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Spin tunneling in magnetic molecules: Quasisingular perturbations
and discontinuous SU„2… instantons

Ersin Keçecioğlu and Anupam Garg*
Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208

~Received 3 July 2002; published 6 February 2003!

Spin coherent state path integrals with discontinuous semiclassical paths are investigated with special ref-
erence to a realistic model for the magnetic degrees of freedom in the Fe8 molecular solid. It is shown that such
paths are essential to a proper understanding of the phenomenon of quenched spin tunneling in these mol-
ecules. In the Fe8 problem, such paths are shown to arise as soon as a fourth-order anisotropy term in the
energy is turned on, making this term a singular perturbation from the semiclassical point of view. The
instanton approximation is shown to quantitatively explain the magnetic field dependence of the tunnel split-
ting, as well as agree with general rules for the number of quenching points allowed for a given value of spin.
A fairly accurate approximate formula for the spacing between quenching points is derived.
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I. INTRODUCTION

A. Overview

Among the several advances in the study of large-s
molecular magnets in the last few years,1 perhaps the mos
remarkable is the observation of quenching of spin tunne
in the molecule@Fe8O2(OH)2(tacn)6#81 ~or just Fe8 for
brevity! by Wernsdorfer and Sessoli~WS!.2,3 The spin of this
molecule can tunnel between classically degenerate orie
tions, but for certain values of the applied magnetic field i
found that the tunneling is eliminated, or quenched. Betw
quenching points, the tunnel splitting oscillates as a funct
of applied field. The simplest model that is capable of d
scribing this effect has been studied by many work
now,4–11and it is well understood qualitatively in terms of a
interference between tunneling Feynman paths. Such in
ference can also arise for massive particles in more than
dimension.12 It arises in the case of a single spin because
kinetic term in the path integral has a geometrical or Be
phase structure.4,13,14

There is, however, yet another aspect of the Fe8 experi-
ments that has not been widely appreciated, becaus
which the physical explanation for the tunnel splitting osc
lations is significantly incomplete. This is because if we vie
the tunneling in terms of just the interfering paths, the g
metrical interpretation of the relative phase between th
inevitably predicts a certain number—ten—of quench
points. Experimentally, and by a numerical diagonalizat
of the appropriate model Hamiltonian, only four quenchi
points are seen. We will show in this paper that the resolu
of this apparent paradox requires that we include paths
havediscontinuitiesat the end points. As a general point, t
necessity of including such paths in the spin-coherent-s
path integral has in fact been known for some time,15,16 but
the significance of this idea has not progressed much bey
the purely formal level, and the one concrete problem wh
discontinuous paths are known to be needed—Larmor
cession in a constant magnetic field—is so well underst
to begin with, that few people have pursued this line of
quiry further. The Fe8 problem has provided us with a stron
motivation for doing just that, thus enhancing our und
0163-1829/2003/67~5!/054406~13!/$20.00 67 0544
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standing of the spin-coherent-state path integral. In turn,
can now see that discontinuous paths exist in all ot
coherent-state path integrals too, and this may prove to b
use in situations where such path integrals are the nat
analytic tool.

There are, therefore, two points to this paper. The first
already stated, is to advance our understanding of the s
coherent-state path integral. Second, we obtain aquantitative
analytical explanation for additional aspects of WS’s d
that are not captured by the simple model, and that have
until now been only understood numerically. This is des
able as the oscillations seen in Fe8 are, to date, the cleares
evidence for spin tunneling of a spin of such large mag
tude.

This may be a good point to ask why one should bot
with an analytical explanation at all. After all, the mod
Hamiltonian@Eq. ~1.4!# given below can be numerically di
agonalized with minimal effort. A numerical diagonalizatio
by itself gives no insight into the results, however, and if
were the only way we had of solving the problem, the osc
lations in the splitting would be a complete mystery. If o
believes that the mental picture of interfering tunneling pa
is useful, then it is surely important to know if and when a
how this picture breaks down. Second, the numerical
proach cannot by itself explain the scale of the tunnel sp
ting.

A shorter paper with our results has been publish
previously.17 In the present paper, in addition to providin
the details of the work, we explain how to find the end poin
of the discontinuous paths or boundary jump instantons
we refer to them. We also discuss the general model
parameter values other than those relevant to Fe8 in order to
further test the scenario for the elimination of quenchi
points. Finally, we show that the number of quenching poi
that remain must be even or odd depending on the valu
the spin,J, and how this comes about from the instant
analysis.

B. Basic facts about Fe8

The main facts about Fe8 are as follows. The cluster o
eight Fe31 ions in one molecule has an approximateD2 sym-
©2003 The American Physical Society06-1
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metry. Competing exchange interactions among the io
spins in one molecule lead to a ground state with a total s
of J510. The compound forms a well ordered crystalli
solid, in which the magnetic ions in one molecule are k
well separated from those in another molecule by large
ganic ligands. The magnetic degrees of freedom may thu
treated as a set of non-interacting spins, each withJ510. To
a first approximation, the anisotropy of each molecule m
be described by the Hamiltonian

H052k2Jz
21~k12k2!Jx

22gmBJ•H. ~1.1!

Hereg is the gyromagnetic ratio,mB is the Bohr magneton
and k1.k2.0 are anisotropy parameters. Equation~1.1! is
the simplest Hamiltonian that can describe the quench
effect. Viewed as a classical Hamiltonian, it has two deg
erate ground states at the pointsJ56Jẑ in the absence of an
applied field. These states are separated by a barrierk2J2

along they axis, andk1J2 along thex axis. Quantum me-
chanics admixes these states via tunneling.18 When the field
is non-zero, the classical minima are no longer along6 ẑ, but
they are still degenerate ifH' ẑ, the easy axis, and one ca
have tunneling between the corresponding quantum
chanical states. More generally, one can have tunneling
tween excited states in the two wells. In this paper, howe
we will only considerHi x̂, and tunneling between the lowe
two states. In this case, the quenching points are perfe
regularly spaced, and are located at

qHx5~J2n2 1
2 !DHx

(0) , n50,1, . . . ,2J21, ~1.2!

where the spacing or period is given by

DHx
(0)5

A12l

J
Hc , ~1.3!

wherel5k2 /k1, andHc52k1J/gmB . ~These, and other im
portant parameter combinations, are tabulated in Table I!

We note in passing that although this and similar res
for other quenching points were initially obtained by vario
semiclassical approximations,4,5,7 they are in fact exact19 for
model ~1.1!.

WS’s observations differ from the simple model pred
tions in that they see only four quenching points on the po
tive Hx axis, where the simple model would say ten, and
spacing between these points is more than 50% greater
formula~1.3! would give.~See Fig. 1.! At the same time, this
spacing is quite uniform. They surmise that the differen
are due to the presence of higher order anisotropy term

TABLE I. Important parameter combinations.

Quantity Formula

Hc 2k1J/gmB

l k2 /k1

l2 CJ2/k1

h H/Hc

z 4l2h2
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the Hamiltonian consistent with the symmetry of the m
ecule, and by trial and error and numerical diagonalization
a 21321 matrix, they discover that their data can be ve
well fit by the following model Hamiltonian:20

H52k2Jz
21~k12k2!Jx

22C@J1
4 1J2

4 #2gmBJ•H.
~1.4!

The parametersg, k1 andk2 are known through a variety o
experimental evidence.21–24 We will use the values used b
WS: g.2, k1.0.338 K, k2.0.246 K, andC529 mK. It
turns out to be important that one needsC.0. This, then,
describes the problem that we wish to solve. One poin
note is that the dimensionless strength of the fourth or
anisotropyC is

l25CJ2/k1 . ~1.5!

For the Fe8 parameter values,l258.58031023. That such a
small term should have such a large effect~elimination of six
quenching points, 50% increase in period!, suggests that it is
a singular perturbation. We shall see that this is indeed
when we analyze its effect on the semiclassical paths,
though the perturbation is perfectly well behaved from t
quantum mechanical operator point of view.

C. Plan of paper

The plan of the paper is as follows. In Sec. II we brie
review the formalism of SU~2! instantons with special em
phasis on the jump instantons. To this end, we first disc
~Sec. II A! stereographic coordinates for the unit sphere,
corresponding parametrization of spin coherent states,
how paths on the complexified unit sphere are represente
terms of stereographic as well as the usual spherical p
coordinates. We then discuss~Sec. II B! the action functional
for spin, and show that unless one includes a ‘‘bound
term’’ that depends explicitly on the boundary values of t
spin path, there is no sensibly formulatable least action p
ciple, nor is there a solution to the Euler-Lagrange equati
in general. Paths with discontinuities arise naturally onc
boundary term is included. We also discuss Klauder’s form
lation of these points in terms of an extra infinitesim
pseudo-inertial term in the kinetic energy and the conco
tant production of narrow boundary layers in the spin pat

FIG. 1. Tunnel splittingD between the ground level pair fo
Hamiltonian ~1.4! with C50 ~solid line! and C529 mK ~dotted
line!.
6-2
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In the limit where the extra kinetic energy term vanishes,
width of these layers also vanishes, and they then look
discontinuities in the paths.

In Sec. II C, we discuss the general structure of the tun
splitting for model~1.4! when both types of instantons—wit
and without jumps—are allowed. We shall see that an ins
ton of the latter type dominates as the field gets large,
since this instanton has no interfering partner, we see w
the splitting ceases to oscillate after fewer than ten quen
ing points have been realized.

In Sec. III we present the explicit analysis for our mod
for Fe8, Eq. ~1.4!. In Sec. III A we analyze the interfering
instantons. We identifyz54l2h2 ~with h5H/Hc) as the
appropriate small parameter, and explain why theHx spacing
of the quenching points is so regular. We obtain a conc
formula for this spacing, namely,

DHx5
pHc

JI~l,l2!
, ~1.6!

whereI is an integral expression@see Eq.~3.27!# depending
on the parametersl5k2 /k1 , l25CJ2/k1 ~also see Table I!.
With the parameter values relevant to Fe8, we obtain I
53.88, givingDHx50.409 T. WS quote a period of 0.41 T
Compared to the modelH0, the period is increased by
factor p(12l)21/2/I 51.552. We relateI to a complete el-
liptic integral, and give various formulas for it in the Appe
dix.

In Sec. III B we turn to the jump instantons. We fir
formulate the equations for determining the end points
these instantons. In general these equations would have
solved numerically, but for the Fe8 model, it turns out that an
analytical solution can be found. With these end points
hand, we can find the complete instantons and their act
~this must still be done numerically!. We use our computed
actions for all the instantons to find the splitting as a funct
of magnetic field, and compare with the numerical diagon
ization. This exercise is carried out for the value ofl2 ap-
plicable to Fe8, as well as some others.

In Sec. IV we address the issue of the number of quen
ing points in light of general quantum mechanical theorem
It is not an accident that WS see an even number~four! of
quenchings forHx.0. We will see that the general theorem
constrain this number for any value ofJ, and then show how
this same conclusion comes about from the instanton an
sis. We conclude the paper in Sec. V with a summary
discussion.

II. SU„2… INSTANTON FORMALISM REVISITED

The instanton method is an efficient way of calculati
tunnel splittings, both for particles25 and for spin.26 It is
based on evaluating the path integral for a certain propag
in the steepest-descent approximation, and is designed t
asymptotically correct in the semiclassical limit (J→` or
\→0). Instantons are classical paths that run between
generate classical minima of the energy. By ‘‘classical’’ w
mean that the path obeys the principle of least action, ana
fortiori , satisfies energy conservation. However, a path al
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which energy is conserved cannot run between two min
and still have real coordinates and momenta. Hence one m
enlarge the notion of a classical path, and allow the coo
nates and/or momenta to become complex. One is natu
led in this way to reexamine the least action principle. In t
case of spin, there is yet another reason for this reexam
tion, as we shall see.

A. Spin coherent states and their parametrization

More specifically, let the degenerate classical ene
minima be along the directionsn̂i and n̂f . We seek the
propagator

K f i5^n̂f uexp@2HT#un̂i& ~2.1!

in the limit T→`. Here un̂i , f& are spin coherent states~de-
fined below!. This propagator is given by the path integra

K f i5E D@ n̂~ t !#e2S[ n̂(t)] , ~2.2!

where n̂(0)5n̂i , n̂(T)5n̂f , and S is the action. When we
evaluate this integral by steepest descents, least action p
emerge naturally.

To avoid misunderstanding, let us note thatS is a Euclid-
ean action, and thatK f i is an imaginary time propagator. Thi
shall be the case throughout this paper, and we shall not
that the action is Euclidean, or that the time is imaginary
every instance.

We define the spin coherent stateun̂& as the state with
maximal spin projection along the directionn̂. In other
words,n̂ is an eigenstate ofJ•n̂ with an eigenvalueJ:

J•n̂un̂&5Jun̂&. ~2.3!

The most common way of explicitly writingun̂& andS@ n̂(t)#
is in terms of the spherical polar coordinatesu andf of the
direction n̂. For formal purposes, another representation
more convenient. Letz be a complex number, related t
(u,f) by the stereographic map

z5tan
u

2
eif. ~2.4!

Then, up to normalization and phase,un̂& is identical to the
state27

uz&5ezJ2uJ,J&. ~2.5!

The advantage of this representation is that matrix elem
of various operators have nice analyticity properties. For
ample, for Hamiltonians polynomial in the components ofJ,

H~ z̄8,z!5
^z8uHuz&

^z8uz&
~2.6!

is holomorphic inz and antiholomorphic inz8, wherez̄ is the
formal complex conjugate ofz. In equations, this means tha
6-3
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]

] z̄
H~ z̄8,z!5

]

]z8
H~ z̄8,z!50. ~2.7!

Explicit model calculations, however, are often easier inu
andf.

Since we will be considering paths on the complexifi
unit sphere, it is useful to understand what this means
terms of the two coordinate systems. Letu, v, and w be
Cartesian coordinates in three-dimensional space. The
unit sphere is the surface specified by

u21v21w251. ~2.8!

The complexified unit sphere is obtained by allowingu, v,
andw to become complex. The real and imaginary parts
Eq. ~2.8! provide two constraints among six variables~the
real and imaginary parts ofu, v, andw), leaving us with a
four-dimensional manifold. We can also see this in the ter
of polar and stereographic variables. Consider the form
first. We relate them to Cartesian coordinates in the us
way

~u,v,w!5~cosu, sinu cosf,sinu sinf!. ~2.9!

Equation~2.8! is automatically satisfied. This continues to
true if we allow u and f to be complex. Once again, w
conclude that four real quantities are required to specif
point on this manifold. Let us consider stereographic va
ables next. Since

z5tan
u

2
eif, z̄5tan

u

2
e2 if, ~2.10!

we see that ifu andf are complex,z̄ will not be the same as
z* , the true complex conjugate ofz. To specify a point on the
complex unit sphere, bothz and z̄ are needed, i.e., four rea
parameters are needed. Conversely, a point with ste
graphic coordinates (z̄,z) lies on the real unit sphere~which
is a submanifold of the complex unit sphere! if z and z̄ are
complex conjugates. Such points may be given by specify
z alone orz̄ alone. Thus, corresponding to the directionsn̂i

andn̂f , which are real, we may speak of ‘‘the points’’zi and
zf , or ‘‘the points’’ z̄i and z̄f .

B. Action functional for spin

Let us now consider the action. To specify a pathn̂(t) on
the unit sphere stereographically, one must give bothz(t)
and z̄(t). The action~or more precisely, the Hamilton prin
cipal function! for a path obeying the boundary conditions

z~0!5zi , z̄~T!5 z̄f ~2.11!

is given by28,29

S~ z̄~ t !,z~ t !!5SK1SD1SB , ~2.12!

where
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SK52E
0

TF J
ż̄z2 z̄ż

11 z̄z
Gdt, ~2.13!

SD5E
0

T

H~ z̄,z!dt, ~2.14!

SB52J ln$@11 z̄~0!zi #@11 z̄fz~T!#%. ~2.15!

We refer to these terms as the kinetic, dynamical, and bou
ary terms, respectively. The termSB depends explicitly on
the boundary values of the path, and is needed to avoid
overdetermination problem.15,16We state why this is so with-
out proof. If we vary the pathz̄(t), z(t), including the end-
points, and require the resulting variationdS to vanish, we
discover~i! the Euler-Lagrange~EL! equations

ż̄5
~11 z̄z!2

2J

]H

]z
, ż52

~11 z̄z!2

2J

]H

] z̄
, ~2.16!

and~ii ! thatdS has no terms proportional tod z̄(0) or dz(T).
This means that the action evaluated for the classical p
zcl(t), z̄cl(t) @which obeys Eqs.~2.11! and ~2.16!# is not a
function of z̄i[ z̄(0) andzf[z(T):

]

] z̄i

Scl5
]

]zf
Scl50. ~2.17!

Equivalently, one can say that

S@ z̄cl~ t !,zcl~ t !#5Scl~ z̄f ,zi ,T!, ~2.18!

where we show the variables on whichScl depends explicitly.
Third, one obtains the Hamilton-Jacobi equations

]Scl

] z̄f

52J
z~T!

11 z̄fz~T!
,

]Scl

]zi
52J

z̄~0!

11 z̄~0!zi

. ~2.19!

Lastly, the ‘‘energy’’ is conserved along the classical path

d

dt
H@ z̄cl~ t !,zcl~ t !#50. ~2.20!

This follows from Eq.~2.16!.
What would have happened if we had omitted the bou

ary term SB in Eq. ~2.12!? Since a general variationdS
would include terms proportional to all four quantitiesdzi ,
d z̄i , dzf , andd z̄f , the classical path would have to be spe
fied via four boundary conditions (zi ,z̄i ,zf ,z̄f), whereas the
EL conditions would still form a system of differential equ
tions of order 2. The system would be overdetermined w
no solution in general.~The same problem can be seen
spherical polar coordinates. One must giveu i and f i to
specify n̂i , andu f andf f for n̂f , i.e., four boundary condi-
tions in all.! Second, even with only two boundary cond
tions z(0)5zi , z̄(T)5 z̄f , for generalzi and z̄f there is no
real solution to the EL equations. That is to say,z̄cl(t) is not
equal to the true complex conjugate ofzcl(t). A solution will
6-4
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in general exist only if we allowz̄cl(t) andzcl(t) to be inde-
pendent complex functions.@In spherical polar coordinate
language, we must allow bothu(t) andf(t) to become com-
plex.# We thus see that if we want to consider classical
namics for spin from the viewpoint of a least action pri
ciple, we must allow the dynamics to live on th
complexified unit sphere from the very outset.

We have couched the above discussion in language
lowing Faddeev.15 It is also useful to discuss Klauder’s res
lution of these issues.16 On the face of it, his treatment i
slightly different, but turns out to be equivalent to Faddee
in actual applications. Klauder does not include an expl
boundary term inS, but argues that since the continuum pa
integral is a formal construct with meaning only as a limit
its discrete version, one may add a term to the integrand
SK that is quadratic in the velocitiesu̇ andḟ, and which has
an infinitesimal coefficiente. The EL equations are then
fourth order system, and a classical solution always ex
However, it has the following structure. It evolves fro
(u i ,f i) to a point (ū i ,f̄ i) ~note the different use of the
overbar! in a boundary layer of durationO(e), evolves for a
time T2O(e) along a pathū(t),f̄(t) according to

iJ sinu
du

dt
5

]H

]f
, iJ sinu

df

dt
52

]H

]u
, ~2.21!

and then evolves from a point (ū f ,f̄ f) to (u f ,f f) in another
boundary layer of durationO(e) near t5T. @Note that Eq.
~2.21! is equivalent to Eq.~2.16!.# The extra kinetic term in
the action gives a non-zero contribution only from integ
tion over the boundary layers, but this contribution is expl
itly independent ofe as e→0. The net classical action i
then given by

Scl5E
0

T

@ iJ~12cosū !ḟ̄1H~ ū,f̄ !#dt ~2.22!

12J lnF cos1
2 ū i cos1

2 ū f

cos1
2 u i cos1

2 u f
G . ~2.23!

The last term is the boundary layer contribution, and
equivalent to the explicit termSB in Eq. ~2.12!.30 The bound-
ary values (ū i ,f̄ i) and (ū f ,f̄ f) are constrained by

tan 1
2 ū ie

i f̄ i5tan 1
2 u ie

if i, ~2.24!

tan 1
2 ū fe

2 i f̄ f5tan 1
2 u fe

2 if f ~2.25!

@note the similarity toz(0)5zi , z̄(T)5 z̄f ]. Once again a
solution can in general be found only ifū(t) and f̄(t) are
complexified.

C. Structure of answer for Fe8

Once the action functional is specified, the instan
recipe for calculating the tunnel splitting is as follows. L
there be a number of instantons, i.e., least action paths
05440
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beled byk, and let the actions for these various paths beSk
cl .

The tunneling amplitude is given by

D5(
k

Dke
2Sk

cl
. ~2.26!

This can be understood as arising from the path integral@Eq.
~2.2!# in the following way. In the integral, the dominan
paths~in the sense of the method of steepest descents!, are
those for which the action is stationary. These are respons
for the exponential factor exp(2Sk

cl). The prefactorDk re-
sults from integrating out the Gaussian fluctuations arou
the kth instanton. The full expression forK f i must include a
sum over multi-instanton paths, and this leads to a re
which is essentially exponential inD, in a way which is now
well understood.25

Up to now, all explicit instanton calculations of tunn
splittings of which we are aware have the property that
initial and final points of the instantons lie on the real u
sphere. In other words,z̄(0)5zi* , z(T)5 z̄f* . In Klauder’s

language, (ū i , f ,f̄ i , f)5(u i , f ,f i , f), so there are no boundar
layers in the path.~At intermediate times, of course, the pa
is complexified.! This is due to simplifying special feature
present in the models studied. As a result, there is no nee
include the explicit boundary terms inSor Scl, and the prac-
tice in all papers on spin instantons~including those written
by one of us, A.G.!, has been to forget about them altogeth
In the present problem, however, we find that although
stantons with end points on the real sphere still exist, o
also has instantons for which this is not so. We refer to th
as boundary jump instantons. It is essential to include the
latter in order to understand why the number of diaboli
points on theHx axis is reduced from 10 to 4.

More specifically, we have four instantons, labeled 1, 2
and 4 ~see Fig. 2!. The first two have no boundary jump
and are the ones that interfere as in Ref. 4. The third
fourth are boundary jump instantons. Hence

D5 (
k51

4

Dke
2Sk

cl
. ~2.27!

By proper choice of gauge, one can ensure that allDi are
real,S3

cl andS4
cl are real, and thatS2

cl5(S1
cl)* , D25D1. More

generally, the real parts ofS1
cl andS2

cl must be equal to each
other by symmetry, and the imaginary parts must be rela
by

S2
cl2S1

cl52iJF, ~2.28!

where F is half the area on the complexified unit sphe
enclosed by the closed loop formed by taking instanton
from n̂i to n̂f , and instanton 2 back ton̂i . Therefore, we can
write

D52D1e2ReS1
cl

cos~JF!1D3e2S3
cl
1D4e2S4

cl
. ~2.29!

All the quantities in this equation depend on the fieldHx .
We discover thatS3

cl,S4
cl for all fields. At low fields, ReS1

cl

,S3
cl , while at high fields, the inequality is reversed. Th
6-5
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two actions are equal ath050.25~see Fig. 3!. The prefactors
Di set the dimensional scale for the tunneling, and are g
erally equal to classical small oscillation frequencies in or
of magnitude. Thus we do not expect theDi to be very
different, and the relative importance of the different insta
tons is determined mainly by theSi . Hence, ignoring a very
small region in the immediate neighborhood ofh0, we can
write

D'H 2D1e2ReS1
cl

cos~JF!, h,h0

D3e2S3
cl
, h.h0 .

~2.30!

In particular, there will be no quenchings inD for hx.h0.
For hx,h0, quenching will occur whenF5(2n11)p/2J,
wheren is an integer.

FIG. 2. Schematic of instanton paths in Fe8. We show a portion
of real phase space~the real unit sphere! as a two-dimensiona
surface, that is embedded in complex phase space. The latt
four-dimensional, but we can only represent it as three dimensi
in this perspective drawing. The initial and final pointsi andf lie in
real phase space. Paths 1 and 2 start at these points, have no j
interfere with each other, and evolve smoothly as theC term in Eq.
~1.4! is turned on. Except at the end points these paths lie in c
plex phase space. Paths 3 and 4 possess jumps at the end poin
not interfere, and are obtained only whenCÞ0. These paths lie
entirely in complex phase space.

FIG. 3. Real parts of the actions vs the magnetic field for
four instantons in the Fe8 problem. Also shown is the energy spli
ting between the ground level pair. Forh.h0, instanton number 3
is the dominant one, and since it has no interfering partner,
splitting rises withh instead of oscillating.
05440
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III. ANALYSIS FOR Fe 8

A. Interfering instantons

We now turn to finding the instantons explicitly. For th
purpose, it is better to use a coordinate system havingz as
the hard axis andx as the easy axis. Introducing spheric
polar coordinatesu and f in the standard way, the energ
~expectation value of the Hamiltonian! in this frame is given
by

E~u,f!5l sin2u sin2f1cos2u22h cosu22l2~cos4u

1sin4u sin4f26 sin2u cos2u sin2f!. ~3.1!

The first step is to find the minimum of this energy. Setti
]E/]u and]E/]f to zero, we obtain

cosf sinf@24l2 sin2u cos2u28l2 sin4u sin2f12l sin2u#

50 ~3.2!

and

sinu@2lcosu sin2f22 cosu12h18l2 cos3u

28l2~sin2u sin2f16 sin2u21!cosu sin2f#50.

~3.3!

When these conditions are examined carefully, it is fou
that the minima occur whenf50,p and the expression in
the square brackets in the second equation is zero, i.e
f50,p and atu5u0 whereu0 obeys

cosu02h24l2 cos3u050. ~3.4!

The minimum energy is

Emin5cos2u022h cosu022l2 cos4u0 . ~3.5!

Sincez54l2h2!1 for all h, one can solve Eq.~3.4! pertur-
batively to get cosu05h14l2h

3 to first order inz. In the
same approximation,Emin52h222l2h4.

Next, let us find the instantons. The trajectory, i.e., t
path in phase space without regard to the time depende
can be found by exploiting energy conservation. With t
abbreviations

u5cosu, s5sinf, ~3.6!

the conditionE(u,f)5Emin can be written as

g~u,s!52 1
2 Z~s!u41R~s!u222hu1W~s!50, ~3.7!

where

Z~s!54l2~116s21s4!, ~3.8!

R~s!512ls2112l2s214l2s4, ~3.9!

W~s!5g01h21ls222l2s4, ~3.10!

with

g052h22Emin'2l2h41O~h6!. ~3.11!
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Equation~3.7! may be solved as a quartic equation foru(s).
Let us first consider only real values off, and thus ofs. It is
useful to sketchg(u,s) as a function ofu for real u, and
fixed s, remembering thatusu<1 ~see Fig. 4!. Consider first
the interval21<u<1, corresponding to points (u,f) on
the real unit sphere. Sinceg5E2Emin , it must be nonnega
tive in this interval. In fact, forsÞ0, it must bestrictly
positive, and fors50, it vanishes only at one point,u
5cosu0, where it has a double zero. Second,g→2` as u
→6`. It follows that for usu<1, g(u,s) always has exactly
two real rootsu(s), with uu(s)u.1. These roots cannot b
the instantons that tend to the true energy minima at
→6`. Those roots are the complex conjugate pair w
both real and imaginary parts.

For the complex roots letu5A1 iB with A andB being
real. From the imaginary part of Eq.~3.7! we obtain the
equation

22Z~A3B2AB3!12RAB22hB50, ~3.12!

while the real part yields

2 1
2 Z~A426A2B21B4!1R~A22B2!22hA1W50.

~3.13!

Since we are not interested in solutions with eitherA50 or
B50, Eq. ~3.12! implies that

B25A22~R/Z!1~h/AZ!. ~3.14!

Substituting this into Eq.~3.13!, we obtain an equation forA
alone,

4Z2A624RZA41~R212WZ!A22h250, ~3.15!

which is a cubic inA2.
When l250, Z(s)50, and Eq.~3.15! has the solution

A5h/R5h/(12l sin2f). We seek that solution of the cubi
which tends to this solution asl2→0. We can obtain this
approximately if we assume thatA5O(h). The termsZA4

FIG. 4. Plot ofg(u,s) vs u for variouss. The points to note are
that~i! except whens50, g has no zeros in the interval@21,1#, ~ii !
g always has two zeros outside this interval. Fors50, g has a
double zero at someuP@21,1#. The inset shows an enlarged vie
of g in the same interval.
05440
andZ2A6 are of orderz andz2, respectively, relative to the
remaining two terms in Eq.~3.15!. If we drop the former two
terms, the remaining equation is trivially solved to obtain

A5
h

~R212WZ!1/2
, ~3.16!

which is in fact of O(h). Thus, our assumption is self
consistently verified, and the solution has the correct beh
ior asl2→0.

Next we note that

R212WZ5P081P28 sin2f1P48 sin4f, ~3.17!

where we have unabbreviateds, and

P085118l2~h21g0!'~11z!2, ~3.18!

P28522l124l218ll2112z148l2g0 , ~3.19!

'22l124l218l2l112z16z2,
~3.20!

P485l218l2124ll21128l2
212z18l2g0 . ~3.21!

'l218l2124ll21281l2
212z1z2.

~3.22!

All three coefficients depend onh only through the combi-
nation z54l2h2, which is very small. If we neglect this
weak dependence, we getA'A0, where

A05
h

~11P2 sin2f1P4 sin4f!1/2
, ~3.23!

with

P2522l124l218l2l, ~3.24!

P45l218l2124ll21128l2
2 . ~3.25!

For completeness, we mention that it is possible to s
tematically obtain corrections toA in powers ofz, in the
form A01zA11•••. We do not carry out this exercise her
To see how good Eq.~3.23! is, we plot the real part of cosu
in Fig. 5. The dashed line is our approximation, and the so
line is obtained by numerically solvingE2Emin50 with the
numerically exact value ofEmin . In this plot,h is taken to be
0.2. It can be seen that the two curves agree very well.

With Eq. ~3.23!, we can now calculate the imaginary pa
of the tunneling action, and the Berry phase 2JF of Eq.
~2.28!. We have

F5E
0

p

~12A! df'@p2hI~l,l2!#, ~3.26!

where

I ~l,l2!5E
0

p 1

~11P2 sin2f1P4 sin4f!1/2
df.

~3.27!
6-7
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Various formulas for this integral are given in the Append
The quenching conditionJF5(n1 1

2 )p gives the diaboli-
cal points as

h5
~2J22n21!p

2JI
, ~3.28!

wheren is an integer. For Fe8 , I 53.88 as stated in Sec.
The observed diabolical points agree extremely well with E
~3.28!. In particular, Eq. ~3.28! gives the periodDH
50.409 T. The experimental period is 0.41 T.

We can now see why the diabolical points in Fe8 are so
regularly spaced. This is becauseA is linear inh to very good
approximation. Corrections to Eq.~3.28! can be found by
including the correctionA1. This may be important for the
new system in whichD oscillations are indicated.3

At this point, we could use Eq.~3.14! and our approxima-
tion A'A01zA1 to find B(f), and thus ReS1

cl . Since the
resulting analysis is not completely analytical, we forgo
and instead, solve for the instanton trajectory cosu(f) and
evaluate the integral for the actionS1 numerically. The in-
stantons are shown in Fig. 3 of Ref. 17, and the result
approximation forD is shown in Fig. 6. We do not know th
prefactorD1, but it is clear that it is a very good approxima
tion to take it to be independent ofH. It is also clear, how-
ever, that the interfering instantons cannot account for
behavior of D for h.h0. For that, we must turn to the
boundary jump instantons.

B. Boundary-jump „noninterfering… instantons

The instantons we have found above have the prope
~a! z̄i5zi* , zf5( z̄f)* , and ~b! H( z̄i ,zi)5H( z̄f ,zf)5Emin .

As discussed earlier, however, onlyzi and z̄f are fixed, and
one need not havez̄i5zi* or zf5( z̄f)* . Let us suppose tha
we start the evolution of the Euler-Lagrange equations~2.16!
from a point (z̄i ,zi), with z̄iÞzi* . Whatever this point is, it

follows from Eq.~2.20! that the energyH( z̄,z) must be con-
served along the trajectory, and must be equal toE

FIG. 5. Plot of Re cosu vs f for h50.2 and the Fe8 parameters.
The solid line is from an exact numerical solution ofg(u,s)50,
and the dashed line is approximation~3.23!.
05440
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5H(z̄i ,zi). Conversely, if the value ofE is known, we can

determine the possible values ofz̄i by solving the equation
H( z̄,zi)5E. For the non-boundary-jump instantons,E
5Emin . The issue is what value ofE we should use for the
instantons with jumps.

The answer is that we must takeE5Emin for the jump
instantons too. The easiest way to see this is in Klaud
formalism. His extra kinetic term is

SK8 54eE
0

T 1

~11 z̄z!2
zG żdt. ~3.29!

It is easy to write down the new Euler-Lagrange equatio
and see that energy is once again conserved. Suppose th
a boundary layer in the solution of the EL equations arou
t5t0. Since, ase→0, the boundary layer turns into a jump
and the extra kinetic energy vanishes for timest5t01 or
t02, the energy before and after the jump must be the sa

The problem of finding the boundary-jump instantons~in-
deed, all instantons! can therefore be posed as follows. L
the ‘‘classical’’ Hamiltonian H( z̄8,z) have minima at
(zi* ,zi), (zf* ,zf), and let its value at these points beEmin .

Then we find all possible values ofz̄i by solving the equation

H~ z̄,zi !5Emin . ~3.30!

This equation has a double root atz̄5zi* , since

]

] z̄
H~ z̄,z!Uz

i* ,zi
5

]

]z
H~ z̄,z!U

z
i* ,zi

50. ~3.31!

It may, however, have additional roots atz̄iÞzi* . These will
be the initial points of boundary jump instantons.~Final
points zf are obtained in exactly the same way by solvi
H( z̄f ,z)5Emin .) We then find all possible instantonsz̄(z) as
solutions to the equationH( z̄,z)5Emin , and identify which

FIG. 6. Tunnel splitting between ground level pair for mod
~1.4!, as computed by numerical diagonalization of the Hamilton
~solid line!, in the instanton approximation keeping only instanto
1 and 2~dotted line!, and in the instanton approximation with a
four instantons~dashed line!. We take all prefactorsDi to be equal
and independent ofh, and adjust the common value so as to obta
the correct answer forD at h50.
6-8
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solution connects on to which end point. The time dep
dence is not needed to compute the action. For, the kin
term can be written as

SK52JE
zi

zf 1

11zz̄~z!
Fz

dz̄

dz
2 z̄~z!Gdz ~3.32!

5 iJE
f̄ i

f̄ f
~12cosū !df̄, ~3.33!

the dynamical term equals

SD5EminT ~3.34!

for all instantons, and the boundary termSB depends only on
the boundary values, vanishing for the instantons with
jumps.

For our Fe8 Hamiltonian, the argument following Eqs
~3.7!–~3.11! shows that we have already found all the insta
tons without jumps. To find the jump instantons, let us fi
note that (u i5u0 , f i50), and (u f5u0 , f f5p). The con-
straints onzi and z̄f therefore reduce to

tan 1
2 ū ie

i f̄ i5tan 1
2 u0 , ~3.35!

tan 1
2 ū fe

2 i f̄ f52tan 1
2 u0 . ~3.36!

Because of the symmetry of the problem, solving either
these equations will be enough for deducing the solution
the other. Let us solve for the initial values. First, Eq.~3.35!
can be solved for sinf̄i to yield

sin2f̄ i52S cosū i2cosu0

sinū i sinu0
D 2

. ~3.37!

Substituting this formula and Eqs.~3.1! and ~3.5! into the
energy conservation conditionE( ū i ,f̄ i)5Emin yields

052lS cosū i2cosu0

sinu0
D 2

1~cos2ū i2cos2u0!

22h~cosū i2cosu0!22l2Fcosū i
41S cosū i2cosu0

sinu0
D 4

16 cos2ū i S cosū i2cosu0

sinu0
D 2

2cos4u0G . ~3.38!

We now eliminateh from this equation using Eq.~3.4!. After
some straightforward but lengthy algebra, we obtain

~cosū i2cosu0!2F12
l

sin2u0
22l2b~ ū i ,u0!G50,

~3.39!

where
05440
-
tic
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f
f

b~ ū i ,u0!5cos2ū i12 cosū i cosu013 cos2u0

1
~cosū i2cosu0!2

sin4u0

16
cos2ū i

sin2u0

. ~3.40!

There are four solutions to Eq.~3.39!. The first two are the
nonjump solutions, cosūi5cosu0. The other two, which are
the jump solutions obey

12
l

sin2u0
22l2b~ ū i ,u0!50. ~3.41!

This is a quadratic equation for cosūi . Forh,1 and smalll2

it is easy to check that in both solutions, cosūi is real and
greater than unity. Hence we may writeū i5 in0, wheren0 is
real. Equation~3.35! then shows thatf̄ i may be taken in the
form 1

2 p2 im0, with m0 real.
It is easy to see that Eqs.~3.38!–~3.41! continue to hold if

ū i is replaced byū f . Thus the possible values forū f are the
same as those forū i . Numbering the instantons in question
and 4, we have eitherū f

(3)5 ū i
(4) , or ū f

(3)5 ū i
(3) . Symmetry

suggests~and explicit numerics verifies! that the latter pos-
sibility is the correct one. If we then divide Eq.~3.36! by Eq.
~3.35!, we see thatf̄ f5p2f̄ i . Thus, the end points ar
related by the symmetry of reflection in the hard-mediu
plane, i.e., (Je ,Jm ,Jh)→(2Je ,Jm ,Jh), where the suffixese,
m, andh stand for easy, medium, and hard.

If we parametrizeū(t) and f̄(t) as in(t) and (p/2)
1 im(t), then it easy to verify from the equations of motio
that m(t) and n(t) stay real at allt. With this parametriza-
tion, the kinetic term in the action for instantons 3 and 4 m
be written as

SK5JE
2m0

m0
@coshn~m!21#dm, ~3.42!

which is real. The boundary contribution is

SB54J lnFcosh~n0/2!

cos~u0/2! G , ~3.43!

which is also real. Hence the total action for the jump insta
tons is real.

The explicit calculation of the actions must be done n
merically. We solve for the trajectories in the formn(m)
using energy conservation, making sure that the end po
are correct. All these calculations are done as a function oh.
The results forSk

cl have already been shown in Fig. 3. We c
also calculate the splitting using Eq.~2.30!, taking D3
5D1, and fixingD1 as before. The result is shown in Fig.
As can be seen, the agreement with the exact diagonaliza
is rather good. Thet-dependence ofJ for instanton number 3
is shown in Fig. 2 of Ref. 17. The jumps are evident in th
figure.

We have also carried out this exercise forC51.2
31025 K. The results are shown in Fig. 7. The general qu
ity of the instanton approach is again very good, but it
weaker near the point whereS3

cl5ReS1
cl . The obvious reason
6-9
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is that we have not considered the variation withh of the
prefactors, especiallyD3. If we decreaseC by yet another
factor of 4, Eq.~2.29! with a single,h-independent prefacto
D15D3, gives six quenching points instead of eight
found numerically. These considerations show that the p
actors are not always unimportant; at present, however,
only know how to find them for the nonjump instantons31

and their calculation for jump instantons is an open proble

C. Is the fourth-order anisotropy a singular perturbation?

In the previous subsection we showed that jump inst
tons exist for anyl2Þ0. The character of the least action
‘‘classical’’ paths for the problem is qualitatively altered b
the fourth order term in Eq.~1.4!, and from the point of view
of the semiclassical analysis, therefore, this term is a sing
perturbation. Viewed as a quantum mechanical opera
however, it is clear that the term is nonsingular; an infinite
mal nonzero value ofl2 cannot change the qualitative natu
of the energy spectrum. We therefore refer to the perturba
as quasisingular.

It follows from this consideration that a formal analysis
the instanton approach in thel2→0 limit will necessarily be
rather delicate. We describe briefly some analysis that sh
why this is so.

We focus on jump instanton number 3, as this is clea
the most important new contributor. For this instanton,
discover that

m05
1

2
lnS 11u0

12u0
D1O~l2!1/2, ~3.44!

where u05cosu0, which is given by Eq.~3.4!. Second, to
leading order inl2,

coshn5
1

A2 l2
F 12l cosh2m

116 cosh2m1cosh4mG1/2

. ~3.45!

Because of thisl2
21/2 dependence, the leading term in th

action S3
cl is also of orderl2

21/2. The next term is propor-
tional to J ln l2. While the latter is well behaved asl2→0
~remember thatScl must be exponentiated!, the former is not.
It is clear that there must be a cancellation due to a co

FIG. 7. Same as Fig. 3, but forC51.231025 K. In addition to
the splittingD obtained by numerical diagonalization of the Ham
tonian matrix~solid line!, we show the answer given by Eq.~2.29!
~dashed line! with all prefactors chosen to be equal, and adjusted
as to agree with the numerically computed splitting ath50.
05440
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sponding term inD3, but we have not attempted to find thi
This analysis shows that the success of our assumpt
about the scale andh-independence of the prefactors
somewhat fortuitous. However, this assumption is the nat
one in a semiclassical approach.

IV. NUMBER OF QUENCHING POINTS

A. Berry phase argument

That the tunnel splitting between two states vanishes
just another way of saying that the states are degenerate
magnetic fields at which such degeneracy occurs form a
of isolated points in the magnetic field space (Hx , Hy , Hz),
that are said to bediabolical, following Berry and
Wilkinson.32 Since these points are singularities of the e
ergy surface, there are strong constraints on their creatio
destruction as a perturbation is continuously varied. T
number of diabolical points on theHx50 axis is known
when C50; it is interesting to inquire how many may re
main whenC is turned on, and to pursue this inquiry fo
generalJ, not justJ510, and also consider fields in thexz
plane.33 ~Simple physical arguments show that there can
no degeneracy if there is a component of the field alongŷ.!

Let us first takeC50. With HyÞ0, in the standard rep
resentation of the spin operators, the matrix of the Ham
tonian is real. By a general theorem,34 the codimension of a
degenerate eigenvalue of a real Hermitean matrix is
Hence, the degeneracies must occur at isolated points in
Hx-Hz plane. WhenC is turned on, each one of these poin
must turn into a line in the three-dimensional (Hx ,Hz ,C)
space. The only two kinds of behaviors that are permitted
the theorem are shown in Fig. 8. The first kind, markeda, is
a diabolical point that continues on for ever. The seco
kind, markedb, shows that two distinct diabolical points i
theC50 plane actually lie on the same diabolical line in t
three-dimensional space.~Of course, a similar turnaround
could connect the two lines markeda and b for someC
,0, or the lineb could form a closed loop.!

o
FIG. 8. Trajectories of diabolical points under the influence

the fourth-order perturbation2C(J1
4 1J2

4 ) in Eq. ~1.4!. The num-
bers 0 and6p are the Berry phases associated with the adjac
contours.
6-10
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Is it possible for one of the diabolical lines to termina
abruptly? An argument based on Berry’s phase35 shows that
the answer is no. LetH now denote the two-dimensiona
vector (Hx ,Hz). Let two statesuc1(C,H)& and uc2(C,H)&
be degenerate atH5H0[(Hx0 ,Hz0) for some value ofC,
and let G be a small closed contour in theHx-Hz plane
around the pointH0. Berry’s phase, given by

g~G!5 i R
G
^c1~C,H!u¹Hc1~C,H!&, ~4.1!

equals6p if G encloses a diabolical point. Otherwise,g
50. Since a small change inC or H gives rise to a nonsin
gular perturbation of the Hamiltonian, the statec1(C,H) is a
smooth function ofC and H. Hence the integrand of Eq
~4.1! cannot change discontinuously under a continu
change ofC, and the integral must not change at all. Thus
contourG must continue to encircle a degeneracy at sm
nonzeroC if it did so at C50.

From this point of view, the behaviorb in Fig. 8 can arise
only if g has opposite values for the two diabolical points
C50. The Berry phase for a contourG2 encircling both
points is then 0, and it is possible that for larger values ofC,
the contour can be shrunk to a point without running into a
singularity. Plainly, this can happen only if the two poin
annihilate each other at someC. We can think of simply
slipping the contourG2 off the diabolical line by lifting it
above the hairpin bend in the figure.

It follows that diabolical points can only disappear
pairs. For the problem of interest to us, degeneracy betw
ground levels, the points are constrained to occur whenHz
50 ~consider the behavior of the Hamiltonian under a 18
rotation aboutx̂). Our analysis shows that with increasingC,
the points at largerHx are removed first. Since the quenchin
points for any value ofJ are located as given by Eq.~1.2!
when C50, it follows that whenCÞ0, the numberNq of
such points forHx.0 must depend onJ as follows:

2J Nq

4n even

4n11 even

4n12 odd

4n13 odd

~4.2!

The same number must occur forHx,0. And, if J is half-
integral, there must be a quenching point atHx50, consis-
tent with Kramer’s theorem. For Fe8 , J510 and Nq54,
which is consistent with these general rules.

B. Instanton based argument

Let us now see how our instanton analysis yields the sa
conclusion. For this, let us ignore the fourth instanton, a
write the amplitudes due to the remaining instantons
D112, and D3. By D112, we mean the contribution from
instantons 1 and 2, or whatever they evolve into when
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field becomes large.36 The keystone of our argument is th
relative sign of the two amplitudesD112 andD3, in particu-
lar, the fact that

sgn~D112!5sgn~D3! for largeh. ~4.3!

By ‘‘large h,’’ we mean thath is just less than the field
strength at which the two classical minima in the ener
merge into one. We shall not try and prove Eq.~4.3! with
mathematical rigor.37 Rather, we argue that it is physicall
plausible, for at such large fields, only spin orientations in
very small angular range are important, and one can use
Holstein-Primakoff, Villain, or any of a number of simila
mappings to approximate the spin operators in terms oQ
andP, position and momentum operators for a particle in o
dimension, The problem is thereby mapped on to a part
in a double well in one dimension, for which the splittin
never vanishes. Were Eq.~4.3! not true, it is conceivable tha
we could makeD1121D3 vanish by varying the relative
value ofC and (k12k2).

The second point is that the sign ofD3 should not change
with h, since instanton 3 acts alone and has a real action.
may therefore takeD3.0, so thatD3.0 for all h.

The third and last point is that the sign ofD112 at h50 is
now fixed by the requirement that this amplitude vanish
correct number of times between 0 and largeh. Readers can
verify that a correct assignment is obtained by taking

D11252D1e2ReS1
cl
cos~Jp!, ~h50!, ~4.4!

with D1.0.
The rest of the argument is simple. Continuing to igno

the fourth instanton, the conditionD50 can be rewritten as

D352D112 . ~4.5!

We now simply sketch both sides of Eq.~4.5! as a function
of h, keeping in mind the three points made above. This
done in Fig. 9 for all four classes ofJ listed in Eq.~4.2!. In
each case, it is obvious that the number of zeros,Nq , is
exactly as given in this equation. In particular, it is obvio
thatNq can change only in steps of two if the curve forD3 is
raised or lowered.38

V. CONCLUSION

We have shown that the instanton formalism for spin c
herent state path integrals requires the inclusion of instan
with discontinuities at the end points as a general mat

FIG. 9. Sketch of2D112 andD3 vs h for all four classes ofJ
listed in Eq.~4.2!. The quenching points are given by the interse
tions of these two curves. The key points to note in each case
the number of zeros ofD112 and the number of quenching point
6-11



ne

re
a
or

tio
is
, i

p
or

o
s

om
en
e
re

l
a
r

ra

il
r

,

.
t

in

l-

Eq.
-

ow

an
,

as
le

ch
fo

. B

,

ERSIN KEÇECIOĞLU AND ANUPAM GARG PHYSICAL REVIEW B 67, 054406 ~2003!
Such instantons are essential to understanding the mag
field dependence of the tunnel splitting in Fe8. We have
shown that with certain plausible assumptions about the p
actors, the instanton approximation can be quantitatively
curate. However, proper calculation of tunneling prefact
for the instantons with jumps remains an open problem.

Since jump instantons arise as a result of overspecifica
of boundary conditions, and since this overspecification
necessary consequence of the coherent state formulation
clear that similar instantons will in general be present inall
path integrals based on coherent states. For spin, such
integrals are unavoidable if one wishes to treat all spin
entations on an equal footing, and they are the only way
passing to the classical limit of the dynamics. This is not
for massive particles. Nevertheless, there may well be s
problems that are better formulated in terms of coher
states, and then one will have to be alert to the presenc
jump instantons. An explicit instance where this is so
mains to be found.
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APPENDIX: OSCILLATION PERIOD INTEGRAL

In this appendix, we provide some formulas for the osc
lation period integral~3.27!, which we reproduce here fo
convenience:

I ~l,l2!5E
0

p 1

~11P2 sin2f1P4 sin4f!1/2
df. ~A1!

For Fe8, the constantsP2 andP4 equal21.200 and 0.7576
respectively. The integrand is real with these numbers.

Let w be a complex number such that

w1w* 52P2 , ww* 5P4 . ~A2!

Then, using formula 2.616.1 of Ref. 39, we have
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0
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I 5
p

A12a
F12

3

16S b

12aD 2

1•••

1
~21!n

p S b

12aD 2n G~2n1 1
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G~2n11!

G~n1 1
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5
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