the boundary values of the
WS’s observations differ from the simple model predic- spin path, there is no sensibly formulatable least action prin-
tions in that they see only four quenching points on the posi€iple, nor is there a solution to the Euler-Lagrange equations
tive H, axis, where the simple model would say ten, and then general. Paths with discontinuities arise naturally once a
spacing between these points is more than 50% greater thdsoundary term is included. We also discuss Klauder’s formu-
formula(1.3) would give.(See Fig. 1.At the same time, this lation of these points in terms of an extra infinitesimal
spacing is quite uniform. They surmise that the differencegpseudo-inertial term in the kinetic energy and the concomi-
are due to the presence of higher order anisotropy terms itant production of narrow boundary layers in the spin paths.
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In the limit where the extra kinetic energy term vanishes, thavhich energy is conserved cannot run between two minima

width of these layers also vanishes, and they then look likend still have real coordinates and momenta. Hence one must

discontinuities in the paths. enlarge the notion of a classical path, and allow the coordi-
In Sec. Il C, we discuss the general structure of the tunnehates and/or momenta to become complex. One is naturally

splitting for model(1.4) when both types of instantons—with led in this way to reexamine the least action principle. In the

and without jumps—are allowed. We shall see that an instanease of spin, there is yet another reason for this reexamina-

ton of the latter type dominates as the field gets large, antdon, as we shall see.

since this instanton has no interfering partner, we see why

the splitting ceases to oscillate after fewer than ten quench- A. Spin coherent states and their parametrization

ing points have been realized. e .
In Sec. Il we present the explicit analysis for our model More specifically, let the degenerate classical energy

for Fes, Eq. (1.4). In Sec. Ill A we analyze the interfering Minima be along the directions; and n;. We seek the

instantons. We identifyt =4\,h? (with h=H/H,) as the Ppropagator

appropriate small parameter, and explain whykhespacing R R

of the quenching points is so regular. We obtain a concrete Kii=(n¢|exd —HT][n;) 21

formula for this spacing, namely, ) o - i
in the limit T—o. Here|n; ;) are spin coherent statéde-

7H, fined below. This propagator is given by the path integral

AHX:JI()\,)\Z)’

(1.6)
Kf|:f DLA(t)]e SO, (2.2)

wherel is an integral expressidsee Eq(3.27)] depending
on the parameters=Kk,/k;, A\ ,=CJ?/k; (also see Table)l
With the parameter values relevant togfFave obtain |
=3.88, givingAH,=0.409 T. WS quote a period of 0.41 T.
Compared to the modet,, the period is increased by a
factor m(1—\) Y41 =1.552. We relatd to a complete el-
liptic integral, and give various formulas for it in the Appen-
dix.
In Sec. 1l B we turn to the jump instantons. We first fevery instance.
formulate the equations for determining the end points o
these instantons. In general these equations would have to be W& define the spin coherent stdie) as the state with
solved numerically, but for the enodel, it turns out thatan mMaximal spin projection along the directiom In other
analytical solution can be found. With these end points inwords,n is an eigenstate af-n with an eigenvalug:
hand, we can find the complete instantons and their actions
(this must still be done numerica)lyWe use our computed J-n|ny=J|n). 2.3
actions for all the instantons to find the splitting as a function
of magnetic field, and compare with the numerical d|agonaIThe most common way of explicitly Wr|t|nb1> andS[n(r)]
ization. This exercise is carried out for the valuexgfap-  is in terms of the spherical polar coordina@snd ¢ of the
plicable to Fg, as well as some others. direction n. For formal purposes, another representation is
In Sec. IV we address the issue of the number of quenchmore convenient. Lez be a complex number, related to
ing points in light of general quantum mechanical theorems( g, ) by the stereographic map
It is not an accident that WS see an even nunifaur) of
guenchings foH,>0. We will see that the general theorems .
constrain this number for any value &fand then show how z=tanze'’. 2.4
this same conclusion comes about from the instanton analy-
sis. We conclude the paper in Sec. V with a summary andhen, up to normalization and phags) is identical to the
discussion. staté’

wheren(0)=n;, n(T)=n;, andS s the action. When we
evaluate this integral by steepest descents, least action paths
emerge naturally.

To avoid misunderstanding, let us note t&ds a Euclid-
ean action, and th#;; is an imaginary time propagator. This
shall be the case throughout this paper, and we shall not say
that the action is Euclidean, or that the time is imaginary in

_AZJ
IIl. SU(2) INSTANTON FORMALISM REVISITED |z)=€e*-]3,3). (2.9

The instanton method is an efficient way of calculating The advantage of this representation is that matrix elements
tunnel splittings, both for particlés and for spirf® It is  Of various operators have nice analyticity properties. For ex-
based on evaluating the path integral for a certain propagat@mPple, for Hamiltonians polynomial in the componentsof
in the steepest-descent approximation, and is designed to be ,
asymptotically correct in the semiclassical limii-Go or (—, )= (Z'|H[2)
h—0). Instantons are classical paths that run between de— ’ (Z|2)
generate classical minima of the energy. By “classical” wi
mean that the path obeys the principle of least action, and is holomorphic inz and antiholomorphic iz’, wherez is the
fortiori, satisfies energy conservation. However, a path alonfprmal complex conjugate &. In equations, this means that

(2.6)
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2z2-722
J

J 7 J i T
—H(Z 9= H({Z 7=0. 2.7 sK:_fo dt, 2.13

0z

1+2zz

Explicit model calculations, however, are often easiemin T

and ¢. sD=J H(z,z)dt, (2.14
Since we will be considering paths on the complexified 0

unit sphere, it is useful to understand what this means in o o

terms of the two coordinate systems. Lgtv, andw be Sg=—JIn{[1+2(0)z][1+zz(T)]}. (2.15

Cartesian coordinates in three-dimensional space. The re

| o .
unit sphere is the surface specified by &/e refer to these terms as the kinetic, dynamical, and bound-

ary terms, respectively. The ter8; depends explicitly on
the boundary values of the path, and is needed to avoid the
(2.9 ) 16 L )
overdetermination problen: ~We state why this is so with-
The complexified unit sphere is obtained by allowiumgy,  out proof. If we vary the patla(t), z(t), including the end-
andw to become complex. The real and imaginary parts ofpoints and require the resulting variatiofs to vanish, we
Eq. (2.8) provide two constraints among six variablgbe  discover(i) the Euler-Lagrang€EL) equations
real and imaginary parts af, v, andw), leaving us with a

u’+ov2+w?=1.

four-dimensional manifold. We can also see this in the terms — (1+z2)?0H . (1+22)% oH

of polar and stereographic variables. Consider the former 2= 7oy a7z T T(p_? (2.16
first. We relate them to Cartesian coordinates in the usual

way and(ii) that 5S has no terms proportional @z(0) or 5z(T).

This means that the action evaluated for the classical path
zy(t), zg(t) [which obeys Eqs(2.11) and (2.16)] is not a
Equation(2.8) is automatically satisfied. This continues to be function of z,=z(0) andz;=2z(T):

true if we allow # and ¢ to be complex. Once again, we

conclude that four real quantities are required to specify a d o 9

point on this manifold. Let us consider stereographic vari- ﬁ_;S :(9_ZfSC:0- (217
ables next. Since '

(u,v,w)=(cos#, sinfcose,sindsing). (2.9

Equivalently, one can say that

_ o 7 — o —ig — _
z=tanz e, z=tanze %, 2.19 Sza(1),24()]= (21, T), (2.18

where we show the variables on whisf depends explicitly.

we see that i# and ¢ are complexz will not be the same as Third, one obtains the Hamilton-Jacobi equations

z*, the true complex conjugate_nfTo specify a point on the

complex unit sphere, bothandz are needed, i.e., four real 9s® z(T) 9s° ?(0)

parameters are needed. Conversely, a point with stereo- —=2)——, =2d—.
: : — : : d 1+zz(T 9Z; 1+2(0)z

graphic coordinatesz(z) lies on the real unit spher(ev_hlch % Z_fz( ) ' 20)z _

is a submanifold of the complex unit spheiez andz are  Lastly, the “energy” is conserved along the classical path:

complex conjugates. Such points may be given by specifying

(2.19

i . d _
z alone orz alone. Thus, corresponding to the directions &H[zd(t),zd(t)]:o. (2.20
andn;, which are real, we may speak of “the pointg”"and
Z;, Or “the points" Z; and Z; . This follows from Eq(216)

What would have happened if we had omitted the bound-
ary term Sg in Eq. (2.12? Since a general variatioAS
A would include terms proportional to all four quantitiés;

Let us now consider the action. To specify a paft) on 5z, , §z;, andéz, the classical path would have to be speci-
the unit sphere stereographically, one must give ) fieq via four boundary conditiong(,z; ,z; ,z), whereas the
andz(t). The action(or more precisely, the Hamilton prin- EL conditions would still form a system of differential equa-
cipal function) for a path obeying the boundary conditions tions of order 2. The system would be overdetermined with

L no solution in general(The same problem can be seen in
z(0)=z, z(T)=1z (2.11) spherical polar coordinates. One must gi#e and ¢; to
specifyn, , and 6; and ¢; for ny, i.e., four boundary condi-
tions in all) Second, even with only two boundary condi-
S(?(t),z(t))=5K+SD+SB, (2.12 tions z(O)_=zi , Z(T)=1z;, for_generalzi gnd zf_there_ is no
real solution to the EL equations. That is to say(t) is not
where equal to the true complex conjugatezf(t). A solution will

B. Action functional for spin

is given by®%°
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in general exist only if we allovzy(t) andz(t) to be inde-  Peled byk, and let the actions for these various pathsSpe
pendent complex functiongln spherical polar coordinate The tunneling amplitude is given by

language, we must allow bot#i(t) and¢(t) to become com-

plex.] We thus see that if we want to consider classical dy- A= Dke—Sﬁ'_ (2.26
namics for spin from the viewpoint of a least action prin- k

ciple, we must allow the dynamics to live on the This can be understood as arising from the path intd@ql

complexified unit sphere from the very outset. . : . )
We have couched the above discussion in language fol(—z‘z)] in the following way. In the integral, the dominant

lowing FaddeeV? It is also useful to discuss Klauder's reso- paths(in the.sense of _the_methpd of steepest desfeate .
lution of these issue. On the face of it, his treatment is those for which the action is stationary. These are responsible

; |
slightly different, but turns out to be equivalent to Faddeev':sfor the exp_onenﬂaj factor exp(S,). T_he prefactquk re-
ults from integrating out the Gaussian fluctuations around

in actual applications. Klauder does not include an explicitS ; ) )
boundary term ir§, but argues that since the continuum paththe kth instanton. The full expression f&f.i must include a
integral is a formal construct with meaning only as a limit of sum over mult|'-|nstanton pths', apd this 'ea‘?'s tp a result
its discrete version, one may add a term to the integrand fophich is essentially exponential i, in a way which is now

. . 5
Sk that is quadratic in the velocitigdand ¢, and which has well understood:

infinitesimal fficient. The EL i th Up to now, all explicit instanton calculations of tunnel
an infinitesimal coeflicient. 1he EL equations are then a splittings of which we are aware have the property that the
fourth order system, and a classical solution always exist

i . Snitial and final points of the instantons lie on the real unit
However, it has the following structure. It evolves from

R ) here. In oth dz(0)=2z", 2(T)=2 . In Klauder’
(6;,¢;) to a point (¢;,¢;) (note the different use of the spnere. in o eiwo_r 0)=2", 2T)=z; . In Klauder's
overbay in a boundary layer of duratiod(e), evolves fora 1anguage, ¢, i) =(6i.4ir), so there are no boundary
time T—O | o0t Bt ding t layers in the path(At intermediate times, of course, the path
ime (€) along a pathy(t), $(t) according to is complexified) This is due to simplifying special features

present in the models studied. As a result, there is no need to
. de oH . do¢ oH : e |
iJsing—=—, iJsind—=——, (2.2 include the explicit boundary terms #ior S%, and the prac-
dt  d¢ dt a0 tice in all papers on spin instantofiacluding those written

by one of us, A.G, has been to forget about them altogether.
In the present problem, however, we find that although in-
stantons with end points on the real sphere still exist, one
also has instantons for which this is not so. We refer to these
as boundary jump instantondt is essential to include the
latter in order to understand why the number of diabolical
points on theH, axis is reduced from 10 to 4.
More specifically, we have four instantons, labeled 1, 2, 3,
- L and 4(see Fig. 2 The first two have no boundary jumps,
sC':f [1J(1—cos) p+H(6,¢)]dt (2.22 and are the ones that interfere as in Ref. 4. The third and
0 fourth are boundary jump instantons. Hence

and then evolves from a point)(, ¢¢) to (65, ¢;) in another
boundary layer of duratio®(e) neart=T. [Note that Eq.
(2.21) is equivalent to Eq(2.16).] The extra kinetic term in
the action gives a non-zero contribution only from integra-
tion over the boundary layers, but this contribution is explic-
itly independent ofe as e—0. The net classical action is
then given by

R — 4
cosi 0, coss 6 o
2'—21 (2.23 Azgl Dye 5. (2.27

+2J1In
{ COS3 6; coS3 6;
By proper choice of gauge, one can ensure thaDalare
real,S§ andS; are real, and thags = (S{)*, D,=D;. More
generally, the real parts Gﬁ' and Sg' must be equal to each
other by symmetry, and the imaginary parts must be related

tan %Eeigi =tanj 6;e'%, (2.29 by

The last term is the boundary layer contribution, and is
equivalent to the explicit terrBg in Eq. (2.12.2° The bound-

ary values @; , ;) and (6;,¢;) are constrained by

o _ S-s=2iJ0, (2.28
tan 6;e ' *=tan} ;e 1 (2.25 , - _
where @ is half the area on the complexified unit sphere

[note the similarity toz(0)=z;, z(T)=z]. Once again a enclosed by the closed loop formed by taking instanton 1

solution can in general be found only #t) and ¢(t) are  fromn; ton¢, and instanton 2 back g . Therefore, we can
complexified. write

A=2D,e "SI cogJd) + Dse S+ D e . (2.29
C. Structure of answer for Feg 1 3 4 - e

Once the action functional is specified, the instantorAll the quantities in this equation depend on the field.
recipe for calculating the tunnel splitting is as follows. Let We discover thag§<sS; for all fields. At low fields, ReS;
there be a number of instantons, i.e., least action paths, |a<sg', while at high fields, the inequality is reversed. The
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Complex Phase I1l. ANALYSIS FOR Fe g

Space . .
A. Interfering instantons

Real Phase We now turn to finding the instantons explicitly. Fo_r this

Space — purpose, it is better to use a coor(_jmate syste_m hamag_
the hard axis and as the easy axis. Introducing spherical
polar coordinate® and ¢ in the standard way, the energy
(expectation value of the Hamiltonigm this frame is given
by

-------- Jumps

E(6,$)=\ sirfdsir’¢+cosd—2h cosd— 2\ ,(cosd
+sirtg sint¢p— 6 sirfd cog g sirf¢). (3.1

4 The first step is to find the minimum of this energy. Setting

FIG. 2. Schematic of instanton paths ingF&V/e show a portion dE/96 and JE/ ¢ to zero, we obtain

of real phase spacéhe real unit sphejeas a two-dimensional . . . . .
surface, that is embedded in complex phase space. The latter igosd) S|n¢[24)\2S|n20c0520—8)\23|n495|n2¢+2)\ sza]
four-dimensional, but we can only represent it as three dimensional _q (3.2
in this perspective drawing. The initial and final poinendf lie in

real phase space. Paths 1 and 2 start at these points, have no jumasd

interfere with each other, and evolve smoothly as@hterm in Eq.

(1.4 is turned on. Except at the end points these paths lie in com- Sin#[ 2\ cosd Sirf¢— 2 cosf+2h+ 8\, cos’§

plex phase space. Paths 3 and 4 possess jumps at the end points, do . . . .

not interfere, and are obtained only whén#0. These paths lie —8)\2(S|n205|n2¢>+6 sirf 6 — 1)cosé S'n2¢]:0'
entirely in complex phase space. (3.3

two actions are equal &b =0.25(see Fig. 3. The prefactors When these conditions are examined carefully, it is found
D; set the dimensional scale for the tunneling, and are gerthat the minima occur wheg=0,7 and the expression in
erally equal to classical small oscillation frequencies in ordethe square brackets in the second equation is zero, i.e., at
of magnitude. Thus we do not expect thg to be very ¢=0,7 and atd= 0, where f, obeys

different, and the relative importance of the different instan-

tons is determined mainly by tH& . Hence, ignoring a very cosfp—h—4\,cos 6,=0. (3.9

small region in the immediate neighborhoodlgf, we can

write The minimum energy is

2Dle_ReS§-| COqu)) h<h0 Enin= C03200_2h COSGO_Z)\Z CO§00. (35)

- Dae=S h>h (2.30 Since=4\,h?<1 for all h, one can solve Eq3.4) pertur-

&= - o batively to get co®,=h+4\,h® to first order in¢. In the
In particular, there will be no quenchings in for h,>hy.  same approximatiorE = — h?— 2\ ,h*.
For hy<hg, quenching will occur whermb = (2n+1)#/2J, Next, let us find the instantons. The trajectory, i.e., the
wheren is an integer. path in phase space without regard to the time dependence,
can be found by exploiting energy conservation. With the
abbreviations

u=cosf, s=sing, (3.6)

the conditionE( 8, ) = E,,, can be written as

g(u,s)=—3Z(s)u*+R(s)u?—2hu+W(s)=0, (3.7)

where
/ Z(s)=4N,(1+65°+5s%), (3.9
0 I I I ! 0
0 0.05 0.1 0.15 0.2 0.25 0.3
h R(S)=1—\S?+ 12\ ,S%+ 4\ ,5%, (3.9
FIG. 3. Real parts of the actions vs the magnetic field for the W(S)=go+h2+\s2—2\,s%, (3.10
four instantons in the Reproblem. Also shown is the energy split-
ting between the ground level pair. For-hg, instanton number 3 with
is the dominant one, and since it has no interfering partner, the
splitting rises withh instead of oscillating. go=—h?—Emin~2\,h*+0(h®). (3.11)
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FIG. 4. Plot ofg(u,s) vs u for variouss. The points to note are
that(i) except whers=0, g has no zeros in the intervi+ 1,1], (ii)
g always has two zeros outside this interval. Bet0, g has a
double zero at somee[ —1,1]. The inset shows an enlarged view
of g in the same interval.

Equation(3.7) may be solved as a quartic equation tgs).
Let us first consider only real values @f and thus of. It is
useful to sketchg(u,s) as a function ofu for real u, and
fixed s, remembering thafs|<1 (see Fig. 4 Consider first
the interval —1=u=<1, corresponding to pointsf(¢) on
the real unit sphere. Singg=E—E,;,, it must be nonnega-
tive in this interval. In fact, fors#0, it must bestrictly
positive, and fors=0, it vanishes only at one point
=c0s#,, where it has a double zero. Secogdy — asu

— *oo, It follows that for|s|<1, g(u,s) always has exactly
two real rootsu(s), with |u(s)|>1. These roots cannot be
the instantons that tend to the true energy minimat as

—*o0, Those roots are the complex conjugate pair with

both real and imaginary parts.

For the complex roots leti=A+iB with A andB being
real. From the imaginary part of E¢3.7) we obtain the
equation

—2Z(A®B—AB®) +2RAB-2hB=0, (3.12

while the real part yields

—17(A*-6A%B?+B*) +R(A?—B?)—2hA+W=0.
(3.13

Since we are not interested in solutions with either0 or
B=0, Eq.(3.12 implies that

B2=A%2—(R/Z)+(h/AZ). (3.19

Substituting this into Eq(3.13, we obtain an equation fok
alone,

47°A5—4RZA+ (R?*+2WZ)A’—h?=0, (3.15

which is a cubic inA2.

When \,=0, Z(s)=0, and Eq.(3.195 has the solution
A=h/R=h/(1—\ sirf¢). We seek that solution of the cubic
which tends to this solution as,—0. We can obtain this
approximately if we assume that=0O(h). The termszZA*

PHYSICAL REVIEW B 67, 054406 (2003

andZ?A® are of order/ and ¢?, respectively, relative to the
remaining two terms in Eq3.15. If we drop the former two
terms, the remaining equation is trivially solved to obtain

h
(R*+2wz)*?’

(3.16

which is in fact of O(h). Thus, our assumption is self-
consistently verified, and the solution has the correct behav-
ior as\,—0.

Next we note that

R?+2WZ=P}+P,sirf¢+P,sint¢,  (3.17
where we have unabbreviatsdand
Po=1+8\,(h2+go)=~(1+¢)? (3.18
Po=—2N+24\,+ 8NN, + 12/ +48\50y, (3.19
~— 2N+ 24\, + 8NN+ 120+ 672,
(3.20

P,=N2+8\p+ 24\, + 128\5+ 27+ 8\ ,0,. (3.2

~N2+ 8N+ 2ANN,128+ N5+ 27+ L2
(3.22

All three coefficients depend dm only through the combi-
nation £=4\,h?, which is very small. If we neglect this
weak dependence, we git=A,, where

h
A= , 3.23
O (14 P, sip+ Py sirfg) 2 (
with
Ps=\2+8N\,+ 24N\, + 128\2. (3.29

For completeness, we mention that it is possible to sys-
tematically obtain corrections té in powers ofZ, in the
form A+ (A1 + - - -. We do not carry out this exercise here.
To see how good Ed3.23 is, we plot the real part of cas
in Fig. 5. The dashed line is our approximation, and the solid
line is obtained by numerically solving— E,,=0 with the
numerically exact value d&,;,. In this plot,h is taken to be
0.2. It can be seen that the two curves agree very well.

With Eq. (3.23, we can now calculate the imaginary part
of the tunneling action, and the Berry phasé&d? of Eq.
(2.28. We have

<D=Joﬂ(l—A)d¢~[w—hl(>\,)\2)], (3.26
where
IOV )—F ! d
(AAz)= 0 (14 P, sirtg+ P, sirt$)Y2 ¢
(3.27)
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02 X 1 . 1 . 1 . FIG. 6. Tunnel splitting between ground level pair for model
0 /4 /2 3n/4 n

(1.4), as computed by numerical diagonalization of the Hamiltonian
0 (solid line), in the instanton approximation keeping only instantons
1 and 2(dotted ling, and in the instanton approximation with all
four instantongdashed ling We take all prefactor®; to be equal
and independent df, and adjust the common value so as to obtain
the correct answer foh ath=0.

FIG. 5. Plot of Re co® vs ¢ for h=0.2 and the Fegparameters.
The solid line is from an exact numerical solution gfu,s)=0,
and the dashed line is approximati@23.

Various formulas for this integral are given in the Appendix.

The quenching conditiodd = (n+ %) 7 gives the diaboli- =H(z,2). Conversely, if the value oE is known, we can
cal points as determine the possible values nfby solving the equation
(2J-2n—-1)m H(Zzi)zE. .For t'he non-boundary-jump instantong,
IS TR (3.28 = Emin- The issue is what value & we should use for the
instantons with jumps.
wheren is an integer. For ke 1=3.88 as stated in Sec. I.  The answer is that we must tale=E,, for the jump

The observed diabolical points agree extremely well with Eqinstantons too. The easiest way to see this is in Klauder’s
(3.29. In particular, Eq.(3.28 gives the periodAH  formalism. His extra kinetic term is
=0.409 T. The experimental period is 0.41 T.

We can now see why the diabolical points ingRee so , T 1
regularly spaced. This is becausés linear inh to very good SK:4EJ
approximation. Corrections to E43.28 can be found by
including the correctiorA;. This may be important for the It is easy to write down the new Euler-Lagrange equations,
new system in which oscillations are indicated. and see that energy is once again conserved. Suppose there is

At this point, we could use Eq3.14) and our approxima- a boundary layer in the solution of the EL equations around
tion A~Ay+ {A, to find B(¢), and thus R&;'. Since the t=t,. Since, ax—0, the boundary layer turns into a jump,
resulting analysis is not completely analytical, we forgo it,and the extra kinetic energy vanishes for timest,+ or
and instead, solve for the instanton trajectory €@y and ty—, the energy before and after the jump must be the same.
evaluate the integral for the actid® numerically. The in- The problem of finding the boundary-jump instantdims
stantons are shown in Fig. 3 of Ref. 17, and the resultingleed, all instantonscan therefore be posed as follows. Let
approximation forA is shown in Fig. 6. We do not know the the “classical” Hamiltonian H(?,z) have minima at

prefactorD,, but itis clear that it is a very good approxima- (z* 7). (z¥,z), and let its value at these points Bg,,.

tion to take it to be independent &f. It is also clear, how- ' . — . .
ever, that the interfering instantons cannot account for th(-;‘-hen we find all possible values gfby solving the equation

behavior of A for h>h,. For that, we must turn to the
boundary jump instantons.

———7zdt. 3.2
0 (1+z2)? 329

H(z,2)=Emin- (3.30

_ _ o This equation has a double rootat z* , since
B. Boundary-jump (noninterfering) instantons

The instantons we have found above have the properties
@ z=27", z=(z)*, and(b) H(z,z)=H(z;,z))=Enmin.
As discussed earlier, however, orﬂyand?f are fixed, and
one need not have =z" or z;=(z)*. Let us suppose that It may, however, have additional roots%# z' . These will
we start the evolution of the Euler-Lagrange equati@ns6) be the initial points of boundary jump instantor(&inal
from a point g;,z), with z#Zz* . Whatever this point is, it Pointsz; are obtained in exactly the same way by solving
follows from Eq.(2.20 that the energyd(z,z) must be con-  H(2z¢,2)=Ep,.) We then find all possible instantonz) as
served along the trajectory, and must be equal Bo solutions to the equatiokl(z,z) =E,,,, and identify which

a9 —
z = 5,H(z2] =0 (3.3)

J _
—=H(z,2)
Jz zi* 7
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solution connects on to which end point. The time depen-
dence is not needed to compute the action. For, the kinetic

term can be written as

dz
— —z(z) dz (3.32

Zg 1
SR
p2 1+zz(z)

—|Jf (1—- cose)dgb (3.33
the dynamical term equals
So=EminT (3.39

for all instantons, and the boundary teSg depends only on

the boundary values, vanishing for the instantons withou{

jumps.

For our Fg Hamiltonian, the argument following Eqgs. —

PHYSICAL REVIEW B 67, 054406 (2003

b( 6, ,6,)=CcoL6,+2 cosh; cosby+ 3 codb,

(cosf;—cosby)?  codh;

. 6——.

sint 6, sirf 6,

There are four solutions to E¢3.39. The first two are the

nonjump solutions, co§=cosé,. The other two, which are
the jump solutions obey

(3.40

A —
1- SITHO—Z)\Zb( 0i ,00):0. (34])
This is a quadratic equation for o@s Forh<1 and small,
it is easy to check that in both solutions, @ss real and
greater than unity. Hence we may wrie=ivy, wherevg is

eal. Equation(3.35 then shows thaE may be taken in the
orm 3w —ipmg, With ug real.
It is easy to see that Eq&.38—(3.41) continue to hold if

(3.7—(3.11 shows that we have already found all the instan-?i is replaced be Thus the possible values fek are the
tons without jumps. To find the jump instantons, let us firstsame as those far,. Numbering the instantons in question 3

note that @,= 6y, ¢;=0), and @s= 6y, ¢¢=m). The con-
straints onz; andz; therefore reduce to
tanl g,el % =tani 6,,

(3.39

tan 6;e 1= —tanl ;.

(3.36

Because of the symmetry of the problem, solving either of
these equations will be enough for deducing the solution oI

the other. Let us solve for the initial values. First, E8.35
can be solved for sigh, to yield

Sif ¢, = —

( cos6, — cosao) 2 3.3

sin 6, sin 6,
Substituting this formula and Eq$3.1) and (3.5 into the

energy conservation conditid®(6; , ¢;) = En, yields

( cosé, —cosby |
0=- .
SR

+(cog 6, — cofb,)

_— 4
— —, | co;—cosb
—2h(cos9; —cosby) — 2\ ,| cOH + | —————
siné
2
cosa cos6
+6 cog6, 0) —cos'6,|. (3.39
siné,

We now eliminateh from this equation using Eq3.4). After
some straightforward but lengthy algebra, we obtain

Inze 2)\2b(6|,00)}_0

(3.39

(cosf; — cosao)z[

where

and 4, we have eithe#{®= 6" or =6 . Symmetry
suggestgand explicit numerics verifiesthat the latter pos-
sibility is the correct one. If we then divide E(.36 by Eq.

(3.35, we see that¢f—7-r ¢,. Thus, the end points are
related by the symmetry of reflection in the hard-medium
plane,i.e., §¢,Jm,JIn)— (—Je,Im,Jn), Where the suffixes,
m, andh stand for easy, medium, and hard.

If we parametrizef(t) and ¢(t) asiv(t) and (7/2)

m(t), then it easy to verify from the equations of motion

hatu(t) and v(t) stay real at alt. With this parametriza-
tion, the kinetic term in the action for instantons 3 and 4 may
be written as

M
sK=Jf ® [coshw(w) - 1]dx, (3.42
~uo
which is real. The boundary contribution is
coshvy/2)
Se=4JIn - <602 | (343

which is also real. Hence the total action for the jump instan-
tons is real.

The explicit calculation of the actions must be done nu-
merically. We solve for the trajectories in the forof{u)
using energy conservation, making sure that the end points
are correct. All these calculations are done as a functidn of
The results fosﬁ' have already been shown in Fig. 3. We can
also calculate the splitting using E@2.30, taking Dj
=D,, and fixingD, as before. The result is shown in Fig. 6.
As can be seen, the agreement with the exact diagonalization
is rather good. Thé-dependence af for instanton number 3
is shown in Fig. 2 of Ref. 17. The jumps are evident in this
figure.

We have also carried out this exercise f@=1.2
X 107 ° K. The results are shown in Fig. 7. The general qual-
ity of the instanton approach is again very good, but it is
weaker near the point wheB§'=ReSS'. The obvious reason
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FIG. 7. Same as Fig. 3, but f@=1.2x 10" ° K. In addition to K

the splittingA obtained by numerical diagonalization of the Hamil- Hy ! !

tonian matrix(solid line), we show the answer given by E@.29

(dashed lingwith all prefactors chosen to be equal, and adjusted so

as to agree with the numerically computed splittindiat0. FIG. 8. Trajectories of diabolical points under the influence of
the fourth-order perturbatior C(J% +J*) in Eq. (1.4). The num-

is that we have not considered the variation whtlof the  bers 0 and+ = are the Berry phases associated with the adjacent

prefactors, especiallp;. If we decreaseC by yet another contours.

factor of 4, Eq.(2.29 with a single,h-independent prefactor

D,=Ds3, gives six quenching points instead of eight assponding term irD;, but we have not attempted to find this.

found numerically. These considerations show that the prefrhjs analysis shows that the success of our assumptions

actors are not always unimportant; at present, however, Wghoyt the scale andi-independence of the prefactors is

only know how to find them for the nonjump instantdis, somewhat fortuitous. However, this assumption is the natural

and their calculation for jump instantons is an open problemgne in a semiclassical approach.

C. Is the fourth-order anisotropy a singular perturbation?

In the previous subsection we showed that jump instan- IV. NUMBER OF QUENCHING POINTS
tons exist for any\,# 0. The character of the least action or
“classical” paths for the problem is qualitatively altered by A. Berry phase argument
the fourth order term in E1.4), and from the point of view That the tunnel splitting between two states vanishes is

perturbation. Viewed as a quantum mechanical operatomagnetic fields at which such degeneracy occurs form a set

however, itis clear that the term is nonsingular; an infinitesi-of jsolated points in the magnetic field spa¢g, ( H, , H,),
mal nonzero value of, cannot change the qualitative nature that are said to bediabolical, following Ber);y and

of the energy spectrum. We therefore refer to the perturbatiogyjikinson? Since these points are singularities of the en-

as quasisingular. _ _ __ergy surface, there are strong constraints on their creation or

the instanton approach in the—0 limit will necessarily be  nymber of diabolical points on thel,=0 axis is known

rather delicate. We describe briefly some analysis that showgnen c=0; it is interesting to inquire how many may re-

why this is so. o main whenC is turned on, and to pursue this inquiry for
We focus on jump instanton number 3, as this is clearlygeneraly, not justJ=10, and also consider fields in the

discover that no degeneracy if there is a component of the field alpng

Let us first takeC=0. With Hy# 0, in the standard rep-
+0(N\y)Y2 (3.44  resentation of the spin operators, the matrix of the Hamil-
tonian is real. By a general theorefhthe codimension of a
degenerate eigenvalue of a real Hermitean matrix is 2.
Hence, the degeneracies must occur at isolated points in the
H,-H, plane. WherC is turned on, each one of these points
1 112 must turn into a line in the three-dimensiond,(H,,C)

(3.45 space. The only two kinds of behaviors that are permitted by
V2N, the theorem are shown in Fig. 8. The first kind, markets

a diabolical point that continues on for ever. The second

Because of this\, ? dependence, the leading term in the kind, markedb, shows that two distinct diabolical points in
action S5 is also of ordem, 2. The next term is propor- theC=0 plane actually lie on the same diabolical line in the
tional to JIn \,. While the latter is well behaved as,—0  three-dimensional spac€Of course, a similar turnaround
(remember tha&® must be exponentiatgdhe former is not.  could connect the two lines markedand b for someC
It is clear that there must be a cancellation due to a corre<0, or the lineb could form a closed loop.

1 [1+ug

=3\ 124,

where ug=cosé,, which is given by Eq.(3.4). Second, to
leading order in\,

1—\ cositu
1+ 6 cosi .+ cost i

coshv=
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Is it possible for one of the diabolical lines to terminate [2r=16un U=13(@n+1) U-14@n+2) A=15(¢n+3)
abruptly? An argument based on Berry’s piastows that A A A A
the answer is no. LeH now denote the two-dimensional | Nh AN 7\ & A N B

\V % \V
vector H,,H,). Let two stategy,(C,H)) and|,(C,H)) k—/AHE} \ZAHV —A\;{z \ U_A\I{Z
be degenerate & =Hy=(H,q,H,y) for some value ofC,
and letI” be a small closed contour in thd,-H, plane 0 0 0 0

around the poinH,. Berry's phase, given b
P 0 ysp 9 y FIG. 9. Sketch of~A,,, andA; vs h for all four classes of

listed in Eqg.(4.2). The quenching points are given by the intersec-
. tions of these two curves. The key points to note in each case are
y(I)=i ﬁ«pl(C’H)WH ¢1(C.H)), 4. the number of zeros ok, , and the number of quenching points.

field becomes larg& The keystone of our argument is the
relative sign of the two amplitudes; ., andAj, in particu-
lar, the fact that

equals*= if T' encloses a diabolical point. Otherwise,
=0. Since a small change @ or H gives rise to a nonsin-
gular perturbation of the Hamiltonian, the statg C,H) is a
smooth function ofC and H. Hence the integrand of Eq. _
(4.1) cannot change discontinuously under a continuous SQMA1+2) =SgrA;) for largeh. 4.3
change ofC, and the integral must not change at all. Thus theBy “large h,” we mean thath is just less than the field
contourI” must continue to encircle a degeneracy at smalktrength at which the two classical minima in the energy
nonzeroC if it did so atC=0. merge into one. We shall not try and prove E4.3) with

From this point of view, the behavidrin Fig. 8 can arise  mathematical rigot’ Rather, we argue that it is physically
only if v has opposite values for the two diabolical points atplausible, for at such large fields, only spin orientations in a
C=0. The Berry phase for a contoli, encircling both  very small angular range are important, and one can use the
points is then 0, and it is possible that for larger value€of Holstein-Primakoff, Villain, or any of a number of similar
the contour can be shrunk to a point without running into anymappings to approximate the spin operators in term§ of
singularity. Plainly, this can happen only if the two points andP, position and momentum operators for a particle in one
annihilate each other at son@ We can think of simply  dimension, The problem is thereby mapped on to a particle
slipping the contoud”, off the diabolical line by lifting it  in a double well in one dimension, for which the splitting
above the hairpin bend in the figure. never vanishes. Were E@L.3) not true, it is conceivable that

It follows that diabolical points can only disappear in we could makeA,,,+ A3 vanish by varying the relative
pairs. For the problem of interest to us, degeneracy betweeyalue of C and (k;—k5).
ground levels, the points are constrained to occur wHgn The second point is that the sign &f should not change
=0 (consider the behavior of the Hamiltonian under a 180°with h, since instanton 3 acts alone and has a real action. We
rotation abouk). Our analysis shows that with increasi@g ~ may therefore tak®3;>0, so thatA;>0 for all h.
the points at largeld,, are removed first. Since the quenching ~ The third and last point is that the sign®f. , ath=0 is
points for any value of] are located as given by E¢l.2) now fixed by the requirement that this amplitude vanish the
whenC=0, it follows that whenC#0, the numbeiN, of correct number of times between 0 and lalg&keaders can

such points foH,>0 must depend od as follows: verify that a correct assignment is obtained by taking
20 N, A;.,=2Dje ReSicogdm), (h=0), (4.4
4n even with D,>0.

The rest of the argument is simple. Continuing to ignore
ant1l even (4.2 the fourth instanton, the conditiadh=0 can be rewritten as
4n+2 odd
4n+3 odd Ag=—A1,5. (4.5

We now simply sketch both sides of E@.5) as a function
The same number must occur felE<<0. And, if Jis half-  of h, keeping in mind the three points made above. This is
integral, there must be a quenching pointt=0, consis-  done in Fig. 9 for all four classes dflisted in Eq.(4.2). In
tent with Kramer's theorem. For fe J=10 andNq=4,  each case, it is obvious that the number of zeids, is
which is consistent with these general rules. exactly as given in this equation. In particular, it is obvious

thatN, can change only in steps of two if the curve fog is

; 8
B. Instanton based argument raised or lowered"

Let us now see how our |r_1$tanton analysis ylelds the same V. CONCLUSION
conclusion. For this, let us ignore the fourth instanton, and
write the amplitudes due to the remaining instantons as We have shown that the instanton formalism for spin co-
A5, andA;. By A;,,, we mean the contribution from herent state path integrals requires the inclusion of instantons
instantons 1 and 2, or whatever they evolve into when thavith discontinuities at the end points as a general matter.
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Such instantons are essential to understanding the magnetic - do
field dependence of the tunnel splitting ingFaMe have = f
shown that with certain plausible assumptions about the pref-
actors, the instanton approximation can be quantitatively ac- <
curate. However, proper calculation of tunneling prefactors _ 2 K( R /W _W> (A3)
for the instantons with jumps remains an open problem. 1—-w 1-w )’

Since jump instantons arise as a result of overspecification ) o ] ]
of boundary conditions, and since this overspecification is d"hereK (k) is the complete elliptic integral of the first kind.
necessary consequence of the coherent state formulation, it js FOrm (3.27) shows thatl is real, but this is not evident
clear that similar instantons will in general be presenalin ~ from Eq. (A3). But, by using the canonical form fdt, we
path integrals based on coherent states. For spin, such paRRtain
integrals are unavoidable if one wishes to treat all spin ori-
entations on an equal footing, and they are the only way of [ dx
passing to the cl_assical limit of the dynamics. This is not so ! _Zfo (1—w co@x—w* sintx)¥2’
for massive particles. Nevertheless, there may well be some
problems that are better formulated in terms of coherentf we write w=a+ib, expand the integrand in powers lnf
states, and then one will have to be alert to the presence @ind integrate term by term, we obtain
jump instantons. An explicit instance where this is so re-
mains to be found.

=2
0 [(1—wsirP¢)(1—w*sirf¢)]Y?

(Ad)

I T 3/ b \?
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APPENDIX: OSCILLATION PERIOD INTEGRAL where F is the hypergeometric function. This form again

shows that is real. With the Fg parametersa=0.5999 and
b=0.6307. The seriefA5) is not convergent for these val-
ues ofa andb. For efficient numerical evaluation din such
cases, one can either perform a numerical integration of Eq.
(3.27) directly (which is what we digl or reexpress the hy-
TN N,) = J” 1 dé. (A1) pergeometric function in EqA5) in terms of other hyper-

0 (1+ P, sirtg+ Pysintg)? geometric functions of the argument

For Fe, the constant®, andP, equal—1.200 and 0.7576,

In this appendix, we provide some formulas for the oscil-
lation period integral(3.27), which we reproduce here for
convenience:

) . : : (1-a)? (2+P,)?
respectively. The integrand is real with these numbers. = , (AB)
Let w be a complex number such that 1-2a+(a+th%) 4(1+P,+Py)
. . using formula 9.132.1 of Ref. 39. Since the argument is now
WHWT=—Pp, WW'=Py. (A2) gmall compared to 10.2870 for Fg), the hypergeometric
Then, using formula 2.616.1 of Ref. 39, we have series involved are rapidly convergent.
*Email address: agarg@northwestern.edu analysis will apply.
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