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We use a continuous-time path integral to obtain the semiclassical propagator for
minimal-spread spin coherent states. We pay particular attention to the ‘‘extra
phase’’ discovered by Solari and Kochetov, and show that this correction is related
to an anomaly in the fluctuation determinant. We show that, once this extra factor
is included, the semiclassical propagator has the correct short time behavior to
O(T2), and demonstrate its consistency under dissection of the path. ©2000
American Institute of Physics.@S0022-2488~00!01412-2#

I. INTRODUCTION

Coherent-state path integrals for spin were introduced by Klauder,1 and by Kuratsuji and
Suzuki.2 Related phase space path integrals were introduced by Jevicki and Papanicolaou,3 and by
Nielsen and Ro¨hrlich.4 For a review, see Refs. 5 and 6. These path integrals have attr
attention in connection with geometric quantization,7 and for providing examples hinting at pos
sible infinite-dimensional extensions of the Duistermat–Heckman theorem8 on conditions for the
exactness of the stationary phase approximation.9,10 Perhaps their most significant practical app
cations, however, have been in computations of spin tunneling in the semiclassical limit. He
spin path-integral formalism gives a good qualitative description of the tunneling process11–13

including the simplest and most vivid picture of the topological quenching of spin tunneling14 that
has recently been seen in the magnetic molecule Fe8.

15 When we require precise quantitativ
results, however, the spin coherent-state path integral runs into problems: A straightforwa
plication of instanton methods to compute the tunnel splitting16,17yields answers that are incorre
beyond the leading exponential order.18 A full derivation of the splitting, including the correc
prefactor, has only recently been provided by Belinicher, Providencia, and Providencia.19 These
authors showed that the continuum limit of the discrete path integral is rather delicate, and i
computation the simplicity of the instanton method is lost. These difficulties have lead to the
path integral acquiring a reputation for being unreliable—or, even worse, being meaningfu
in its discrete-time form.20 Many workers in the field have sought alternatives to path integ
such as discrete WKB methods.21–23

This paper is intended to effect a rehabilitation of the continuous-time spin coherent-stat
integral. We advertise and explain the origin of a previously discovered, but largely unkn
correction to the naive form of the semiclassical propagator. This ‘‘extra phase’’ was obtain
Solari24 as a result of a careful evaluation of the discrete path form of the path integral. It
appears, as a product of a manipulation, apparently carried out for convenience, in a pa
Kochetov.25 We derive it here by pointing out that the functional determinant resulting from
fluctuation integral about the classical path possesses an anomaly. Regulating the determin
manner consistent with the underlying causal structure leads to the extra contribution.

The structure of the paper is as follows: In Sec. II we review spin coherent states bu
highest- or lowest-weight spin-j states. We focus primarily on their holomorphic properties.
section three we review the properties of the classical action that appears in the path integ
spin, stressing the importance of boundary terms in avoiding the overdetermination proble
Sec. IV we compute the gaussian integral over small fluctuations about the classical pat
80250022-2488/2000/41(12)/8025/25/$17.00 © 2000 American Institute of Physics
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obtain the extra-phase correction. In Sec. V we verify that, once the extra contribution is take
account, the semiclassical propagator has the correct short time behavior. This verifica
immediate at first order inT, but the agreement between our expression and the exact res
O(T2) provides a significant test of the correctness of our result. In Sec. VI we check the c
tency of the expression for the propagator under the dissection of the path. We find th
semiclassical propagator doesnot pass this test unless we repartition terms between the expo
and the prefactor. This forces us to regard the large parameter in the semiclassical expan
being j 11/2, rather thanj . As a by-product, this observation resolves the mystery of the diver
normalization factor that appears in most treatments of the semiclassical propagator. Fina
Sec. VII, we compute the semiclassical propagator for the HamiltonianĤ5nJz

2 . We confirm that
our expression obtains the correct leading and next to leading terms in the large-j expansion.

II. SPIN COHERENT STATES

We define a family of spin coherent states26 by

uz&5exp~zĴ1!u j ,2 j &. ~2.1!

These states are not normalized, but have the advantage of being holomorphic in the paramz.
Consequently, matrix elements such as^z8uÔuz& will be holomorphic functions of the variablez,
and antiholomorphic functions of the variablez8.

The inner product of two of these states is

^z8uz&5~11 z̄8z!2 j , ~2.2!

and the left eigenstates^ j ,mu of Ĵ2 and Ĵ3 have coherent-state wave functions,

cm
(1)~z![^ j ,muz&5A 2 j !

~ j 2m!! ~ j 1m!!
zj 1m. ~2.3!

This means that a general element of the spin-j Hilbert space may be represented by a polynom
in z of degreen<2 j .

As with any family of generalized coherent states derived from a unitary irreducible re
sentation of a compact group, Shur’s lemma provides us with an overcompleteness relation
present case this reads

15
2 j 11

p E d2z

~11 z̄z!2 j 12 uz&^zu. ~2.4!

Here 2j 11 appears because it is the dimension of the representation. The symbold2z is shorthand
for dx dy, and the factor 1/(11 z̄z)2 combines with this to make the invariant measure on
coset SU~2!/U~1!. This coset is, of course, the two-sphere,S2, equipped with stereographic coo
dinates. The south pole, corresponding to spin down, is atz50, while the north pole, spin up, is
at z5` –the one-point compactification of the complex plane. The remaining factor in the
sure, 1/(11 z̄z)2 j , serves to normalize the states.

The wave functionscm
(1)(z) are singular at the north pole,z5`. Indeed there is no actual sta

u`& because the phase of this putative limiting state would depend on the direction from whi
approach the point at infinity. We may, however, define a second family of states

uz&25exp~zĴ2!u j , j &, ~2.5!

and form the wave functions,

cm
(2)~z!5^ j ,muz&2 . ~2.6!
d 24 Jun 2003 to 132.239.69.7. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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These states and wave functions are well defined in the vicinity of the north pole, but singula
the south pole.

To find the relation betweenc (2)(z) andc (1)(z) we note that the matrix identity

F1 z

0 1GF 0 1

21 0G5F 1 0

z21 1GF2z 0

0 2z21GF1 2z21

0 1 G , ~2.7!

coupled with the faithfulness of the spin-1
2 representation of SU~2!, implies the relation

exp~zĴ1!ŵ5exp~z21Ĵ2!~2z!2Ĵ3 exp~2z21Ĵ1!, ~2.8!

whereŵ5exp(ipĴ2) is the generator of the Weyl group of SU~2!. We also note that

ŵu j , j &5~21!2 j u j ,2 j &, ŵu j ,2 j &5u j , j &. ~2.9!

Thus,

cm
(1)~z!5^ j ,muezĴ1u j ,2 j &

5~21!2 j^ j ,muezĴ1ŵu j , j &

5~21!2 j^ j ,muez21Ĵ2~2z!2Ĵ3e2z21Ĵ1u j , j &

5~21!2 j~2z!2 j^ j ,muez21Ĵ2u j , j &

5z2 jcm
(2)~z21!. ~2.10!

The coherent-state wave functionscm
(1) andcm

(2) may therefore be regarded as composing a sin
global section,cm , of a holomorphic line bundle with transition functionz2 j relating its compo-
nentscm

(1)(z), and cm
(2)(z[1/z) in the two coordinate patches. It is the requirement that

transition function and its inverse be holomorphic and single valued in the overlap of the co
nate patches that forces 2j to be an integer. In the sequel, all coherent states, unless othe
specified, will be drawn from the first family,uz&.

The above construction is an example of the Borel–Weil realization of representatio
compact groups as sections of holomorphic bundles.27 It serves as the paradigm for the mo
general theory of geometric quantization.7,28 Because global analyticity is characteristic of t
minimal-spread coherent states built on highest-~or lowest-! weight states, and also serves~via the
transition function! to specify the Hilbert space, it is a property that should be maintained o
by-order in any approximation scheme.

For physical interpretations we must normalize the coherent states. This we do by multi
them by

N~ z̄,z!5~11 z̄z!2 j . ~2.11!

For example,

N2^zuĴ3uz&5 j
z̄z21

z̄z11
, and N2^zuĴ1uz&5

2 j z̄

z̄z11
. ~2.12!

If we recall the connection between stereographic and spherical polar coordinates,

z5e2 if cot
u

2
, ~2.13!

we see that
d 24 Jun 2003 to 132.239.69.7. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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j
z̄z21

z̄z11
5 j cosu, and

2 jz

z̄z11
5 je2 if sinu. ~2.14!

We also note that

N2^zuĴ3
2uz&5 j S j 2

1

2D S z̄z21

z̄z11D 2

1
1

2
j 5 j S j 2

1

2D cos2 u1
j

2
. ~2.15!

Similarly,29

N2^zuĴ1
2uz&5 j S j 2

1

2D sin2 u cos2 f1
j

2
,

N2^zuĴ2
2uz&5 j S j 2

1

2D sin2 u sin2 f1
j

2
. ~2.16!

ThusN2^zuĴ2uz&5 j ( j 11), as it should.
The normalized wave functionsN( z̄,z)cm

(1)(z) have their maximum amplitude on the lines
latitude

uzu25uzmu25
j 1m

j 2m
~2.17!

corresponding to the polar angleum5cos21 m/j. Note that

N2^zmuĴ3uzm&5 j
uzmu221

uzmu211
5m. ~2.18!

The variance, in terms ofm, is given by

~N2^Ĵ3
2&2N4^Ĵ3&

2!5
1

2
j S 12S z̄z21

z̄z11D 2D5
1

2
j ~12cos2 u!. ~2.19!

Since m; j cosu, the normalized wave functions have zonal spreadDu;1/Aj . As j becomes
large the quantum spin becomes more localized, and more classical.

III. SPIN ACTION

We wish to find a semiclassical approximation for the propagator

K~ z̄ f ,z i ,T!5^z f ue2 iĤ Tuz i& ~3.1!

in the form

Kscl~ z̄ f ,z i ,T!5K reduced•exp$Scl~ z̄ f ,z i ,T!%. ~3.2!

HereScl is the action for a classical path going from the pointz5z i to the pointz5z f in time T.
The action functional is expected to be that appearing in the path integral representation
exact propagator. The amplitudeK reduced, thepre-exponential factor, is then given by a gaussia
approximation to the integral over deviations from the classical trajectory. Such a semicla
approximation should be accurate whenj is large.

If a continuous-time path integral is ‘‘derived’’ by insertingN intermediate overcompletenes
relations into~3.1! and taking a formal limitN→`, then we find25
d 24 Jun 2003 to 132.239.69.7. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



e first-
ciple.
s. We

f
of the
ssical

by
e read

8029J. Math. Phys., Vol. 41, No. 12, December 2000 Semiclassical propagator for spin

Downloade
K~ z̄ f ,z i ,T!5E
z i

z̄ f dm~ z̄,z!exp$S~ z̄~ t !,z~ t !!%, ~3.3!

where the path measuredm is

dm~ z̄~ t !,z~ t !!5 lim
N→`

)
n51

N
2 j 11

p

d2zn

~11 z̄nzn!2 j 12 , ~3.4!

and the actionS( z̄(t),z(t)) is given by

S~ z̄~ t !,z~ t !!5 j $ ln~11 z̄ fz~T!!1 ln~11 z̄~0!z i !%1E
0

TH j
zGz2 z̄ż

11 z̄z
2 iH ~ z̄,z!J dt. ~3.5!

Here the classical Hamiltonian,H( z̄,z), is related to the quantumĤ by

H~ z̄,z!5^zuĤuz&/^zuz&. ~3.6!

The pathsz(t), z̄(t) obey the boundary conditionsz(0)5z i , z̄(T)5 z̄ f , but z̄(0), z(T), being
actually z̄(01e) andz(T2e), are unconstrained, and are to be integrated over.25

When we regardS as the phase-space action for a classical system,30 the explicit boundary
terms, which appear naturally in the discretized path integral, serve to ensure that both th
order Hamilton equations and their boundary conditions are compatible with the action prin
To see this, make a general variation in the trajectory, including variations in the endpoint
find that

dS5
2 jz~T!

11 z̄ fz~T!
d z̄~T!1

2 j z̄~0!

11 z̄~0!z i

dz~0!

1E
0

TH dz~ t !S 2 jzG

~11 z̄z!2
2 i

]H

]z
D 1d z̄~ t !S 2

2 j ż

~11 z̄z!2
2 i

]H

] z̄
D J dt. ~3.7!

There are no boundary contributions proportional tod z̄(0) or dz(T) because of a cancellation o
such terms arising from an integration by parts against those arising from the variation
explicit boundary terms. Equating the variation of the action to zero therefore requires the cla
path to obey the Hamilton equations,

zG5 i
~11 z̄z!2

2 j

]H

]z
, ż52 i

~11 z̄z!2

2 j

]H

] z̄
, ~3.8!

together with boundary conditions that fixz(0)5z i , and z̄(T)5 z̄ f .
The quantitiesz̄(0) andz(T) are not fixed by the boundary conditions, but can be found

solving the equations of motion. If we know the action for the classical path, they can also b
off from the Hamilton–Jacobi equations that follow from~3.7!, viz.,

]Scl

]z̄ f

5
2 jz~T!

11 z̄ fz~T!
,

]Scl

]z i

5
2 j z̄~0!

11 z̄~0!z i

. ~3.9!

In generalz̄(0) will not be the complex conjugate ofz(0)[z i , nor will z(T) be the complex
conjugate ofz̄(T)[z̄ f . This means that if we writez as x1 iy and z̄5x2 iy , then, except in
special cases,x andy are not real numbers.

The Hamilton–Jacobi relations also tell us that
d 24 Jun 2003 to 132.239.69.7. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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]Scl

]z̄ i

5
]Scl

]z f
50, ~3.10!

showing thatScl is a holomorphic function ofz i , and an antiholomorphic function ofz f . These
analyticity properties ofScl coincide with those ofK. This is reasonable since expScl is the leading
approximation toK, and we would expect analyticity to be preserved term-by-term in the larj
expansion. Finally,

]Scl

]T
52 iH ~ z̄ f ,z~T!!. ~3.11!

The leading semiclassical approximation is exact when the quantum HamiltonianĤ is an
element of the Lie algebra of SU~2!. For example, ifĤ5v Ĵ3 , then

H~ z̄,z!5N2^zuĤuz&5v j
z̄z21

z̄z11
~3.12!

and

]H

]z
5

2 j v z̄

~11 z̄z!2 ,
]H

] z̄
5

2 j vz

~11 z̄z!2 , ~3.13!

The equations of motion are therefore

zG5 iv z̄, ż52 ivz. ~3.14!

The solutions obeying the appropriate boundary conditions are

z~ t !5e2 ivtz i , z̄~ t !5eiv(t2T)z̄ f , ~3.15!

so

z~T!5e2 ivTz i , z̄~0!5e2 ivTz̄ f . ~3.16!

It will only be in exceptional circumstances thatz(T)5( z̄ f)* or z̄(0)5(z i)* .
Inserting the solutions~3.15! into the action we find

Scl~ z̄ f ,z i ,T!5 j $ ln~11 z̄ fz ie
2 ivT!1 ln~11 z̄ fz ie

2 ivT!%1E
0

TH i j v
2z̄z

11 z̄z
2 i j v

z̄z21

zz11J dt

52 j ln~11 z̄ fz ie
2 ivT!1 i j vT. ~3.17!

This is to be compared with the exact propagator

K5^z f ue2 iĤ Tuz i&5eiv jT~11e2 ivTz̄ fz i !
2 j5expScl . ~3.18!

When the Hamiltonian is a more general element of the enveloping algebra~i.e., a polynomial in
the generators! there will be corrections to this simple result.

IV. FLUCTUATION DETERMINANT

The prefactor in the semiclassical propagator comes from integration over Gaussian fl
tions about the classical trajectory. To evaluate these, we consider the second variation
classical action, holdingz(0)5z i and z̄(T)5 z̄ f fixed. We will write
d 24 Jun 2003 to 132.239.69.7. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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S5Scl1dS1 1
2 d2S1¯ , ~4.1!

where

d2S52 i E
0

T 2 j

~11 z̄z!2 ~d z̄ dz!F2 i ] t1A B

B̄ i ] t1AG S dz
d z̄Ddt. ~4.2!

Here,

A5
1

2 S ]

] z̄

~11 z̄z!2

2 j

]H

]z
1

]

]z

~11 z̄z!2

2 j

]H

] z̄ D ,

B5
]

] z̄

~11 z̄z!2

2 j

]H

] z̄
,

B̄5
]

]z

~11 z̄z!2

2 j

]H

]z
. ~4.3!

Whenz(t), z̄(t) are the classical path, thendS50.
On making a change of variables,

dz5~11 z̄z!h,

d z̄5~11 z̄z!h̄, ~4.4!

we see that we have to compute the quadratic path integral

K reduced}E d@h#d@h̄#expH 22i j E
0

T 1

2
~ h̄ h!F2 i ] t1A B

B̄ i ] t1AG S h
h̄ DdtJ . ~4.5!

This path integral is proportional to Det2 1/2D, where the matrix differential operator

D5F2 i ] t1A B

B̄ i ] t1AG52 is3] t1M ~4.6!

is subject to the boundary conditionsh(0)50 andh̄(T)50. ~We will use the symbol ‘‘Det’’ for
functional determinants and ‘‘det’’ to denote the determinant of a finite matrix. Similarly ‘‘T
and ‘‘tr.’’ !

There are several subtleties involved in calculating DetD. The most obvious is that the
boundary conditions imposed onD arenot in the class that make it self adjoint. AlthoughD and
D † are formally the same differential operator, self-adjointness requires, in addition, that
domains of definition coincide.31 It is not hard to see that the only boundary condition onD that
leads to an identical boundary condition forD † is h(0)5eiu0h̄(0) andh(T)5eiuTh̄(T) for some
real anglesu0 , uT . Our h(0)50, h̄(T)50 boundary conditions are not in this class. Indeed
B5B̄50 for example, thenD with our boundary conditions hasno eigenfunctions—never mind
a complete set. The determinant cannot be expressed as an infinite product of eigenvalue
fore. Diagonalizability is not, however, a fundamental requirement for defining a determi
There exists a well-defined Green functionG5D 21, and we should be able to obtain the det
minant by varying the parameters and using the identityd ln DetD5Tr$D 21dD%, which holds
even if D is not diagonalizable.

A potential pitfall in this approach is that the variationd ln DetD is given by
d 24 Jun 2003 to 132.239.69.7. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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d ln DetD5Tr$D 21dD%5E
0

T

tr$G~ t,t !dM %dt, ~4.7!

but the Green functionG(t,t8) is discontinuous att5t8. We might have a different expression fo
the variation depending on whether we choose to evaluateG(t,t) as G(t,t1e) or as G(t,t
2e). The jump inG is, however, proportional tos3 , and tr$s3dM %[0, so we have reason t
hope that there is no actual ambiguity.

If we agree to interpretG(t,t) as 1
2(G(t,t1e)1G(t,t2e)), then the formal calculation is

straightforward,32 and we merely summarize the results.
We begin by defining the matrix

F~ t !5S hT~ t ! h0~ t !

h̄T~ t ! h̄0~ t !
D . ~4.8!

Here the column vector (h0(t), h̄0(t))T is a solution ofDC50 obeying the boundary conditio
h0(0)50, h̄0(0)51, and (hT(t), h̄T(t))T is a solution withhT(T)51, h̄T(T)50. The deter-
minant of F(t) is an analog of the Wronskian and is independent oft. We find that DetD
5C detF, whereC is some constant independent ofH.

Since detF is time independent, we may conveniently evaluate it att5T, where

C21 DetD5U1 h0~T!

0 h̄0~T!
U5h̄0~T!, ~4.9!

or at t50, where

C21 DetD5UhT~0! 0

h̄T~0! 1
U5hT~0!. ~4.10!

By relaxing the conditions thath(T)5h̄(0)51, we may interpret these results in terms of t
variation of the endpoints of the classical trajectory as we vary the initial points. That is,

C21 DetD5S ]h̄~0!

]h̄~T! D
21

5S ]h~T!

]h~0! D
21

, ~4.11!

or, in terms of the original variables,

C21 DetD5
11 z̄~0!z i

11 z̄ fz~T!
S ] z̄~0!

]z̄ f
D 21

5
11 z̄ fz~T!

11 z̄~0!z i
S ]z~T!

]z i
D 21

. ~4.12!

The equivalence of these two expressions for the determinant is not immediately obviou
from the Hamilton–Jacobi relations,

]Scl

]z̄ f

5
2 jz~T!

11 z̄ fz~T!
,

]Scl

]z i

5
2 j z̄~0!

11 z̄~0!z i

, ~4.13!

and the equality of mixed partials ofScl , we obtain

]2Scl

]z i]z̄ f

5
2 j

~11 z̄ fz~T!!2

]z~T!

]z i

5
2 j

~11 z̄~0!z i !
2

] z̄~0!

]z̄ f

. ~4.14!

Both expressions in~4.12! thus reduce to
d 24 Jun 2003 to 132.239.69.7. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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C Det21 D5
~11 z̄ fz~T!!~11 z̄~0!z i !

2 j

]2S

]z i]z̄ f

. ~4.15!

Our calculation of the fluctuation determinant suggests, therefore, that

Kscl~ z̄ f ,z i ,T!5
? S ~11 z̄ fz~T!!~11 z̄~0!z i !

2 j
]2Scl

]z i]z̄ f
D 1/2

expScl~ z̄ f ,z i ,T!. ~4.16!

~The proportionality constant is fixed by the requirement that this expression reduces to^z f uz i&
whenT50.!

As indicated by the ‘‘?’’ over the equals sign, there are problems with this expression, a
is not quite correct.

The first problem is that, despite the optimism expressed above, thereis a degree of indeter-
minacy in the calculation of the functional determinant. To see this, make the substitution

h~ t !→eiu(t)h~ t !,

h̄~ t !→e2 iu(t)h̄~ t ! ~4.17!

in the path integral~4.5!. The measure is unchanged, but we replaceD with D̃, whereD̃ is the
matrix operatorD with

A→Ã5A1] tu,

B→B̃5e22iu(t)B,

B̄→B! 5e2iu(t)B̄. ~4.18!

The value of the path integral must be unaltered by this change of integration variables, b
solution to

F2 i ] t1Ã B̃

B! i ] t1Ã
G S h~ t !

h̄~ t ! D50 ~4.19!

with h(0)50, h̄(0)51 is now (e2 i (u(t)2u(0))h0(t),ei (u(t)2u(0))h̄0(t))T. The determinant, as we
have calculated it, is thereforenot invariant, but ends up multiplied bye2 i (u(T)2u(0)). Our expres-
sion for the functional determinant has an ‘‘anomaly’’ therefore.

The anomaly arises because the argument we made about the harmlessness of the dis
ity in G depends on our definingG(t,t) asG(t,t6e) with thesame choice of signin front of the
e in both entries in the trace. If we examine the discrete version of path integral we see that,
contrary, one of the entries should be evaluated with a plus, and one with a minus. Our calc
of the determinant assumed that we could interpretG(t,t) as 1

2 (G(t,t1e)1G(t,t2e)), so our
formula for the determinant is only correct if both terms in tr$s3dM % are separately zero. This wil
only be the case for operatorsD with A[0. Fortunately the discrete path integraldoespermit the
change of variables described above, and we may use this freedom to force the diagonal
Ã, to zero before computing the determinant. The correctly regulated functional determ
therefore differs from its naive value by a multiplicative factor.

Including the correction to the fluctuation determinant, the semiclassical propagator be
d 24 Jun 2003 to 132.239.69.7. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Kscl~ z̄ f ,z i ,T!5S ~11 z̄ fz~T!!~11 z̄~0!z i !

2 j

]2Scl

]z i]z̄ f

D 1/2

expH Scl~ z̄ f ,z i ,T!1
i

2
E

0

T

A~ t !dtJ ,

~4.20!

where

A~ z̄,z!5
1

2 S ]

] z̄

~11 z̄z!2

2 j

]H

]z
1

]

]z

~11 z̄z!2

2 j

]H

] z̄ D , ~4.21!

is the coefficient appearing in~4.3!.
The maneuver of settingÃ to zero before evaluating the fluctuation determinant appe

~although without explanation as to why it was necessary! in the previously cited paper by
Kochetov25 that provided part of the motivation for our present work. Kochetov therefore get
corrected expression~4.20!. It seems, however, that the ‘‘extra phase’’~it is a phase only in the
simplest cases!, (i /2) *0

TA(t)dt, was first obtained by Solari24 from a careful evaluation of the
discrete determinant. Solari also pointed out the necessity of a similar correction in the har
oscillator coherent-state path integral, which has a flat phase space. Kochetov’s discovery
correction seems to have been independent of this earlier work.

Because of the extra phase,~4.20! gives the correct, indeed exact, semiclassical propagato
the caseĤ5v Ĵz , and also for any Hamiltonian consisting of~possibly time dependent! elements
of the Lie algebra of SU~2!.25

V. SHORT TIME ACCURACY

The Solari–Kochetov phase also solves a second problem with~4.16!. In contrast to the
configuration space propagator, which diverges asT21/2, the coherent-state propagat
K(z f ,z i ,T) is analytic inT nearT50. This is because of the finite spread of the coherent-s
wave functions. To first order inT we have

K~ z̄ f ,z i ,T![^z f ue2 iĤ Tuz i&'^z f uz i&2 iT^z f uĤuz i&5^z f uz i&~12 iTH~ z̄ f ,z i !!. ~5.1!

~In the last equality we have exploited analyticity to observe that the off-diagonal^z f uĤuz i&, is
obtained from the diagonal^zuĤuz& by the simple replacementz→z i , z̄→ z̄ f .!

Now, from the Hamilton–Jacobi equation,

]Scl

]T
52 iH ~ z̄ f ,z~T!!, ~5.2!

we have

Scl~ z̄ f ,z i ,T!5Scl~ z̄ f ,z i ,0!2 iTH~ z̄ f ,z i !1O~T2!, ~5.3!

while

Scl~ z̄ f ,z i ,0!52 j ln~11 z̄ fz i !5 ln^z f uz i&. ~5.4!

Thus, in order to get agreement between~4.20! and ~5.1!, the fluctuation determinant must mak
no O(T) contribution to the propagator. A short calculation shows, however, that

~11 z̄ fz~T!!~11 z̄~0!z i !

2 j

]2Scl

]z i]z̄ f

512 iTA~ z̄ f ,z i !1O~T2!. ~5.5!
d 24 Jun 2003 to 132.239.69.7. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Fortunately this contribution is exactly canceled by theO(T) contribution from the Solari–
Kochetov extra phase.

We now ask how well does the semiclassical propagator do at next order in the shor
expansion. In order to provide a systematic grading for the terms, we will regard the Hamilt
Ĥ as beingO( j ). The entire action is then homogeneous of degree one inj . With this assumption,
and by analogy with the usual semiclassical expansion in powers of\, we expect that

K~ z̄ f ,z i ,T!5K reduced• exp$Scl%•F11OS 1

j D G , ~5.6!

whereScl is O( j ), while the prefactor,K reduced, is O( j 0).
At short time the exact coherent-state propagator is certainly of this form. To demonstrat

expand

^z f ue2 iĤ Tuz i&5^z f uz i&2 iT^z f uĤuz i&2
T2

2
^z f uĤ2uz i&1¯ . ~5.7!

Now ^z f uĤuz i&5^z f uz i&H( z̄ f ,z i), but some work is needed to evaluate^z f uĤ2uz i&.
Inserting an overcompleteness integral, we have

^z f uĤ2uz i&5
2 j 11

p E d2z

~11 z̄z!2 j 12 ^z f uĤuz&^zuĤuz i&

5
2 j 11

p E d2z

~11 z̄z!2 j 12 ~11 z̄ fz!2 j~11 z̄z i !
2 jH~ z̄ f ,z!H~ z̄,z i !. ~5.8!

We now perform a steepest descent expansion in the integral over the intermediate stat
obtain the first three terms in its asymptotic expansion in powers of 1/j . This computation is
greatly simplified by using two shortcuts. First we need calculate only the diagonal matrix ele

^zuĤ2uz&. Given this, we may appeal to analyticity and obtain the general matrix elemen
settingz̄→ z̄ f andz→z i . Next we rotate the sphere so as to center the coordinate system o
point z. Thusz→0, and the coordinate system is locally geodetic. In these coordinates the s
point of thez integral is atz5z50, and far fewer terms have to be taken into consideration

To return to the original coordinates, we need to be able to recognize some SO(3).SU(2)
invariant combinations of derivatives and (11 z̄z)2 factors.

One easily establishes that, under the Mo¨bius mapping,

z→z85
az1b

cz1d
, where F a b

c dGPSU~2!, ~5.9!

we have

d2z

~11 z̄z!2 5
d2z8

~11 z̄8z8!2 ~5.10!

together with

~11 z̄z!2
] f ~ z̄,z!

]z

]g~ z̄,z!

] z̄
5~11 z̄8z8!2

] f ~ z̄8,z8!

]z8

]g~ z̄8,z8!

] z̄8
,

~11 z̄z!2
]2f ~ z̄,z!

]z] z̄
5~11 z̄8z8!2

]2f ~ z̄,8z8!

]z8] z̄8
, ~5.11!
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and that the combination

Z5S ]

]z
~11 z̄z!2

]

]z
f D S ]

] z̄
~11 z̄z!2

]

] z̄
gD ~5.12!

is similarly invariant. Thus, when we see the term]zz
2 f ] z̄z̄

2 g appearing in the expansion about th
stationary pointz50, we realize that in the integral for the general matrix element~where the
saddle point is atz5z i , z̄5 z̄ f! we should replace it by~5.12!.

Proceeding in this manner we find

^z f uĤ2uz i&5^z f uz i&H H2~ z̄ f ,z i !1
~11 z̄ fz i !

2

2 j

]H

]z i

]H

]z̄ f

1
1

2

1

~2 j !2 S ]

]z̄ f

~11 z̄ fz i !
2

]H

]z̄ f
D S ]

]z i

~11 z̄ fz i !
2

]H

]z i
D 1OS 1

j
D J . ~5.13!

The three terms in braces in this expression are ofO( j 2), O( j ), and ofO( j 0), respectively.
We may now re-exponentiate~5.13! as

^z f ue2 iĤ Tuz i&5expH ln^z f uz i&2 iTH~ z̄ f ,z i !2
1

2
T2

~11 z̄ fz i !
2

2 j

]H

]z i

]H

]z̄ f

1¯J
3F12

T2

4
•

1

~2 j !2 S ]

]z i

~11 z̄ fz i !
2

]

]z i

H D S ]

]z̄ f

~11 z̄ fz i !
2

]

]z̄ f

H D 1¯G .

~5.14!

Again using the Hamilton–Jacobi equation,

]Scl

]T
52 iH ~ z̄ f ,z~T!!, ~5.15!

and the equation of motion forz(t), we may generate the Taylor series forScl(T). We immedi-
ately verify the term in the exponential is the classical action toO(T2),

Scl5 ln^z f uz i&2 iTH~ z̄ f ,z i !2
1

2
T2

~11 z̄ fz i !
2

2 j

]H

]z i

]H

]z̄ f

1O~T3!. ~5.16!

The expression in the square brackets in~5.14! must be the prefactor, and is manifestlyO( j 0). It
is a little tedious to verify that our formula for the pre-exponential factor, including the Sol
Kochetov correction, reduces to exactly this, but it is so. To collapse the terms, it helps to u
identity,
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~11 z̄z!2
]2

] z̄]z S ~11 z̄z!2
]H

] z̄

]H

]z D
52~11 z̄z!2

]H

] z̄

]H

]z
1S ~11 z̄z!2

]2H

] z̄]zD
2

1~11 z̄z!2
]H

] z̄

]

]z S ~11 z̄z!2
]2H

] z̄]zD
1~11 z̄z!2

]H

]z

]

] z̄ S ~11 z̄z!2
]2H

] z̄]zD1S ]

]z
~11 z̄z!2

]

]z
H D S ]

] z̄
~11 z̄z!2

]

] z̄
H D ,

~5.17!

which is most easily established by noting that all terms are invariant, and, atz50, both sides
reduce to

S ]2

] z̄]z
12D ]H

] z̄

]H

]z
. ~5.18!

The semiclassical expression, therefore, has errors of at mostO( j 21) at short time. Our
expectation is, of course, that it has this degree of accuracy uniformly inT.

VI. CONSISTENCY

A further test of the correctness of~4.20! is to verify its consistency under dissection of th
classical trajectory. The exact propagator must satisfy the sewing condition

K~ z̄ f ,z i ,t11t2!5
2 j 11

p
E d2j

~11 j̄j !2 j 12
K~ z̄ f ,j,t2!K~ j̄,z i ,t1!, ~6.1!

which follows from the definition ofK and the overcompleteness condition~2.4!. The semiclas-
sical approximation toK should obey a similar condition, but with the exact integration over
intermediate states replaced by a suitable stationary phase approximation.

SinceKscl;expScl , we begin with the relationship between the action for the total path f
z i to z f , and the actions for the two segments fromz i to the intermediate pointj, and fromj to
z f . To eliminate the redundant intermediate-point boundary terms we must define

S~ z̄ f ,z i ,t11t2!5S~ z̄ f ,j,t2!1S~ j̄,z i ,t1!22 j ln~11 j̄j !. ~6.2!

We will write this compactly as

Stot5S21S122 j ln~11 j̄j !. ~6.3!

In writing ~6.2! we have tacitly assumed that our chosen startingj of the second path segmen
coincides with the dynamically determined end pointz(t1) of the first path segment, and that th
dynamically determined startingz̄(t1) of the second path segment coincides with our chosenj̄ end
point of the first path segment. This will not generally be the case—but itwill be whenj̄, j obey
the stationary-phase equations,

]Stot

]j
5

]Stot

]j̄
50. ~6.4!

Taking into account the analyticity properties ofS1 andS2 , these are
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we set

l over
form

e
tants.

8038 J. Math. Phys., Vol. 41, No. 12, December 2000 Stone, Park, and Garg

Downloade
05
]S2~ z̄ f ,j!

]j
2

2 j j̄

11 j̄j
,

05
]S1~ j̄,z i !

]j̄
2

2 j j

11 j̄j
. ~6.5!

Comparing~6.5! with the Hamilton–Jacobi equations confirms thatjc5z(t1) and j̄c5 z̄(t1),
wherejc , j̄c is the stationary phase point.

To evaluate the integral over small deviations from the classical stationary phase point,
j5jc1h, j̄5 j̄c1h̄. We expand

Stot5Stotu j̄c ,jc
2

1

2

2 j

~11 j̄cjc!
2
~ h̄, h!F 1 2a

2b 1
G S h

h̄
D , ~6.6!

where

a5
~11 j̄cjc!

2

2 j

]2S1

]j̄c
2

1jc
25

1

2 j
~11 j̄cjc!

]

]j̄c

~11 j̄cjc!
]S1

]j̄c

, ~6.7!

and

b5
~11 j̄cjc!

2

2 j

]2S2

]jc
2 1 j̄c

25
1

2 j
~11 j̄cjc!

]

]jc
~11 j̄cjc!

]S2

]jc
. ~6.8!

~The second equality in these equations uses the stationary phase equations.!
We now put together two semiclassical propagators and perform the Gaussian integra

the deviation from the stationary phase point. Using the semiclassical Solari–Kochetov
~4.20! for the propagators on the right-hand side of Eq.~6.1!, we get~with T5t11t2!,

Kcomb5
2 j 11

p
E d2h

~11 j̄cjc!
2

expH S11S222 j ln~11 j̄cjc!1
i

2
E

0

T

A dt2
1

2
d2SJ

3S ~11 z̄ fz~T!!~11 j̄cjc!

2 j

]2S2

]z̄ f]jc

~11 j̄cjc!~11 z̄~0!z i !

2 j

]2S1

]j̄c]z i

D 1/2

. ~6.9!

Notice that, as with consistency test of the ordinary Feynman path integral,33 the measure and th
prefactors, including the Solari–Kochetov ‘‘extra-phase’’ term, are all being treated as cons
The integration involves only the variation of the classical action

d2S5
2 j

~11 j̄cjc!
2
~ h̄, h!F 1 2a

2b 1
G S h

h̄
D , ~6.10!

and yields, along with other factors, the inverse square-root of the determinant

D5U 1 2a

2b 1
U. ~6.11!

We now use the result, established in the Appendix, that
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]2Stot

]z̄ f]z i

5
~11 j̄cjc!

2

2 j

]2S2

]z̄ f]jc

]2S1

]j̄c]z i

U 1 2a

2b 1
U21

, ~6.12!

to obtain

Kcomb5S 2 j 11

2 j
D S ~11 z̄ fz~T!!~11 z̄~0!z i !

2 j

]2Stot

]z̄ f]z i

D 1/2

expH Stot~ z̄ f ,z i ,T!1
i

2
E

0

T

AdtJ .

~6.13!

The semiclassical approximation therefore reproduces itself except for a niggling factor oj
11)/2j , which is due to a conflict between the normalization of the measure and the 2j appearing
in the exponent.

Although this discrepant factor approaches unity in the large-j limit, it is nonetheless disturb-
ing. Each of the infinitely many Gaussian integrations that constitute the semiclassical ap
mation to the path integral ought to be indistinguishable from our single Gaussian integratio
the intermediate pointj. We should, therefore, be able to dissect the path into arbitrarily m
parts without affecting the final answer. This is not currently so, and, in particular, the lim
large j does not commute with the limit of a large number of intermediate points.

The origin of the discrepancy is not hard to find. In the large-j limit the effective radius of our
spherical phase space becomes large, and, nearz50, the spin-j reproducing-kernel relation

2 j 11

p E d2z

~11 z̄z!2 ~11 z̄z!22 j^z2uz&^zuz1&5^z2uz1&, ~6.14!

or more explicitly,

2 j 11

p E d2z

~11 z̄z!2 ~11 z̄z!22 j~11 z̄2z!2 j~11 z̄z1!2 j5~11 z̄2z1!2 j , ~6.15!

should contract to a suitably scaled version of its flat-phase-space analog,

E d2z

p
e2 z̄zez̄2zez̄z15ez̄2z1. ~6.16!

Because it is a Gaussian integral, the leading stationary phase ‘‘approximation’’ to~6.16! is exact.
If we make the obvious largej estimates

~11 z̄z!22 j;e22 j z̄z, ~11 z̄2z!2 j;e2 j z̄2z, ~11 z̄z1!2 j;e2 j z̄z1, ~6.17!

while regarding the sphere measure (11 z̄z)22 as a prefactor, we do not get exactly

2 j

p E d2z e22 j z̄ze2 j z̄2ze2 j z̄z15e2 j z̄2z1, ~6.18!

but instead (2j 11)/2j times this.
If we keep terms higher order in 1/2j , both those coming from the measure and those fr

going beyond the quadratic approximation to the exponent, they will of course correct the
What we really need, however, is a partitioning of the integral on the LHS of~6.15! such that the
leadingsteepest descent approximation will agree with the RHS. This will happen if we regar
expansion parameter as 2j 11 and not 2j . To see this, break up

I 5
2 j 11

p E d2z

~11 z̄z!2 ~11 z̄z!22 j~11 z̄2z!2 j~11 z̄z1!2 j ~6.19!
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as

I 5
2 j 11

p E d2z

~11 z̄z!2 g21~ z̄,z!e(2 j 11)ln g( z̄,z) ~6.20!

with

g~ z̄,z!5~11 z̄z!21~11 z̄2z!~11 z̄z1!. ~6.21!

The critical point of the function in the exponential is atz̄5 z̄2 , z5z1 , and

g~ z̄2 ,z1!5~11 z̄2z1!, ~6.22!

2
]2 ln g

]z] z̄
U

z̄5 z̄2 ,z5z1

5
1

~11 z̄2z1!2
. ~6.23!

Thus,

I;
2 j 11

p

1

~11 z̄2z1!3
~11 z̄2z1!2 j 11E d2ze2 @2 j 11/(11 z̄2z1)2#( z̄2 z̄2)(z2z1)

5
2 j 11

p
~11 z̄2z1!2 j 22

•

p

2 j 11
~11 z̄2z1!25~11 z̄2z1!2 j . ~6.24!

The leading term of the asymptotic expansion ofI in powers of 1/(2j 11) is therefore exact.
This observation suggests rewriting the semiclassical approximation toK as

Kscl~ z̄ f ,z i ,T!5
1

A2 j 11
S ]2S̃cl

]z̄ f]z i
D 1/2

expH S̃cl~ z̄ f ,z i ,T!1
i

2
E

0

T

QdtJ , ~6.25!

whereS̃cl5(2 j 11)Scl /(2 j ), and

Q5
1

j S ~11 z̄z!2

2

]2H

] z̄]z
1H~ z̄,z! D ~6.26!

is the term required to make~6.25! numerically equal to~4.20!.
With this repartitioning of terms between the exponent and the prefactor we have exac

same classical equations of motion, but now

Kcomb5
2 j̃

p
E d2h

~11 j̄cjc!
2
~11 j̄cjc!expH S̃11S̃22~2 j̃ !ln~11 j̄cjc!2

1

2
d2S̃J

3
1

~2 j̃ !
S ]2S̃2

]z̄ f]jc

]2S̃1

]j̄c]z i

D 1/2

expH i

2
E

0

T

QdtJ , ~6.27!

where

j̃ 5 j 1 1
2 , ~6.28!

and
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d2S̃5
2 j̃

~11 j̄cjc!
2
~ h̄, h!F 1 2ã

2b̃ 1
G S h

h̄
D . ~6.29!

The quantitiesã andb̃ are obtained from Eqs.~6.7! and~6.8! by putting tildes onS1 , S2 , and j .
Note, though, thatã5a, andb̃5b. Note also, that we have inserted a factor of (11 j̄cjc) in the
integral to compensate for the extra factor of (11 j̄j) that was taken from the measure into t
exponential to completeS̃tot . Thus part of both the measure and the prefactor are varied
determining the stationary phase, and get integrated over, while part is regarded as a con

The integration in Eq.~6.27! can be done at once by noting that all equations in the Appen
are unchanged if we put tildes on the actions,j , a, andb everywhere. In particular, the identit
~A9! holds with tildes. We thus obtain

Kcomb5
1

A2 j 11
S ]2S̃tot

]z̄ f]z i
D 1/2

expH S̃tot~ z̄ f ,z i ,T!1
i

2
E

0

T

QdtJ , ~6.30!

all unwanted factors of 2j 11 and (11 j̄cjc), having canceled. Thus, with this form of stationar
phase integration, the propagator reproduces itself exactly.

What this means is that the semiclassical approximation must be tacitly using~6.24! in
making each of the many integrations that go into the Gaussian approximation to the path in
Once we realize this, we see that there is no need for the mysterious divergent normal
factor,N5 limN→`(111/2j )N, that plagues most treatments of the semiclassical spin propag

The appearance ofj 11/2 as the large parameter in the fluctuation integral has been rema
on before by Ercolessiet al.34 and by Funahashiet al.35 The former worry that it is inconsistent t
include fluctuations of the measure in the Gaussian integral without also considering their ef
the saddle point equations. In our case all terms that are being integrated over do appear als
equations determining the saddle point.

Note that the correctionQ vanishes for Larmor precession whereĤ5v Ĵ3 . In this case, as we
have seen earlier,

Scl52 j ln~11 z̄ fz ie
2 ivT!1 i j vT. ~6.31!

S̃ is obtained from this by the substitutionj→ j 1 1
2, so

]2S̃

]z̄ f]z i

5e2 ivT
2 j 11

~11 z̄ fz ie
2 ivT!2

. ~6.32!

Thus,

1

A2 j 11
S ]2S̃

]z̄ f]z i
D 1/2

eS̃( z̄ f ,z i ,T)5e2 ivT/2~11 z̄ fz ie
2 ivT!21~11 z̄ fz ie

2 ivT!2 j 11eiv( j 1
1
2)T

5eivT~11 z̄ fz ie
2 ivT!2 j , ~6.33!

which is the exact answer.

VII. AN EXAMPLE: ĤÄn Ĵ 3
2

As an application of the semiclassical formalism considerĤ5n Ĵ3
2. This Hamiltonian is time

reversal invariant, and we might worry that a hidden shiftj→ j 11/2 would compromise the
Kramers degeneracy expected whenj is the half-integral.
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The classical Hamiltonian corresponding toĤ5n Ĵ3
2 is

H~ z̄,z!5
^zun Ĵ3

2uz&

^zuz&
5nS j S j 2

1

2D S z̄z21

z̄z11D 2

1
1

2
j D . ~7.1!

This should be compared with the ‘‘naive’’ classical Hamiltonian,

Hnaive5n j 2S z̄z21

z̄z11D 2

, ~7.2!

which is what we would get if we simply expressed the classical direction-dependent e
n j 2 cos2 u in terms of the stereographic coordinates onS2.

The Hamiltonian~7.1! leads to the classical equations of motion

zG5 iv~ z̄,z!z̄, ż52 iv~ z̄,z!z, ~7.3!

where, withm5n j ( j 21/2),

v~ z̄,z!5S 2m

j D S z̄z21

z̄z11D . ~7.4!

Since these equations imply the time independence of the productz̄z, v is itself time independen
and the solutions may be written down directly as

z~ t !5e2 ivtz i , z̄~ t !5eiv(t2T)z̄ f . ~7.5!

Herev is to be determined by the self-consistency condition,

v5S 2m

j
D S e2 ivTz̄ fz i21

e2 ivTz̄ fz i11
D . ~7.6!

As we will see below, this equation has an infinite family of solutions. Here, we wish to con
how various quantities scale withj . By demanding that Eqs.~7.3! continue to be meaningful a
j→`, we see that we must havem5O( j ), v5O(1), andn5O(1/j ).

The classical action for the solution~7.5! is

Scl~ z̄ f ,z i ,T!52 j ln~11e2 ivTz̄ fz i !1E
0

TH j S 2ive2 ivTz̄ fz i

11e2 ivTz̄ fz i

D 2 imv2S j

2m
D 2

2
i

2
j nJ dt

52 j ln~11e2 ivTz̄ fz i !1 iTH j v1
j 2

4m
v22

1

2
j nJ . ~7.7!

The apparently cosmetic rewrite in the last line leads to a useful way of looking at the pro
Define

Sv~ z̄ f ,z i ,T!52 j ln~11e2 ivTz̄ fz i !1 iTH j v1
j 2

4m
v2J , ~7.8!

where we regardv as an independent variable. The equation

]Sv~ z̄ f ,z i ,T!

]v
5 iT j H 2

e2 ivTz̄ fz i21

e2 ivTz̄ fz i11
1S j

2m
D vJ ~7.9!
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then shows that the consistency condition onv is equivalent to]Sv /]v50. We can also use
Sv( z̄ f ,z i ,T) to express the second variation ofScl required for the prefactorA. By differentiating
the Jacobi equation~3.9! we have

]2Scl~ z̄ f ,z i ,T!

]z̄ f]z i

5
2 j

~11 z̄ fz~T!!2

]z~T!

]z i

, ~7.10!

and from this we find, with Eq.~7.5!, that

]2Scl~ z̄ f ,z i ,T!

]z̄ f]z i

5
2 j

~11 z̄ fz~T!!2
H e2 ivT1e2 ivTz iS 2 iT

]v

]z i
D J . ~7.11!

We now differentiate the condition]Sv /]v50 with respect toz i . This yields

]2Sv

]z i]v
1

]2Sv

]v2

]v

]z i
50. ~7.12!

Using this result to eliminate (]v/]z i) in Eq. ~7.11!, we find, after a little algebra, that

]2Scl~ z̄ f ,z i ,T!

]z̄ f]z i

5
2 je2 ivT

~11 z̄ fz~T!!2
•

iT j 2

2m
•S ]2Sv

]v2 D 21

. ~7.13!

Substituting Eqs.~7.5!, ~7.7!, and ~7.13! into the basic semiclassical form~4.20! for the
propagator, we obtain

Kscl5(
v

S iT j 2

2m D 1/2S ]2Sv

]v2 D 21/2

expH Sv2
iT

2
~v1 j n!1

i

2 E0

T

A dtJ . ~7.14!

The sum overv is to be performed over all solutions to Eq.~7.6!.
The utility of Sv( z̄ f ,z i ,T) is not hard to understand. We are trying to evaluate

^z f ue2 in Ĵ3
2Tuz i&5 (

m52 j

m5 j

~ z̄ fz i !
j 1m

2 j !

~ j 1m!! ~ j 2m!!
e2 inm2T, ~7.15!

while we already know that

^z f ue2 iv Ĵ3Tuz i&5 (
m52 j

m5 j

~ z̄ fz i !
j 1m

2 j !

~ j 1m!! ~ j 2m!!
e2 ivmT

5~11e2 ivTz̄ fz i !
2 jeiv jT

5expSv0~ z̄ f ,z i ,T!, ~7.16!

where

Sv0~ z̄ f ,z i ,v!52 j ln~11e2 ivTz̄ fz i !1 iT j v. ~7.17!

From the identity,

e2 inm2T5e2 i
p
4 A T

4pn E2`

`

dve2 ivmTeiv2T/4n ~7.18!
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we have the exact relation

^z f ue2 in Ĵ3
2Tuz i&5e2 i ~p/4!A T

4pn E dv^z f ue2 iv Ĵ3uz i&e
i ~v2T/4n!

5e2 i ~p/4!A T

4pn E dv expH Sv0~ z̄ f ,z i ,v!1 i
v2T

4n J
5e2 i ~p/4!A T

4pn E dv expH 2 j ln~11e2 ivTz̄ fz i !1 iTH j v1
v2

4nJ J .

~7.19!

Given the form of the classical action~7.7!, thatm' j 2n, and the occurrence of (]2Sv /]v2)21/2

in the prefactor, it is clear that the semiclassical approximation is attempting a stationary
approximation to this integral overv. That this approximation is indeed indicated can be seen
evaluating (]2Sv /]v2). From Eqs.~7.9! and ~7.6!, we find

]2Sv

]v2 5
iT j 2

2m
2

1

2
jT2S 12

j 2v2

4m2 D , ~7.20!

which scales asj as j→`.
We now write the exponent in Eq.~7.19! asSv2 iT j v2/8m. Since the second term isO( j 0)

as j→`, we may regard it as part of the pre-exponential factor in carrying out the stationary
integral. In this way, we obtain

Kexact'(
v

S iT

2n D 1/2S ]2Sv

]v2 D 21/2

expH Sv2 iT
j v2

8m J . ~7.21!

The pre-exponential factors in the preceding equation agree with those in Eq.~7.14! to terms
of order unity. To see whether the exponents agree, we must discuss the effect of the S
Kochetov phase. We find that

A5
1

2 S ]

] z̄

~11 z̄z!2

2 j

]H

]z
1

]

]z

~11 z̄z!2

2 j

]H

] z̄ D5v1
4m

j

z̄z

~11 z̄z!2 5S v1
m

j D2
j v2

4m
.

~7.22!

The term in parentheses serves to cancel@up to O(1)# the second term in the exponent in E
~7.14!, and thej v2/4m term serves to correctSv as needed in Eq.~7.21!. Thus our semiclassica
formula is indeed accurate up toO(1) as j→`, and we may be confident that spectral propert
~Kramers degeneracy in particular! derived from it by constructing, say, the Green’s function
density of states, will be faithfully given.

Having demonstrated the formal equivalence ofKscl andKexact, we turn to the actual nature o
the solution. Let us first rewrite the self-consistency condition~7.6! as

2i ṽt1 lnS 11ṽ

12ṽ D5 ln a, ~7.23!

whereṽ5 j v/2m, t5mT/ j , anda5 z̄ fz i . In the limit t→`, the left-hand side of~7.23! must
remain finite, suggesting thatṽ;1/t. A development in powers of 1/t shows that we may write

ṽ'2
i

2

ln a

t2 i
2

1

24

~ ln a!3

t4 1O~t25!. ~7.24!
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Since no restriction has been placed on which branch of lna is to be taken, this solution is
infinitely multivalued, as asserted above. To leading order in 1/t, different solutions differ by
additive amountsnp/t, wheren is an integer.

On the other hand, att50, Eq.~7.23! has a unique solution,ṽ5(a21)/(a11). The appar-
ent contradiction with the earlier argument for an infinite number of solutions is resolve
noting that if, ast→0, we allowṽ to diverge as 1/t, the left-hand side of~7.23! again remains
finite. Another development in powers oft reveals that

ṽ'2
i

2

ln~2a!

t
2

2

ln~2a!
2

8i

@ ln~2a!#3 t1¯ , ~7.25!

which is also multivalued on account of the infinitely many branches of ln(2a).
We can gain further insight into the nature of the propagator and the values ofv at the

relevant stationary-phase points by working with initial and final states on the equator o
sphere,z i5eif i, z̄ f5e2 if f . When j is large, the problem should be essentially equivalent t
massive particle constrained to move on a ring of circumference 2p. If we write the Hamiltonian
for the latter asL2/2M , whereL is the orbital angular momentum, andM the mass, we expect th
results for the two problems to be similar withM52n.

We start by considering the propagator for Larmor precession. Employing the leading
j estimate,

2 j !

~ j 1m!! ~ j 2m!!
;

22 j

Ap j
e2m2/ j , ~7.26!

and using the shorthandDf5f f2f i , we may write

^z f ue2 iv Ĵ3uz i&5 (
m52 j

m5 j

~ z̄ fz i !
j 1m

2 j !

~ j 1m!! ~ j 2m!!
e2 ivmT;e2 i j Df

22 j

Ap j
(
m

e2 im(Df1vT)e2m2/ j .

~7.27!

If T@ j 21/2/v, the summand will have widely varying phases over the range ofm values that
contributes to the sum,umu;Aj . By extending the sum overm to infinity and using the Poisson
summation formula~taking care thatm takes half-integer values whenj is half integral!, we find

^z f ue2 iv Ĵ3uz i&'e2 i j Df22 j(
n

e2 ~ j /4!(Df1vT22pn)2
3~21!n, ~7.28!

where the (21)n factor is present only whenj is the half-integral. This form is better suited t
studying the largej limit ~for fixed T). In that case,~7.28!, regarded as a function ofv, is sharply
peaked atv5v̄n5(2pn2Df)/T. These are the angular frequencies that allow uniform pre
sion betweenf i andf f in time T. We now recall that Eq.~7.28! is nothing but exp(Sv0). If we
substitute this form into Eq.~7.19!, and take into account the factor exp$iv2T/4n% in determing the
saddle-point frequencies, we find that they become complex

vn5v̄nS 12
i

nT j D
21

'v̄n1
i v̄n

nT j
. ~7.29!

Not surprisingly, this is just what we found in Eq.~7.24!. The result reflects the fact that, to mov
at the required speed, the Hamiltonian trajectories must move off the equator. There is then
trajectory between the classical end points, and we must exploit the freedom to have traje
wherez̄ fÞz(T)* . When j is large, however, Hamilton’s equations provide large velocitiesclose
to the equator, and the imaginary parts ofv are correspondingly small. Performing the integrati
in Eq. ~7.19!, we find
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^eif f ue2 inTJz
2
ueif i&'22 je2 i j Df

1

~11 i j nT!1/2(
n

e2 ~ j /4!(Df22pn)2/(11 i j nT)3~21!n, ~7.30!

where, again, the last factor is only present whenj is the half-integral. This form should b
compared with that for the massive particle,36

^f f ue2 iL 2T/2Muf i&5
1

~2p iMT !1/2(
n

expS inF1 i
M ~Df22np!2

2T D . ~7.31!

We have incorporated an Aharonov–Bohm phaseF into the result. This phase should bep when
we compare with half-integer spins, and the resulting pairwise degeneracy of the energy le
the particle-on-a-ring analog of Kramers degeneracy.

The similarity between Eqs.~7.30! and~7.31! is evident. Notice howj sets the time scale fo
the crossover between the large-T regime, where the spin behaves essentially as a particle of m
2n on the ring, and the short-time regime where the finite range of the coherent-state
functions cuts off the 1/AT divergence.

Note that we have ignored the difference betweenm/ j 2 andn in the above comparison, sinc
as discussed while showing the equivalence ofKscl andKexact, the error incurred is of order 1/j 2

relative to the leading term in the action. The semiclassical approximation therefore cor
obtains the first two terms in the large-j expansion.

VIII. DISCUSSION

In the previous sections we have used the continuous-time path integral to motivate a
classical approximation to the coherent-state propagator for spinj . Although our derivation of the
semiclassical propagator is purely formal, and the resulting expression must initially have on
status of a conjecture, we have demonstrated its correctness by verifying its short-time accu
O(T2), and checking its consistency under dissection of the path. From these two propert
may conclude that our expression is accurate toO( j 0) uniformly in time.

In our derivation it was necessary to take into account an ‘‘anomaly’’ in the evaluation o
functional determinant of the Jacobi operator. This is the only place where we had to app
details of the discrete version of the path integral. Regulating the determinant in a manne
sistent with the discrete path integral results in a correction to the naive expression fo
prefactor. This correction had been noted before, by Solari24 and by Kochetov,25 but its impor-
tance does not seem to have been widely appreciated.

We have also discussed an example where an infinite number of classical trajectories c
ute to the propagator. Here we again saw how the Solari–Kochetov factor is essential in ob
the correct result.

A calculation of the Solari–Kochetov correction to the tunnel splitting between classi
degenerate spin states will be reported in a separate publication.

Note added in proof.After we had completed this work, we became aware of a pape
Vieira and Sacramento37 that also correctly identifies what we have called the Solari–Koche
phase.
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APPENDIX: COMPOSITION OF PATH-DENSITY FACTORS

In this Appendix we derive~6.12!. We begin by restating the stationary phase conditions~6.5!,

05
]S2~ z̄ f ,j!

]j
2

2 j j̄

11 j̄j
,

05
]S1~ j̄,z i !

]j̄
2

2 j j

11 j̄j
. ~A1!

Consider how the first of these evolves as we varyz̄ f . We find that

05
]

]z̄ f

S ]S2

]jc

2
2 j j̄c

11 j̄cjc

D
5

]2S2

]z̄ f]jc

1
]2S2

]jc
2

]jc

]z̄ f

1
2 j j̄c

2

~11 j̄cjc!
2

]jc

]z̄ f

2
2 j

~11 j̄cjc!
2

]j̄c

]z̄ f

5
]2S2

]z̄ f]jc

1
]jc

]z̄ f

S ]2S2

]jc
2

1
2 j j̄c

2

~11 j̄cjc!
2
D 2

2 j

~11 j̄cjc!
2

]j̄c

]z̄ f

. ~A2!

In the last line, we recognize the expression in parentheses to be 2j b/((11 j̄cjc)
2, whereb is the

coefficient appearing in~6.6!. By differentiating each of the two stationary phase conditions w
respect toz̄ f andz i , we get a total of four such equations. These may be summarized as

S 1 2a

2b 1
D S ]jc

]z i

]jc

]z̄ f

]j̄c

]z i

]j̄c

]z̄ f

D 5
~11 j̄cjc!

2

2 j S ]2S1

]j̄c]z i

0

0
]2S2

]z̄ f]jc

D . ~A3!

Taking determinants, we obtain

U 1 2a

2b 1
UU ]jc

]z i

]jc

]z̄ f

]j̄c

]z i

]j̄c

]z̄ f

U5
~11 j̄cjc!

4

~2 j !2

]2S1

]j̄c]z i

]2S2

]z̄ f]jc

. ~A4!

We now recall that the Gaussian integration in Eq.~6.9! leads to the inverse-square root of th
precisely the first determinant in Eq.~A4!. This equation expresses this determinant in terms of
second derivatives ofS1 andS2 , and the Jacobian](jc ,j̄c)/](z i ,z̄ f). The derivatives ofS1 and
S2 will cancel with the prefactors in Eq.~6.9!, leaving only the Jacobian. We therefore turn to
evaluation, and show that it can be written in terms of the second derivatives ofStot with respect
to z̄ f andz i . We expressStot as

Stot5S21S122 j ln~11 j̄j !, ~A5!
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and take note of the fact that bothjc and j̄c vary as we varyz̄ f andz i . We have

]2Stot

]z̄ f]z i

5
]

]z̄ f

S ]S2

]jc

]jc

]z i

2
2 j j̄c

11 j̄j

]jc

]z i

1
]S1

]j̄c

]j̄c

]z i

1
]S1

]z i

2
2 j jc

11 j̄j

]j̄c

]z i
D

5
]

]z̄ f
S ]jc

]z i
H ]S2

]jc

2
2 j j̄c

11 j̄j
J 1S ]S1

]z i
D

j̄c

1H ]S1

]j̄c

2
2 j jc

11 j̄j
J ]j̄c

]z i
D . ~A6!

The expressions in braces in the last line are the stationary phase conditions, so they are
are their derivatives. Thus,

]2Stot

]z̄ f]z i

5
]

]z̄ f

S ]S1

]z i
D

j̄c

5
]2S1

]j̄c]z i

]j̄c

]z̄ f

. ~A7!

Taking note of the fact that the derivative ofS1 with respect toz i is at fixedj̄c , while we have
useful expressions for the derivative including the variation ofj̄c , we interchange the order o
differentiation, and write

]2Stot

]z̄ f]z i

5
]j̄c

]z̄ f

S ]

]z i
S ]S1

]j̄c
D 2

]2S1

]j̄c
2

]j̄c

]z i
D

5
]j̄c

]z̄ f

]

]z i
S 2 j jc

11 j̄cjc
D 2

]j̄c

]z̄ f

]2S1

]j̄c
2

]j̄c

]z i

5
]j̄c

]z̄ f

]

]z i
S 2 j jc

11 j̄cjc
D 2

]j̄c

]z i

]

]z̄ f
S 2 j jc

11 j̄cjc
D

5
2 j

~11 j̄cjc!
2
S ]j̄c

]z̄ f

]jc

]z i

2
]j̄c

]z i

]jc

]z̄ f

D . ~A8!

In going from the second line to the third, we used one of the equations from~A3!.
Putting this together with~A4! yields

]2Stot

]z̄ f]z i

5
~11 j̄cjc!

2

2 j

]2S2

]z̄ f]jc

]2S1

]j̄c]z i

U 1 2a

2b 1
U21

~A9!

which is identical to Eq.~6.12!.
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