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We use a continuous-time path integral to obtain the semiclassical propagator for
minimal-spread spin coherent states. We pay particular attention to the “extra
phase” discovered by Solari and Kochetov, and show that this correction is related
to an anomaly in the fluctuation determinant. We show that, once this extra factor
is included, the semiclassical propagator has the correct short time behavior to
O(T?), and demonstrate its consistency under dissection of the path200©
American Institute of Physic§S0022-2488)0)01412-2

[. INTRODUCTION

Coherent-state path integrals for spin were introduced by Klauded by Kuratsuji and
Suzuki? Related phase space path integrals were introduced by Jevicki and Papanicoiaddoy
Nielsen and Rbrlich* For a review, see Refs. 5 and 6. These path integrals have attracted
attention in connection with geometric quantizatioand for providing examples hinting at pos-
sible infinite-dimensional extensions of the Duistermat—Heckman th&avamonditions for the
exactness of the stationary phase approximati@iRerhaps their most significant practical appli-
cations, however, have been in computations of spin tunneling in the semiclassical limit. Here the
spin path-integral formalism gives a good qualitative description of the tunneling prdcéss,
including the simplest and most vivid picture of the topological quenching of spin tuniteiivag
has recently been seen in the magnetic moleculeF&hen we require precise quantitative
results, however, the spin coherent-state path integral runs into problems: A straightforward ap-
plication of instanton methods to compute the tunnel splitfingyields answers that are incorrect
beyond the leading exponential ord@rA full derivation of the splitting, including the correct
prefactor, has only recently been provided by Belinicher, Providencia, and Provid@fitiase
authors showed that the continuum limit of the discrete path integral is rather delicate, and in their
computation the simplicity of the instanton method is lost. These difficulties have lead to the spin
path integral acquiring a reputation for being unreliable—or, even worse, being meaningful only
in its discrete-time forn?® Many workers in the field have sought alternatives to path integrals
such as discrete WKB methotfs. %

This paper is intended to effect a rehabilitation of the continuous-time spin coherent-state path
integral. We advertise and explain the origin of a previously discovered, but largely unknown,
correction to the naive form of the semiclassical propagator. This “extra phase” was obtained by
Solar?* as a result of a careful evaluation of the discrete path form of the path integral. It also
appears, as a product of a manipulation, apparently carried out for convenience, in a paper by
Kochetov?® We derive it here by pointing out that the functional determinant resulting from the
fluctuation integral about the classical path possesses an anomaly. Regulating the determinant in a
manner consistent with the underlying causal structure leads to the extra contribution.

The structure of the paper is as follows: In Sec. Il we review spin coherent states built on
highest- or lowest-weight spipstates. We focus primarily on their holomorphic properties. In
section three we review the properties of the classical action that appears in the path integral for
spin, stressing the importance of boundary terms in avoiding the overdetermination problem. In
Sec. IV we compute the gaussian integral over small fluctuations about the classical path, and
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obtain the extra-phase correction. In Sec. V we verify that, once the extra contribution is taken into
account, the semiclassical propagator has the correct short time behavior. This verification is
immediate at first order i, but the agreement between our expression and the exact result at
O(T?) provides a significant test of the correctness of our result. In Sec. VI we check the consis-
tency of the expression for the propagator under the dissection of the path. We find that our
semiclassical propagator doest pass this test unless we repartition terms between the exponent
and the prefactor. This forces us to regard the large parameter in the semiclassical expansion as
beingj + 1/2, rather than. As a by-product, this observation resolves the mystery of the divergent
normalization factor that appears in most treatments of the semiclassical propagator. Finally, in

Sec. VII, we compute the semiclassical propagator for the Hamiltdﬁian»Jg. We confirm that
our expression obtains the correct leading and next to leading terms in thg lexpansion.

Il. SPIN COHERENT STATES
We define a family of spin coherent stefteby

|2y =exp(zds)]j,—j)- (2.2)

These states are not normalized, but have the advantage of being holomorphic in the parameter

Consequently, matrix elements such(aéjf)lz) will be holomorphic functions of the variable
and antiholomorphic functions of the variakdée
The inner product of two of these states is

(Z'|2)=(1+7"2)%, (2.2

and the left eigenstate$,m| of J? andJ; have coherent-state wave functions,

(1)) 2j! e
Y’ (2)=(j,mz)= WZ’ : (2.3

This means that a general element of the gptfitbert space may be represented by a polynomial
in z of degreen<2j.

As with any family of generalized coherent states derived from a unitary irreducible repre-
sentation of a compact group, Shur’s lemma provides us with an overcompleteness relation. In the
present case this reads

2j+1

ks

1

d?z
f (1+?z)21+2|z><z|' (2-4)

Here 2 + 1 appears because it is the dimension of the representation. The syfatimkhorthand
for dx dy, and the factor 1/(3zz)? combines with this to make the invariant measure on the
coset SW2)/U(1). This coset is, of course, the two-sphe®8, equipped with stereographic coor-
dinates. The south pole, corresponding to spin down, =, while the north pole, spin up, is
at z=o—the one-point compactification of the complex plane. The remaining factor in the mea-
sure, 1/(zz)%, serves to normalize the states.

The wave functionsa’xﬁnl)(z) are singular at the north poles=. Indeed there is no actual state
|c) because the phase of this putative limiting state would depend on the direction from which we
approach the point at infinity. We may, however, define a second family of states

|2),=exp(zd.)

) (2.5

and form the wave functions,

P (2)=(j.m|z),. (2.6
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These states and wave functions are well defined in the vicinity of the north pole, but singular near
the south pole.
To find the relation betweer'?)(z) and #*)(z) we note that the matrix identity

1 zffo 1] [1 o[-z o0 ][1 -z*
0 1/[-1 o] [zt 1] 0 —zl}o 1] @7
coupled with the faithfulness of the spirrepresentation of S(@2), implies the relation
exp(z:]+)\/‘v=exp(z*1:],)(—2)233 exp(—z 13,), (2.9
whereWw=exp(mJ,) is the generator of the Weyl group of §). We also note that
Wi i)=(=D%i, i) Wi,—i)=li.i). (2.9

Thus,
YD) =(j,mle[j,— )
= (= 1)%(j, mleW|j j)
=(—1)2(j,mle” U-(—2)Pe 7 Vel )
=(~1)2(~2)%(j,mle* [}, j)
=y Y. (2.10

The coherent-state wave functiogt§) and 4#(2) may therefore be regarded as composing a single
global section,,,, of a holomorphic line bundle with transition functiad relating its compo-
nents 1#5]11)(2), and ng?)(gz 1/z) in the two coordinate patches. It is the requirement that the
transition function and its inverse be holomorphic and single valued in the overlap of the coordi-
nate patches that forceg 20 be an integer. In the sequel, all coherent states, unless otherwise
specified, will be drawn from the first familyz).

The above construction is an example of the Borel-Weil realization of representations of
compact groups as sections of holomorphic buntfids.serves as the paradigm for the more
general theory of geometric quantizatibff Because global analyticity is characteristic of the
minimal-spread coherent states built on highéstlowest) weight states, and also sergfa the
transition function to specify the Hilbert space, it is a property that should be maintained order-
by-order in any approximation scheme.

For physical interpretations we must normalize the coherent states. This we do by multiplying

them by
N(z,z)=(1+zz) ). (2.12
For example,
N34 2= 222 and N¥(23,|2)— 22 2.1
(@¥l2)=i=7. and NXZd.l==—"7. (212
If we recall the connection between stereographic and spherical polar coordinates,
. 0
z=e 'Y cot (2.13

2 ’

we see that

Downloaded 24 Jun 2003 to 132.239.69.7. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



8028 J. Math. Phys., Vol. 41, No. 12, December 2000 Stone, Park, and Garg

j——=jcosy, and =—=je '?sing 2.14
IZz+17) ’ zZ+1 no. @
We also note that

o) 152 . zz—1\? 1. [ 1 2 j

| <Z|‘]3|Z> J J 2 _ZZ 1 2J ] ] 2 Cos ¢ 2 (215)

Similarly,?®

j

N?(z|32|z)=] ( ji— %) sir? 6 cog ¢+

N|

R 1 j
N2<2|J§|z>=j<j—§)sin2 6 sir? ¢+J§. (2.16
ThusN%(z|3?|z)=j(j+1), as it should.

The normalized wave function$(z,z) z,//,(nl)(z) have their maximum amplitude on the lines of
latitude

j+m
2_ 2_
2= znf?= (2.17

corresponding to the polar angk,=cos nvj. Note that

Nzl Jslz >:-M:m (2.18
miv3l4m J|Zm|2+1 . .
The variance, in terms ah, is given by
1 7z-1\%| 1
2/32\ N4/ N2 — T _ — —
(N?(J3) —N*(J3)?) 21(1 (?z+1 51(1-cos ). (2.19

Since m~j cos#, the normalized wave functions have zonal spréatt1/\j. As j becomes
large the quantum spin becomes more localized, and more classical.

Ill. SPIN ACTION

We wish to find a semiclassical approximation for the propagator

K(Zr & T =(¢ile Mg (3.0

in the form

Kscl(zf i T) = Kreduced eXp{Scl(zf i ,T)}. (3.2

Here S, is the action for a classical path going from the pairt; to the pointz=¢; in time T.
The action functional is expected to be that appearing in the path integral representation of the
exact propagator. The amplitutte.q.ceq the pre-exponential factgris then given by a gaussian
approximation to the integral over deviations from the classical trajectory. Such a semiclassical
approximation should be accurate whieis large.

If a continuous-time path integral is “derived” by insertidgintermediate overcompleteness
relations into(3.1) and taking a formal limiN—o, then we find®
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()= [ MduE2ex SED 20}, 33
where the path measutu is
0 2+l dg,
du@t).2t)=tim 1] == =", (3.4

and the actior5(z(t),z(t)) is given by

77—77
1+7zz

i —iH(z2){dt. (3.5

— T
S(z(t),z(t)) = j{In(1+ £z(T)) +In(1+2(0) &) } + fo

Here the classical Hamiltoniaki(z,z), is related to the quantunﬁ by
H(Z,z)=(z|A|2)/(z|2). (3.6)

The pathsz(t), z(t) obey the boundary conditior|0)=¢;, z(T)={¢¢, butz(0), z(T), being
actuallyz(0+ €) andz(T— €), are unconstrained, and are to be integrated tver.

When we regards as the phase-space action for a classical sy3lahe explicit boundary
terms, which appear naturally in the discretized path integral, serve to ensure that both the first-
order Hamilton equations and their boundary conditions are compatible with the action principle.
To see this, make a general variation in the trajectory, including variations in the endpoints. We
find that

2jz(T 2jz(0
5S=—J_( ) Z(T +—17 )

1+ ¢z(T) 1+2(0)¢;

—I—fT 5Z(t)(Lz;—iﬁ
0 (14222 oz

There are no boundary contributions proportionabz90) or 6z(T) because of a cancellation of
such terms arising from an integration by parts against those arising from the variation of the
explicit boundary terms. Equating the variation of the action to zero therefore requires the classical
path to obey the Hamilton equations,

52(0)

+67(t ( 2z 'aH> dt (3.7
VA - — . .
) (1+z2)> gz

_ (1+z2?0H _ (1+72)%* 0H
T R TR

7 (3.8
together with boundary conditions that f¢0)=¢{;, andz(T) =Zf .

The quantitiez(0) andz(T) are not fixed by the boundary conditions, but can be found by
solving the equations of motion. If we know the action for the classical path, they can also be read
off from the Hamilton—Jacobi equations that follow fra@\7), viz.,

oSy 2jz(T) Sy 2jZ(0)

— —, . (3.9
iy 1+z(T) 96 1+2(0)¢

In generalz(0) WiII_not be the complex conjugate a{0)=¢;, nor will z(T) be the complex

conjugate ofz(T)={;. This means that if we writg asx+iy andz=x—iy, then, except in
special casess andy are not real numbers.
The Hamilton—Jacobi relations also tell us that
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dSq  9Sy
a{i agf

showing thatS; is a holomorphic function of;, and an antiholomorphic function @f. These
analyticity properties 08, coincide with those oK. This is reasonable since efpis the leading
approximation taK, and we would expect analyticity to be preserved term-by-term in the Jarge
expansion. Finally,

ISy

= =—iH(¢,2z(T)). (3.1

The leading semiclassical approximation is exact when the quantum Hamiltbhianan
element of the Lie algebra of $B). For example, ifH=wJ;, then
zz—-1

H(Zz)=N2<z|I:||z>=wj?Z+1 (3.12

and

H  2joz H  2jwz 31
9z (1+z22 dz (1+z2)% (313

The equations of motion are therefore
Z=iwz, z=—iwz. (3.19
The solutions obeying the appropriate boundary conditions are
2(t)=e"""'g;, Zt=e g, (3.19

SO

z2(M)=e Ty, Z(0)=e "T¢;. (3.16

It will only be in exceptional circumstances the(fT) = (¢)* or Z(0)=(£)*.
Inserting the solution$3.15 into the action we find

sd(Z,gi,T>=j{ln(1+Z§ie—‘wT>+In<1+Z§ie—‘wT>}+fT o i e dt
0 1+zz zz+1
=2jIn(1+¢5e N +ijwT. (3.17)
This is to be compared with the exact propagator
K:<§f|eiiﬁT|§i>:einT(1+eiinZf§i)2j:eXpScl- (3.18

When the Hamiltonian is a more general element of the enveloping al@iefra polynomial in
the generatojsthere will be corrections to this simple result.

IV. FLUCTUATION DETERMINANT

The prefactor in the semiclassical propagator comes from integration over Gaussian fluctua-
tions about the classical trajectory. To evaluate these, we consider the second variation of the

classical action, holding(0)=¢; andz(T) :Zf fixed. We will write
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S=S,+ 8S+ L 825+, 4.1
where

~ig+A B

5 9,4 A dt. 4.2

8%S=—i f T—ZZj 6z 5 (52
=—i o (1522 (6z 62) >
Here,

B 1( d (1+zz)? oH . d (1+z2)? aH)

“2ldz 2f 9z 9z 2j adz)

B d (1+zz)% oH
gz 2 dz

— 9 (1+z2)? H
B:_

R T 4.3

Whenz(t), z(t) are the classical path, theis=0.
On making a change of variables,

8z=(1+z2) 7,
6z=(1+zz) 7y, (4.9
we see that we have to compute the quadratic path integral

B id+A

(1 dt]. 4.5

7

T1
st | AlldTIexs) ~2if [ 57 )

This path integral is proportional to Det'?D, where the matrix differential operator

~ig+A B

D= — :
B idi+A

— — 030+ M (4.6)

is subject to the boundary conditiomg0)=0 and#z(T)=0. (We will use the symbol “Det” for
functional determinants and “det” to denote the determinant of a finite matrix. Similarly “Tr”
and “tr.”)

There are several subtleties involved in calculating DefThe most obvious is that the
boundary conditions imposed dnarenotin the class that make it self adjoint. Althou@ghand
DT are formally the same differential operator, self-adjointness requires, in addition, that their
domains of definition coincid®: It is not hard to see that the only boundary conditionZthat
leads to an identical boundary condition 1" is 7(0)=¢'%7(0) and7(T)=¢'%7(T) for some
real anglesdy, 6. Our 5(0)=0, 7(T)=0 boundary conditions are not in this class. Indeed, if
B=B=0 for example, therD with our boundary conditions ha® eigenfunctions—never mind
a complete set. The determinant cannot be expressed as an infinite product of eigenvalues, there-
fore. Diagonalizability is not, however, a fundamental requirement for defining a determinant.
There exists a well-defined Green functi@=D ~1, and we should be able to obtain the deter-
minant by varying the parameters and using the identity DetD=Tr{D ~16D}, which holds
even if D is not diagonalizable.

A potential pitfall in this approach is that the variationn DetD is given by
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SInDetD=Tr{D 16D}= thr{G(t,th}dt, (4.7)
0

but the Green functiofs(t,t’) is discontinuous at=t’. We might have a different expression for
the variation depending on whether we choose to evalGdtet) as G(t,t+¢€) or as G(t,t
—¢€). The jump inG is, however, proportional te3, and t{c3;6M}=0, so we have reason to
hope that there is no actual ambiguity.

If we agree to interpreG(t,t) as 3(G(t,t+€)+G(t,t—¢€)), then the formal calculation is
straightforwarcd®? and we merely summarize the results.

We begin by defining the matrix

d(t)= (4.8

77(t) ﬂo(t))
7r(t) (b))

Here the column vector#fy(t), 7,(t))" is a solution ofD¥ =0 obeying the boundary condition
70(0)=0, 70(0)=1, and (p+(t), 77(t))" is a solution withn+(T)=1, 7+(T)=0. The deter-
minant of ®(t) is an analog of the Wronskian and is independent.oWe find that DeD
=C det®, whereC is some constant independenttdf

Since detb is time independent, we may conveniently evaluate it=al, where

1 75o(T)
ClDetDz‘ _ =770(T), 4.9
0 T(T) 70(T) (4.9
or att=0, where
77(0) 0‘
C lDetD=|_ =75.(0). 4.1
7(0) 1 77(0) (4.10

By relaxing the conditions thag(T) =7%(0)= 1, we may interpret these results in terms of the
variation of the endpoints of the classical trajectory as we vary the initial points. That is,

-1
:(‘9’7_(”) | 411

a?(O))‘l
dn(0)

C_l DetD= (_—
an(T)

or, in terms of the original variables,

dz(T)
24

C lDetD=

— -1 —
1+Z(0)¢; (az(O)) 1+ 4T) w12

142\ a5 | 1470

The equivalence of these two expressions for the determinant is not immediately obvious, but
from the Hamilton—Jacobi relations,

dSq _ 2jz(T) Sy 2jz(0)

— — , , (4.13
a1+ 4z(T) 96 1+2(0)¢;
and the equality of mixed partials &, we obtain
9°S 2j oz(T 2j Jz(0
cl _ J ( ) _ J 7_) ' (4.14)

aale  (L+¢z(T))? 94 (1+20)4)° s

Both expressions i4.12) thus reduce to
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(1+4zZ(M)(L+Z0)E) %S

CDet 1D= —. (4.15
2] 22
Our calculation of the fluctuation determinant suggests, therefore, that
— ?((1+¢2(T)(L+Z0)g) 7Sy | 5
Ksol( {1,481, T)= 7] = —— | expSu({r.4T). (4.16

dLidLs

(The proportionality constant is fixed by the requirement that this expression redu¢&ssio
whenT=0.))

As indicated by the “?” over the equals sign, there are problems with this expression, and it
is not quite correct.

The first problem is that, despite the optimism expressed above, ithardegree of indeter-
minacy in the calculation of the functional determinant. To see this, make the substitution

n(t)—€'"Op(t),
7(t)—e Oo(t) (4.17

in the path integra(4.5). The measure is unchanged, but we repi&ceith D, whereD is the
matrix operatorD with

A—A=A+4,6,
B—B=e 2B,

B—B=g2pB, (4.189

The value of the path integral must be unaltered by this change of integration variables, but the
solution to

-ig+A B

_ ("(t))=o 4.19
B ig+A

7(t)

with 7(0)=0, 7(0)=1 is now @ '(?® =40y (1) e (? =007 (1))T. The determinant, as we
have calculated it, is thereforst invariant, but ends up multiplied by (N =9() Our expres-
sion for the functional determinant has an “anomaly” therefore.

The anomaly arises because the argument we made about the harmlessness of the discontinu-
ity in G depends on our defininG(t,t) asG(t,t* €) with the same choice of sigim front of the
e in both entries in the trace. If we examine the discrete version of path integral we see that, on the
contrary, one of the entries should be evaluated with a plus, and one with a minus. Our calculation
of the determinant assumed that we could inter@ét,t) as 3(G(t,t+¢€)+ G(t,t—€)), so our
formula for the determinant is only correct if both terms fotfdM} are separately zero. This will
only be the case for operatafswith A=0. Fortunately the discrete path integdalespermit the
change of variables described above, and we may use this freedom to force the diagonal entries,
A, to zero before computing the determinant. The correctly regulated functional determinant
therefore differs from its naive value by a multiplicative factor.

Including the correction to the fluctuation determinant, the semiclassical propagator becomes
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_ 1/2
— 1+ 4z(T)(1+Z(0)Z) %S, — i (T
Ksc(z;f,gi,n:(( M)+ 20)8) ') exp[sc.@f,gi,T>+'5foA<t>dt

2j ALl
(4.20
where
A 10 (1+Zz2%9H 9 (1+72)* oH 45
@5\% s wtm oz al) @20

is the coefficient appearing i#.3).

The maneuver of setting to zero before evaluating the fluctuation determinant appears
(although without explanation as to why it was necesgsamythe previously cited paper by
Kocheto® that provided part of the motivation for our present work. Kochetov therefore gets the
corrected expressiof#.20). It seems, however, that the “extra phasét’'is a phase only in the
simplest Case)s(i/Z)ng(t)dt, was first obtained by Sol&fifrom a careful evaluation of the
discrete determinant. Solari also pointed out the necessity of a similar correction in the harmonic
oscillator coherent-state path integral, which has a flat phase space. Kochetov’s discovery of the
correction seems to have been independent of this earlier work.

Because of the extra phagé,20 gives the correct, indeed exact, semiclassical propagator for
the caseéd = wJ,, and also for any Hamiltonian consisting (@ossibly time dependenelements
of the Lie algebra of S(2).2°

V. SHORT TIME ACCURACY

The Solari—-Kochetov phase also solves a second problem (4ifl§). In contrast to the
configuration space propagator, which diverges Bs'?, the coherent-state propagator
K(¢s,¢i,T) is analytic inT nearT=0. This is because of the finite spread of the coherent-state

wave functions. To first order iff we have

K(Zr & T =(¢le NI L)~ ) =TGR Gy = (Gl &Y A—=ITHE . 6. (B

(In the last equality we have exploited analyticity to observe that lhe _off-diag{qmla?lugi), is

obtained from the diagondk|H|¢) by the simple replacemeit—¢;, {—¢;.)
Now, from the Hamilton—Jacobi equation,

ScI . -
—— = —iH({;,2(T)), (5.2
we have
Sa(&s,&i T)=Su(¢s,4 0 —ITH(E,&) +O(T?), (5.3
while
Su(Z5,4,0)=2) IN(1+ ¢4 =In( ¢4 &) (5.4)

Thus, in order to get agreement betwedr20 and(5.1), the fluctuation determinant must make
no O(T) contribution to the propagator. A short calculation shows, however, that

(1+ (M) (1+Z(0)¢) ¢Sy

= =1-iTA(, L) +O(T?). (5.5
2j dlidls
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Fortunately this contribution is exactly canceled by @€T) contribution from the Solari—
Kochetov extra phase.

We now ask how well does the semiclassical propagator do at next order in the short-time
expansion. In order to provide a systematic grading for the terms, we will regard the Hamiltonian
H as beingd(j). The entire action is then homogeneous of degree opeWith this assumption,
and by analogy with the usual semiclassical expansion in powefis e expect that

1+0

K(Zf :gi 1T) = Kreduced eXp{Scl} :

] 56
=) 56

whereS, is O(j), while the prefactorK reguces is O(j°).
At short time the exact coherent-state propagator is certainly of this form. To demonstrate this,
expand

- R T .
(Ll ™2y = (Ll &) =TT HIG) — ?<gf|H2|§i>+'“ : (5.7

Now (Z¢|F|Z)=(&|ZYH(Z¢,&), but some work is needed to evaludtg|H?| ;).
Inserting an overcompleteness integral, we have

2

~ o 2j+1 d-z A -
(@lFla)= L [ (Al R )

_2j+1 d?z  din =2l
= f(1+?z)21+2(1+§fz) (1+z8)?H (&5, 2H(Z,6). (5.8

o

We now perform a steepest descent expansion in the integral over the intermediate states, and
obtain the first three terms in its asymptotic expansion in powers jof Tilis computation is
greatly simplified by using two shortcuts. First we need calculate only the diagonal matrix element
(§|I:|2|§>. Given this, we may appeal to analyticity and obtain the general matrix element by

setting{— ¢; and{—¢;. Next we rotate the sphere so as to center the coordinate system on the
point . Thus{— 0, and the coordinate system is locally geodetic. In these coordinates the saddle
point of thez integral is at{=z=0, and far fewer terms have to be taken into consideration.

To return to the original coordinates, we need to be able to recognize some -SS(Z?)
invariant combinations of derivatives and{%z)? factors.

One easily establishes that, under thebitis mapping,

,_az+b a b
z—7' = i d’ where | ¢|eSU?2), (5.9
we have
dz  d?Z 51
(1+22)> (1+7'7')* (19
together with
_ ,9f(z,2) 99(z,2) ot(z",2") 99(Z",2")
2 — 7 57\2
(1+zz2) 7z ra (1+2'2") Py 7
_ . 9*f(z,2) 9*1(z,'z")
2 — =7 57)2
(1+2z2) T2 (1+7'2) Pt (5.1)
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and that the combination
Z—ﬁ1+_2&f (91+_28_g 5.1
- az( 22) Jz a?( 22) 9z (512

is similarly invariant. Thus, when we see the te&ﬁqf&%g appearing in the expansion about the
stationary pointz=0, we realize that in the integral for the general matrix elenfaiitere the
saddle point is at=¢{;, Z=¢;) we should replace it by5.12).

Proceeding in this manner we find

. _ 1+¢:2)2% oH oH
<§f|H2|§i>:<§f|gi>[Hz(gfygi)‘f‘ﬂ__

2j I a¢
+ (i<1+2§->2ﬁ)(i<1+&->2‘9—H rol (5.13
22\ gz, T g \ac T T ag, i

The three terms in braces in this expression ar®@gf), O(j), and ofO(j°), respectively.
We may now re-exponentiaté.13 as

(1+¢¢£)2 oH 9H ]
- _+...

(e TGy —expl In(Z(]6)— ITH(Z, £)— =T H
22 g gy

X 1_T_2 L(i(1+z§)2iH (i(l-i—Z{)ZiH +e.
a 2p\ac o Nag T T g '
(5.19
Again using the Hamilton—Jacobi equation,
Sa =
oT —_|H(§f,Z(T)), (515)

and the equation of motion far(t), we may generate the Taylor series &(T). We immedi-
ately verify the term in the exponential is the classical actio®(d@?),

_ 1 (1+£:4)% 9H oH
SCI:|n<§f|§i>_iTH(§fvgi)_ETzﬂ__"FO(TS‘)- (5.16

2] agl &é’f

The expression in the square bracket$5ri4 must be the prefactor, and is manifesiyj?). It

is a little tedious to verify that our formula for the pre-exponential factor, including the Solari—
Kochetov correction, reduces to exactly this, but it is so. To collapse the terms, it helps to use the
identity,
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=2(1472)2 H +| (1472 2 °H 2+ 1+7 291 9 147z 2—(92H
B K 7 IR e ) KR 7
szt 1_252H+(91+_2(9H L (1+72)°2H
(1+2z2) 0z 9z ( ?) 920z ﬂz( 22) 0z (E( 22) iz )’
(5.17
which is most easily established by noting that all terms are invariant, armh @t both sides
reduce to
92 dH oH 51
P 518

The semiclassical expression, therefore, has errors of at @@st?) at short time. Our
expectation is, of course, that it has this degree of accuracy uniformly in

VI. CONSISTENCY

A further test of the correctness 6£.20 is to verify its consistency under dissection of the
classical trajectory. The exact propagator must satisfy the sewing condition

d?¢
(1+¢¢)2+2

— 2j+1 — —
K(gf,gi,tl'i‘tz): Jﬂ_ f K(gfifitZ)K(évgiitl)! (61)

which follows from the definition oK and the overcompleteness conditi@4). The semiclas-
sical approximation t&K should obey a similar condition, but with the exact integration over the
intermediate states replaced by a suitable stationary phase approximation.

SinceK g ~exps,, we begin with the relationship between the action for the total path from
{; to ¢, and the actions for the two segments frgpto the intermediate poirg, and fromé to
;. To eliminate the redundant intermediate-point boundary terms we must define

S(Zr,4 b+ t) =S(Er,E,t) + S(E,4,ty) — 2] IN(1+ €8). (6.2

We will write this compactly as

Sior= S+ S1— 2j In(1+ £¢). (6.3

In writing (6.2) we have tacitly assumed that our chosen staginfthe second path segment
coincides with the dynamically determined end pdiftt;) of the first path segment, and that the

dynamically determined startirft,) of the second path segment coincides with our ch@semd

point of the first path segment. This will not generally be the case—witlibe when¢, £ obey
the stationary-phase equations,

astot: &Stot:
I aE

0. (6.4)

Taking into account the analyticity properties ®f andS,, these are
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_0S(4r.6) 25¢
o 1+eE

0

oo P& 21¢
GE  1+EE

(6.9

Comparing (6.5 with the Hamilton—Jacobi equations confirms that z(t) and?;?(tl),

whereé;, & is the stationary phase point.
To evaluate the integral over small deviations from the classical stationary phase point, we set

E=&c+ 1y, E= £+ 7. We expand

So=Selt e s — A | _a(") 6.6
ot~ Stotl &, &, 2(1_‘_5&)2 77 5 1 o1k .
where
(1+E)? %S, , 1 — 9 _ 35
:—._+§c:_.(1+§c§c)t(l"_gcgc)Ty (6.7
T e JE, 0,
and
C(AHEEN S, o 10— 0S
B_Z—j (955 +§c_2_j(1+§c§c)a_§c(l+§cgc)a_§c- (68)

(The second equality in these equations uses the stationary phase equations.

We now put together two semiclassical propagators and perform the Gaussian integral over
the deviation from the stationary phase point. Using the semiclassical Solari-Kochetov form
(4.20 for the propagators on the right-hand side of Egyl), we get(with T=t;+t,),

comb—

2j+1 J d?zy
(1+ &)

X((HZz(T))(Hchc) 7S, (1+E£)(1+T0)E) PS, )”2 6o
2] FYI 2] GEIC] '

— i (T 1
exp| S +S,—2j In(1+&.60) + Ef Adt— 5528]
0

™

Notice that, as with consistency test of the ordinary Feynman path int€ghal,measure and the
prefactors, including the Solari-Kochetov “extra-phase” term, are all being treated as constants.
The integration involves only the variation of the classical action

o 1 - n
8?S=———(7, 7 — (6.10
(1+Ec&c)? -p 1 ]\7
and yields, along with other factors, the inverse square-root of the determinant
1 -«
D=| 5 1 (6.1

We now use the result, established in the Appendix, that
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«fsmt:u%_cgc)z 7S ¥ |1 —afl, 61
2qe 2] g0t 0E0g 1~ B L
to obtain
- 1/2
2j+1\ [ (1+Zz(T)(1+Z(0)¢) 9°Sye _ P T
N (( LT (A 70)) _su> exp{stm(zf,gi,TH—f il
2 2] Lot 2Jo
(6.13

The semiclassical approximation therefore reproduces itself except for a niggling factoy of (2
+1)/2j, which is due to a conflict between the normalization of the measure and tygp2aring
in the exponent.

Although this discrepant factor approaches unity in the Igrtienit, it is nonetheless disturb-
ing. Each of the infinitely many Gaussian integrations that constitute the semiclassical approxi-
mation to the path integral ought to be indistinguishable from our single Gaussian integration over
the intermediate poin§. We should, therefore, be able to dissect the path into arbitrarily many
parts without affecting the final answer. This is not currently so, and, in particular, the limit of
largej does not commute with the limit of a large number of intermediate points.

The origin of the discrepancy is not hard to find. In the lajdienit the effective radius of our
spherical phase space becomes large, and,z @y the spinj reproducing-kernel relation

2j+1 d’z L
= [ 1@ Bl =), (6.1
or more explicitly,
2j+1 d2z e o
™ f(1+?z)2(1+zz) A+ 5221+ ZL) = (1+ ()Y, 6.19

should contract to a suitably scaled version of its flat-phase-space analog,
dZZ - _
f —e Zehretli=gl2l, (6.16
aa

Because it is a Gaussian integral, the leading stationary phase “approximatié®. 18 is exact.
If we make the obvious largg estimates

(1+72) d~e 222 (14 (,z)8~ed6?  (1+7¢,) 8~ (6.17)

while regarding the sphere measuret{Zz) 2 as a prefactor, we do not get exactly
2j B —
7 dZZ 872JzzeZngze212§1:eZ]gzg“l’ (61&
an

but instead (2+1)/2j times this.

If we keep terms higher order in J/2both those coming from the measure and those from
going beyond the quadratic approximation to the exponent, they will of course correct the error.
What we really need, however, is a partitioning of the integral on the LH®.&b) such that the
leadingsteepest descent approximation will agree with the RHS. This will happen if we regard the
expansion parameter ag-21 and not 3. To see this, break up

2j+1 d?z =,
| = f 5(14+72) 2 (1+ £,2)P(1+2L,)? (6.19

T (1+2z2)
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as

2ji+1 2 _ _
| = J; f(ljfzz)zg1(22)6(21+1)Ing(z,z) (6.2@

with
9(Z,2)=(1+22) "Y1+ {,2)(1+2ZLy). (6.20)

The critical point of the function in the exponential isﬁtzz, z={,, and

9(L2.L0) =1+ 580, (6.22
_azlng B 1 6.23
920z =0,2=0 (1+{281)?
Thus,
LA L gnn f d2ze 121+ 1+ L)1 0 (-2
T (1+$0)°
I B S - SRy
(1+25¢80) —— (1+2,01) 7= (1+ 207 (6.29
T 2j+1

The leading term of the asymptotic expansion ah powers of 1/(32+ 1) is therefore exact.
This observation suggests rewriting the semiclassical approximatigna®

— 1 ﬁzéd v ~ — i T
KSC|(§f 1§i vT)_ \/ZJ—+1 (}lzf&é’l ex SC|(§f 1§i vT)+ E J;) th ’ (625)

whereS,=(2j+1)Sy/(2j), and

1

j

(1+2z2)? °H
2 Jz0z

+H(ZZ)) (6.26

is the term required to mak@.25 numerically equal td4.20).
With this repartitioning of terms between the exponent and the prefactor we have exactly the
same classical equations of motion, but now

2] d?y — -~ = ~ — 1 -~
Kcomb:_J' T(l"‘gcgc)ex Sl+32_(21)|n(1+§cfc)__5 S
T (14 Ecé)? 2

- ( 7S IS )mexp{i—Fth}, (6.27)
(2) \ 9gs0éc 9€0E; 270
where
T=i+3. (6.28
and
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2".’
5%5= )

=———(n, n)
(1+&:£0)° "

_B 1

(Z). (6.29
n

The quantitie§r and3 are obtained from Eq$6.7) and(6.8) by putting tildes or§;, S,, andj.
Note, though, thak =, and3= 3. Note also, thit we have inserted a factor of-(g.&.) in the
integral to compensate for the extra factor of{§¢) that was taken from the measure into the

exponential to complet&,,. Thus part of both the measure and the prefactor are varied in
determining the stationary phase, and get integrated over, while part is regarded as a constant.

The integration in Eq(6.27) can be done at once by noting that all equations in the Appendix
are unchanged if we put tildes on the actionsg, and 8 everywhere. In particular, the identity
(A9) holds with tildes. We thus obtain

1 <&T0t)1/2 p{,_ _ ) i JT d} 6.30
Keomb=——| — €Xx ol &6. 4, T+ = Qdt, 6.3
" \2j 1\ g S 2 Jo

all unwanted factors of 2+ 1 and (1+ £.£.), having canceled. Thus, with this form of stationary-
phase integration, the propagator reproduces itself exactly.

What this means is that the semiclassical approximation must be tacitly (&i2g in
making each of the many integrations that go into the Gaussian approximation to the path integral.
Once we realize this, we see that there is no need for the mysterious divergent normalization
factor, N'=limy_...(1+1/2j)N, that plagues most treatments of the semiclassical spin propagator.

The appearance ¢f+ 1/2 as the large parameter in the fluctuation integral has been remarked
on before by Ercolessit al3* and by Funahasht al>® The former worry that it is inconsistent to
include fluctuations of the measure in the Gaussian integral without also considering their effect in
the saddle point equations. In our case all terms that are being integrated over do appear also in the
equations determining the saddle point.

Note that the correctiof vanishes for Larmor precession whéte= wJs. In this case, as we
have seen earlier,

Sy=2j In(1+ ;e N +ij T, (6.31)
S is obtained from this by the substitutign-j + %, so

RS oot 2j+1

a4, (14 Le o2

(6.32

Thus,

1 (9% 1/2 L B B .
eS¢ 4 ,T):e—in/Z(lJrgfgie—in)—1(1+é,fgie—in)szeim(H 3)T

V2j+1\ agsa¢
:ein(l_l_zfgie—in)Zj’ (633

which is the exact answer.

VII. AN EXAMPLE: H=w»J3

As an application of the semiclassical formalism consl@]ervfl%. This Hamiltonian is time
reversal invariant, and we might worry that a hidden shiftj+1/2 would compromise the
Kramers degeneracy expected wtjeis the half-integral.
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The classical Hamiltonian correspondingtio= v3§ is

y @Al (. 1)(zz-1 2+1, .
(z2)= Zzy 7 2/\zz+1) T2 7.3
This should be compared with the “naive” classical Hamiltonian,
L[72-1\?
Hhaive™ V] ZZ+1] (7.2

which is what we would get if we simply expressed the classical direction-dependent energy
vj? co 6 in terms of the stereographic coordinatesn
The Hamiltonian(7.1) leads to the classical equations of motion

7=iw(z,2)z, z=-iw(Z,2)z, (7.3

where, withu = vj(j —1/2),
(2p)(zz-1 74
w(ZZ)— ]_ ZZ+1) ( . )

Since these equations imply the time independence of the praduetis itself time independent
and the solutions may be written down directly as

2)=e""g, AH=etN, (7.5
Here w is to be determined by the self-consistency condition,
2u\ [ e Tz -1
o= L (#) (7.6
/e Tgg+1

As we will see below, this equation has an infinite family of solutions. Here, we wish to consider
how various quantities scale wifh By demanding that Eq$7.3) continue to be meaningful as
j—, we see that we must haye=0(j), «=0(1), andv=0(1/}).

The classical action for the solutidid.5) is

2iweinZgi) o
—_— | —inw

_ o T
Sa(:¢i,T)=2j |n(1+ei'wT§f§i)+f j

0 l+eiinZf§i
P2
_ S 1
=2jIn(1+e T i) +iT{ jo+ —w’— =jv|. (7.7
Au 2

The apparently cosmetic rewrite in the last line leads to a useful way of looking at the problem.
Define

2
S, (46,8, T)=2jIn(1+e T ) +iT| jo+ i_,/"z}’ (7.9

where we regar@ as an independent variable. The equation

EN

o s —i0Ty »
98,(1.41.T) :m.[ e
2

dw e—imTzfgi+1

a)] (7.9
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then shows that the consistency condition @ns equivalent todS,/dw=0. We can also use

Sw(ff ,{;,T) to express the second variation®f required for the prefactok. By differentiating
the Jacobi equatiofB8.9) we have

PSy(Le .4\ T 2] az(T
(6D 2 (1) 710
Ll (1+4z(T))? 94
and from this we find, with Eq(7.5), that
PS¢, 4T 2j . . a
ool D 2 |e"“‘T+e"“‘T§i< —iT—w)]. (7.10)
28774 (1+4z(T))? ¢
We now differentiate the conditiodS,/dw=0 with respect ta;. This yields
9°S, . 9°S,, dw o 1
Aidw  dw AL (7.12

Using this result to eliminatedw/d¢;) in Eq. (7.11), we find, after a little algebra, that

-1

2 s in—ioT i A 2
d Scl(é,frgl ,T) _ 2]e ITJ ((9 Sw (713

L0, (1+z(T)? 2p | 90

Substituting Eqs(7.5), (7.7), and (7.13 into the basic semiclassical forii#.20 for the
propagator, we obtain

|TJ2 1/2 (925m -1/2 iT - i T
KscI:E (ﬂ) (07_(1)2_> exl{sw_f(w‘f'JV)'f'EJ‘OAdt]. (7.19

w

The sum ovemw is to be performed over all solutions to EG.6).
The utility of S,(¢,¢;,T) is not hard to understand. We are trying to evaluate

<§f|eingT|§i>:m_z_Jj (Zéi)i+mmnﬂ2!ﬁei”m, (7.19
while we already know that
s b 2j! .
(@le ™ Ma)= 2 @Ga " grmig=mie
= (L+e 1Tg )Pl
=expS,o(¢i. &, T), (7.16
where
Suo(&t i 0)=2] In(1+e T4 L) +iTj w. (7.17)

From the identity,

e 1T _a=i 7 A /4T er dwe=iemTeio?T/4y (7.18
TV ) -
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we have the exact relation

- . [T 0] i
<§f|e_'”J§T|§i>:e_l(W/4) 4771/[ da(¢ile %) el @ T
—g i (w4 | /LJ dwexo S (z ¢ w)+iw_2T
4y wO\6f 160 Ay
ity | T i —loTr 2y +i
e e dwexp 2jIn(1+e Tz ) +iT

Given the form of the classical actidid.?), that u~j2», and the occurrence ob{S,,/dw
in the prefactor, it is clear that the semiclassical approximation is attempting a stationary phase
approximation to this integral oves. That this approximation is indeed indicated can be seen by
evaluating ¢S, /dw?). From Eqs(7.9) and(7.6), we find

. w2
Jo+ E] }
(7.19

2) -12

dw®>  2u 2

s, iTj?2 1 i2w?
- 2( = “’), (7.20

— 4M2

which scales ag asj—oe.

We now write the exponent in E§7.19 asS,—iTjw?/8u. Since the second term &(j°)
asj—o0, we may regard it as part of the pre-exponential factor in carrying out the stationary phase
integral. In this way, we obtain

< 2 iT 1/2 aZSw -1/2 S TJwZ -
a2 |5, | Gpz|  SPS.TITg (7.2)

The pre-exponential factors in the preceding equation agree with those (i@.E4).to terms
of order unity. To see whether the exponents agree, we must discuss the effect of the Solari—
Kochetov phase. We find that

2\dz 2] oz ez 2] 9z T @ @7

1/ 0 (1+z2z)% oH a(1+?z)2aH) 4u 7z ( ;L> jw?
(7.22

The term in parentheses serves to caiiopl to O(1)] the second term in the exponent in Eq.
(7.14), and thej w?/4u term serves to corre@, as needed in Eq7.21). Thus our semiclassical
formula is indeed accurate up @(1) asj—o0, and we may be confident that spectral properties
(Kramers degeneracy in particulaterived from it by constructing, say, the Green’s function or
density of states, will be faithfully given.

Having demonstrated the formal equivalencégf; andK,.., We turn to the actual nature of
the solution. Let us first rewrite the self-consistency conditib®) as

w):ma, (7.23

ior+
2iot+In 15

whereo=jw/l2u, 7=uTl], anda=zf§i. In the limit 7—oo, the left-hand side 0f7.23 must
remain finite, suggesting that~ 1/7. A development in powers of 2/shows that we may write

_ ilna 1 (na)? s
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Since no restriction has been placed on which branch eof i to be taken, this solution is
infinitely multivalued, as asserted above. To leading order in different solutions differ by
additive amount® /7, wheren is an integer.

On the other hand, at=0, Eq.(7.23 has a unique solutiofig=(a—1)/(a+1). The appar-
ent contradiction with the earlier argument for an infinite number of solutions is resolved by
noting that if, asr— 0, we allow® to diverge as W, the left-hand side of7.23 again remains
finite. Another development in powers ofreveals that

in(—a) 2 8i
277 (e n(—aP” T (7.29

which is also multivalued on account of the infinitely many branches of &)(

We can gain further insight into the nature of the propagator and the valuesabfthe
relevant stationary-phase points by working with initial and final states on the equator of the
sphere,(;=€e'%, (;=e "%, Whenj is large, the problem should be essentially equivalent to a
massive particle constrained to move on a ring of circumferencelPwe write the Hamiltonian
for the latter ad >/2M, whereL is the orbital angular momentum, ai the mass, we expect the
results for the two problems to be similar wikh=2uv.

We start by considering the propagator for Larmor precession. Employing the leading large-
j estimate,

2t 20 (7.26
GrmiG-—m!  Jajo '

and using the shorthanlip= ¢ — ¢;, we may write

m=]j

<§f|efi‘”j3|§i>:m:2_j (&gt

il 2]
2] e iomT_g-ijA¢ 2 Z e—im(A¢+wT)e—m2/j_

G+miG—m)! Ja
(7.27

If T>j Y% w, the summand will have widely varying phases over the rangm eflues that
contributes to the sunim|~ \/j. By extending the sum oven to infinity and using the Poisson
summation formuldtaking care tham takes half-integer values whgns half integra), we find

<§f|e—iw33| §i>%e—ijA¢22jE o= (IM(A¢+oT-2mm)2y (-1, (7.28
n

where the & 1)" factor is present only whepis the half-integral. This form is better suited to
studying the largg limit (for fixed T). In that case(7.28), regarded as a function af, is sharply
peaked aw=w,=(27n—A ¢)/T. These are the angular frequencies that allow uniform preces-
sion betweenp; and ¢; in time T. We now recall that Eq(7.28 is nothing but exd,). If we
substitute this form into Eq7.19, and take into account the factor éwp’T/4v} in determing the
saddle-point frequencies, we find that they become complex

Wn= Wn

1 Ve + Lon 7.2
vT]j ~®n vTj’ (7.29

Not surprisingly, this is just what we found in E(..24). The result reflects the fact that, to move

at the required speed, the Hamiltonian trajectories must move off the equator. There is then no real

trajectgry between the classical end points, and we must exploit the freedom to have trajectories

where;#z(T)*. Whenj is large, however, Hamilton’s equations provide large velocitlese

to the equator, and the imaginary partsuofre correspondingly small. Performing the integration

in Eq. (7.19, we find
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. 2 - 1 ) .
<el¢f|e—IVTJZ|eI¢i>~22]e—IjA¢ l+ijVT)1 ; e~ (J/4)(A¢_27Tn)2/(1+ljVT)X(_l)n, (7.30

(

where, again, the last factor is only present wheis the half-integral. This form should be
compared with that for the massive particfe,

. 1 M(Ap—2nm)?
(¢f|e_"‘2T/2M|¢i>=m; eX| in®+i# . (7.31

We have incorporated an Aharonov—Bohm phésiato the result. This phase should bevhen
we compare with half-integer spins, and the resulting pairwise degeneracy of the energy levels is
the particle-on-a-ring analog of Kramers degeneracy.

The similarity between Eq$7.30 and(7.31) is evident. Notice how sets the time scale for
the crossover between the lar§ieegime, where the spin behaves essentially as a particle of mass
2v on the ring, and the short-time regime where the finite range of the coherent-state wave
functions cuts off the 3/T divergence.

Note that we have ignored the difference betwgéi? and v in the above comparison, since
as discussed while showing the equivalenc& gf andK ..., the error incurred is of order &/
relative to the leading term in the action. The semiclassical approximation therefore correctly
obtains the first two terms in the largeexpansion.

VIIl. DISCUSSION

In the previous sections we have used the continuous-time path integral to motivate a semi-
classical approximation to the coherent-state propagator forj sgitthough our derivation of the
semiclassical propagator is purely formal, and the resulting expression must initially have only the
status of a conjecture, we have demonstrated its correctness by verifying its short-time accuracy to
O(T?), and checking its consistency under dissection of the path. From these two properties we
may conclude that our expression is accurat®(¢®) uniformly in time.

In our derivation it was necessary to take into account an “anomaly” in the evaluation of the
functional determinant of the Jacobi operator. This is the only place where we had to appeal to
details of the discrete version of the path integral. Regulating the determinant in a manner con-
sistent with the discrete path integral results in a correction to the naive expression for the
prefactor. This correction had been noted before, by $8larid by Kocheto?® but its impor-
tance does not seem to have been widely appreciated.

We have also discussed an example where an infinite number of classical trajectories contrib-
ute to the propagator. Here we again saw how the Solari—Kochetov factor is essential in obtaining
the correct result.

A calculation of the Solari-Kochetov correction to the tunnel splitting between classically
degenerate spin states will be reported in a separate publication.

Note added in proofAfter we had completed this work, we became aware of a paper by
Vieira and Sacramentbthat also correctly identifies what we have called the Solari—-Kochetov
phase.
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APPENDIX: COMPOSITION OF PATH-DENSITY FACTORS

In this Appendix we derive6.12). We begin by restating the stationary phase conditiérts,

_IS(¢r.6)  25E

0 —,
23 1+ &€

ol P& 21¢

— —. (A1)
9E 1+¢&é

Consider how the first of these evolves as we \éryWe find that

ozi(ﬁ_ 2j¢, )

Al \ e 1+ &8,

_ S Pk 2% ok 2] &
0L0ge e 3l (L+EL? 0 (L+EL0)? 0l
7S, +¢9_§c<3232+ 2 &2 )_ 2 it
00E, 0Lr\ ke (L+EE)?]  (L+EL07 0l

(A2)

In the last line, we recognize the expression in parentheses tpAié(2 +€C§C)2, whereg is the
coefficient_appearing i06.6). By differentiating each of the two stationary phase conditions with

respect tals and{;, we get a total of four such equations. These may be summarized as

9€; & %S, 0
1 - i g E.£02 | agaL
( a) G| (re)?| 9 3
B 1/ ag, o 2] 0 7S,
2OTe 9L0&
Taking determinants, we obtain
9% O
1 - ¢ ézz T oeh 2 2
a - _f :(1+§cé;c) 3_51 (7_52 . (Ad)
B Lk 9k (2D7 9l agiog.
i At

We now recall that the Gaussian integration in E89) leads to the inverse-square root of the
precisely the first determinant in EGA4). This equation expresses this determinant in terms of the

second derivatives db; andS,, and the Jacobiaa(&..,&:)/d(¢; ,Z). The derivatives o, and
S, will cancel with the prefactors in Eq6.9), leaving only the Jacobian. We therefore turn to its
evaluation, and show that it can be written in terms of the second derivativgg ofith respect

to {; and ;. We expressS,, as

Siot= S+ S1— 2j In(1+ £¢), (A5)
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and take note of the fact that bogh and?C vary as we varff and/{;. We have

PSo 0 (asz G 20€ ot S 08 08y 2i& aEc)
LG 9L\ 96c 9L 1+ &g G 9g, 9L 9L 1+ g€ 9L
0[] 0% 20k (5) L8 2ig | sk
ag\ 98 | 96 1+ &g i)y ot 1+EE] 96

(AB)

The expressions in braces in the last line are the stationary phase conditions, so they are zero, as
are their derivatives. Thus,

_ S % (A7)
9EIL; It

PSor _ i(ﬁ)
£

aLeds; ALy )\ I

Taking note of the fact that the derivative $f with respect toZ; is at fixedgc, while we have

useful expressions for the derivative including the variatiort of we interchange the order of
differentiation, and write

PSot _ e[ 9 (a_sl) S, 0E,

iTon oG\ oG\ g a@ o

e a( 2j & )_(Ecazslaa

AL 96\ 1+ &8  aLp 982 9L
ﬁi( 2j, )_ﬂ_?ci 2iéc
azy i\ 1+ &) I8 9L\ 1+ &k,
S - (gﬁ_ig) (A8)
(1+é&c€)?\ ags 96 98 ag
In going from the second line to the third, we used one of the equations (#3m
Putting this together witliA4) yields
PSo (1+EE)? #S, &S |1 —a| no)
910 2] aggog. décas | —B 1

which is identical to Eq(6.12.
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