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Chapter 1

Introduction

1.1 Strategic games

Classical Game Theory describes the behavior of rational players. It attempts
to mathematically capture behavior in strategic situations, in which an indi-
vidual’s success in making choices depends on the choices of others. A classical
example of a strategic game is the prisoner’s dilemma. In its classical form, it
is presented as follows:

“Two suspects of a crime are arrested by the police. The police have in-
sufficient evidence for a conviction, and, having separated both prisoners, visit
each of them to offer the same deal. If one testifies (defects from the other)
for the prosecution against the other and the other remains silent (cooperates
with the other), the betrayer goes free and the silent accomplice receives the
full 10-year sentence. If both remain silent, both prisoners are sentenced to
only 1 year in jail for a minor charge. If each betrays the other, each receives a
five-year sentence. Each prisoner must choose to betray the other or to remain
silent. Each one is assured that the other would not know about the betrayal
before the end of the investigation. How should the prisoners act?”

The situation is best illustrated in what is called a “payoff matrix” which
in the classical formulation is rather a “cost matrix”:

P Cooperator (C) Defector (D)
C 1 year 10 years
D 0 years 5 years

Here rows and columns correspond to player (suspect) 1 and 2, respectively.
The entries give the prison sentence for player 1; this is sufficient information
since the game is symmetric. Imagine you are player 1, and that player 2 is
playing strategy “cooperate”. Then you are obviously better off to play “defect”
since you can get free. Now imagine player 2 is playing “defect”. Then you are
still better off to defect since 5 years in prison is better than 10 years in prison.
If both players are rational players a dilemma arises since both will analyze the
situation in the same way and come to the conclusion that it is always better to
play “defect” irrespective of what the other suspect is playing. This outcome of
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2 CHAPTER 1. INTRODUCTION

the game, both playing “defect”, is called a Nash equilibrium. The hallmark of a
Nash equilibrium is that none of the players has an advantage of deviating from
his strategy unilaterally. This rational choice, where each player maximizes his
own payoff, is not the best outcome! If both defect, they will both be sentenced
to prison for 5 years. Each player’s individual reward would be greater if they
both played cooperatively; they would both only be sentenced to prison for 1
year.

We can also reformulate the prisoner’s dilemma game as follows. A coopera-
tor provides a benefit b to another individual, at a cost c to itself (with b−c > 0).
In contrast, a defector refuses to provide any benefit and hence does not pay any
costs. For the selfish individual, irrespective of whether the partner cooperates
or defects, defection is favorable, as it avoids the cost of cooperation, exploits
cooperators, and ensures not to become exploited. However, if all individuals
act rationally and defect, everybody is, with a gain of 0, worse off compared
to universal cooperation, where a net gain of b − c would be achieved. The
prisoner’s dilemma therefore describes, in its most basic form, the fundamental
problem of establishing cooperation.

P Cooperator (C) Defector (D)
C b− c −c
D b 0

This scheme can be generalized to include other basic types of social dilem-
mas. Namely, two cooperators that meet are both rewarded a payoff R, while
two defectors obtain a punishment P. When a defector encounters a coopera-
tor, the first exploits the second, gaining the temptation T , while the cooperator
only gets the suckers payoff S. Social dilemmas occur when R > P, such that
cooperation is favorable in principle, while temptation to defect is large: T > S,
T > P. These interactions may be

P Cooperator (C) Defector (D)
C R S
D T P

Variation of the parameters T , P, R and S yields four principally different types
of games. The prisoner’s dilemma arises if the temptation T to defect is larger
than the reward R, and if the punishment P is larger than the suckers payoff
S. As we have already seen above, in this case, defection is the best strat-
egy for the selfish player. Within the three other types of games, defectors are
not always better off. For the snowdrift game the temptation T is still higher
than the reward R but the sucker’s payoff S is larger than the punishment P.
Therefore, now actually cooperation is favorable when meeting a defector, but
defection still pays off when encountering a cooperator, and a rational strategy
consists of a mixture of cooperation and defection. The snowdrift game derives
its name from the potentially cooperative interaction present when two drivers
are trapped behind a large pile of snow, and each driver must decide whether to
clear a path. Obviously, then the optimal strategy is the opposite of the oppo-
nent’s (cooperate when your opponent defects and defect when your opponent
cooperates). Another scenario is the coordination game, where mutual agree-
ment is preferred: either all individuals cooperate or defect as the reward R
is higher than the temptation T and the punishment P is higher than sucker’s
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payoff S. Last, the scenario of by-product mutualism yields cooperators fully
dominating cooperators since the reward R is higher than the temptation T
and the sucker’s payoff S is higher than the punishment P.

1.2 Evolutionary game theory

Strategic games, as discussed in the previous section, are a useful concept in eco-
nomic and social settings. In order to analyze the behavior of biological systems,
the concept of rationality is not meaningful. Evolutionary game theory (EGT)
as developed mainly by Maynard Smith and Price does not rely on rationality
assumptions but on the idea that evolutionary forces like natural selection and
mutation are the driving forces of change. The interpretation of game models in
biology is fundamentally different from strategic games in economics or social
sciences. In biology strategies are considered to be inherited programs which
control the individual’s behavior. Typically one looks at a population composed
of individuals with different strategies who interact generation after generation
in game situations of the same type. The interactions may be described by
deterministic rules or stochastic processes, depending on the particular system
under study. The ensuing dynamic process can then be viewed as an iterative
(nonlinear) map or a stochastic process (either with discrete or continuous time).
This naturally puts evolutionary game theory in the context of nonlinear dy-
namics and the theory of stochastic processes. We will see how a combination of
both approaches helps to understand the emergence of complex spatio-temporal
dynamics.

In this section, we focus on a deterministic description of well-mixed popu-
lations. The term “well-mixed” signifies systems where the individual’s mobility
(or diffusion) is so large that one may neglect any spatial degrees of freedom and
assume that every individual is interacting with everyone at the same time. This
is a mean-field picture where the interactions are given in terms of the average
number of individuals playing a particular strategy. Frequently, this situation
is visualized as an “urn model”, where two (or more) individuals from a popu-
lation are randomly selected to play with each other according to the specified
game theoretical scheme. The term “deterministic” means that we are seeking
a description of populations where the number of individuals Ni(t) playing a
particular strategy Ai are macroscopically large.

Figure 1.1: The urn model describes the evolution of well-mixed finite popu-
lations. We show three species as yellow (A), red (B), and blue (C) spheres.
At each time step, two randomly selected individuals are chosen (indicated by
arrows in the left picture) and interact with each other according to the rules
of the game (right picture).
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Let the state of the system at time t be given by the fractions (frequencies)
ai(t) = Ni(t)/N(t) of different strategies Ai, summarized as a state vector ~a =
(a1, a2, ..., ad) with

∑d
i=1 ai = 1; the ensuing d − 1 dimensional phase space is

called a simplex Sd (see Fig.?? showing a S3 simplex). The total population
size N(t) =

∑d
i=1Ni(t) is frequently assumed to remain constant in time.

Pairwise reactions and rate equations

In the simplest setup the interaction between individuals playing different strate-
gies can be represented as a reaction process characterized by some set of rate
constants. For example, consider a game where three strategies {A,B,C} cycli-
cally dominate each other, as in the famous rock-paper-scissors game. In an
evolutionary setting, the game is played according to an urn model as illus-
trated in Fig.1.1: at a given time t two individuals from a population with
constant size N are randomly selected to play with each other (react) according
to the scheme

A+B
kA−→ A+A ,

B + C
kB−→ B +B , (1.1)

C +A
kC−→ C + C ,

where ki are rate constants, i.e. probabilities per unit time. The ensuing rate
equations read

∂ta = a(kAb− kCc) ,
∂tb = b(kBc− kAa) , (1.2)
∂tc = c(kCa− kBb) ,

where the right hand side gives the balance of “gain” and “loss” processes. In
writing these equations we have assumed that the number of individuals playing
a particular strategy is macroscopic, Ni � 1.

BC

A

Figure 1.2: Illustration of cyclic dominance of three states A, B, and C.

The concept of fitness and replicator equations

In general, the situation in game theory is more complex such that a description
by chemical reactions is not sufficient and it is less obvious how to set up a deter-
ministic description. For illustration, consider a two-player game characterized
by a payoff matrix P:

P A B
A p11 := R p12 := S
B p21 := T p22 := P
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We define the frequencies

a =
NA
N

, (1.3)

b =
NB
N

= (1− a) , (1.4)

where NA and NB are the number of individuals playing strategy A and B,
respectively, and N = NA + NB . In order to set up an equation of motion we
now need a measure for the “fitness” of individuals playing a particular strategy,
where the term “fitness” is - as usual - used synonymously for reproductive
success. We define the fitness fi of an individual playing strategy Ai as the
expected payoff for that strategy

fA(a) := Ra+ S(1− a) , (1.5)
fB(a) := T a+ P(1− a) . (1.6)

One now argues that rate of growth (ȧ/a) of strategy A in the population
is proportional to the surplus of its fitness with respect to the average fitness
f̄(a) = afA(a)+(1−a)fB(a). The ensuing differential equation is known as the
standard replicator equation

∂ta =
[
fA(a)− f̄(a)

]
a . (1.7)

This equation guarantees that individuals using strategies with a fitness larger
than the average fitness increase while those using strategies with a fitness below
average decline in number. Without a more precise description of the type of
“interactions” responsible for the time evolution of the population there is, of
course, plenty of freedom in how to write down a differential equation describing
the deterministic time evolution of the population. Indeed, there is another set
of equations frequently used in EGT, called adjusted replicator equations, which
reads

∂ta =
fA(a)− f̄(a)

f̄(a)
a . (1.8)

Here we will not bother to argue why one or the other is a better description. As
we will see later, these equations emerge quite naturally from a full stochastic
description in the limit of large populations.

It is obvious how to generalize these ideas to d strategies, defined in terms
of a payoff matrix P. Then the replicator equations read

∂tai =
[
fi(~a)− f̄(~a)

]
ai , (1.9)

where we have defined

~f = P~a , (1.10)

f̄(~a) =
∑
i

fiai . (1.11)
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1.3 Bacterial games

Recommended reading:

• Gore, J., H. Youk, and A. van Oudenaarden. Snowdrift game dynamics
and facultative cheating in yeast. Nature 459, 253-256 (2009).

• Sinervo, B., and C.M. Lively. The rock-paper-scissors game and the evo-
lution of alternative male strategies. Nature 380, 240-243 (1996).

• Kerr, B. et al. Local dispersal promotes biodiversity in a real-life game of
rock-paper-scissors. Nature 418,171-174 (2002).

It is quite likely that microbal model systems will play a major role in our
understanding of mechanisms driving evolutionary dynamics.
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1.4 Nonlinear dynamics of two-player games

This section is intended to give a concise introduction into elementary concepts
of nonlinear dynamics. We illustrate those for the replicator dynamics of two-
player games characterized in terms of the payoff matrix

P A B
A R S
B T P

and the replicator dynamics

∂ta = a(fA − f̄) = a
(
bfA − [afA + (1− a)fB ]

)
= a(1− a)(fA − fB) . (1.12)

This equation has a simple interpretation: the first factor, a(1 − a), is the
probability for A and B to meet and the second factor, fA − fB , is the fitness
advantage of A over B. Inserting the explicit expressions for the fitness values
one finds

∂ta = a(1− a)
[
µA(1− a)− µBa

]
=: F (a) , (1.13)

where µA is the relative benefit of A playing against B and µB is the relative
benefit of B playing against A:

µA := S − P , µB := T −R . (1.14)

Hence, as far as the replicator dynamics is concerned, we may replace the payoff
matrix by

P A B
A 1 1 + µA
B 1 + µB 1

Eq.1.13 is a one-dimensional nonlinear first-oder differential equation for
the fraction a of players A in the population. Graphically it is now trivial to
characterizes its dynamics. The sign of F (a) determines the increase or decrease
of the dynamic variable a. compare the right half of Fig.1.3. The intersections of
F (a) with the a-axis (zeros) are fixed points, a∗. Generically, these intersections
are with a finite slope F ′(a∗) 6= 0; a negative slope indicates a stable fixed
point while a positive slope an unstable fixed point. Depending on some control
parameters, here µA and µB , the first or higher order derivatives of F at the
fixed points may vanish. These special parameter values mark“threshold values”
for changes in the flow behaviour (→ bifurcations) of the nonlinear dynamics.

For the prisoner’s dilemma µA < 0 and µB > 0 (see table 1.1) and hence
player B is always better off (compare the payoff matrix). Both players playing
strategy B is a Nash equilibrium. In terms of the replicator equations this
situation corresponds to F (a) < 0 for a 6= 0 and F (a) = 0 at a = 0, 1 such
that a∗ = 0 is the only stable fixed point. Hence the term “Nash equilibrium”
translates into the “stable fixed point” of the replicator dynamics (nonlinear
dynamics).

For the snowdrift game both µA > 0 and µB > 0 such that F (a) can change
sign for a ∈ [0, 1]. In fact, a∗int = µA/(µA + µB) is a stable fixed point while
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Game Control Parameters Fixed Points a∗

prisoner’s dilemma µA < 0 ; µB > 0 0
snowdrift µA > 0 ; µB > 0 µA/(µA + µB) stable
coordination µA < 0 ; µB < 0 0, 1
harmony µA > 0 ; µB < 0 1

Table 1.1: Classification of two player games according to their payoff matrices
and fixed point values.

a∗ = 0, 1 are unstable fixed points; see the right panel of Fig.1.3. Inspection of
the payoff matrix tells us that it is always better to play the opposite strategy of
your opponent. Hence there is no Nash equilibrium in terms of pure strategies
A or B. This corresponds to the fact that the boundary fixed points a∗ = 0, 1
are unstable. There is, however, a Nash equilibrium with a mixed strategy where
a rational player would play strategy A with probability pA = µA/(µA + µB)
and strategy B with probability pB = 1 − pA. Hence, again, the term “Nash
equilibrium” translates into the “stable fixed point” of the replicator dynamics
(nonlinear dynamics).

For the coordination game, there is also an interior fixed point at a∗int =
µA/(µA + µB), but now it is unstable, while the fixed points at the boundaries
a∗ = 0, 1 are stable. Hence we have bistability : for initial values a < a∗int the
flow is towards a = 0 while it is towards a = 1 otherwise. In the terminology of
strategic games there are two Nash equilibria. The game harmony corresponds
to the prisoner’s dilemma with the roles of A and B interchanged.

Prisoner’s Dilemma

Coordination Game

Snowdrift Game

Harmony

µB

µA

F(a)

a10

Figure 1.3: Classification of two-player games. Left: The black arrows in the
control parameter plane (µA, µB) indicate the flow behavior of the four different
types of two-player games. Right: Graphically the solution of a one-dimensional
nonlinear dynamics equation, ∂ta = F (a), is simply read off from the signs of
the function F (a); illustration for the snowdrift game.
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1.5 Some elementary notes on extinction times

Processes encountered in biological systems are often stochastic. For example,
consider the degradation of a protein or the death of an individual bacterium in
a population, and describe it as a stochastic event happening at a probability per
unit time (rate) λ. Then the population size N(t) at time t becomes a random
variable, and its time evolution becomes a set of integers {Nα} changing from
Nα to Nα − 1 at particular times tα; this is also called a realization of the
stochastic process. Now it is no longer meaningful to ask for the time evolution
of a particular population, as one would do in a deterministic description in
terms of a rate equation, Ṅ = −λN . Instead one studies the time evolution of
an ensemble of systems or tries to understand the distribution of times {tα}. A
central quantity in this endeavor is the probability P (N, t) to find a population of
sizeN given that at some time t = 0 there was an initial ensemble of populations.
Assuming that the stochastic process is Markovian, its dynamics is given by the
following master equation:

∂tP (N, t) = λ(N + 1)P (N + 1, t)− λNP (N, t) . (1.15)

Such an equation can be analyzed by standard tools from the theory of stochas-
tic processes. In particular, it can be solved exactly using generating functions.
In this section we are only interested in the average extinction time T , i.e. the
expected time for the population to reach the state N = 0, also called an ab-
sorbing state. This can be obtained rather easily by considering the probability
Q(t) that a given individual is still alive at time t given that it was alive at time
t = 0. We immediately obtain

Q(t+ dt) = Q(t)(1− λt) with Q(0) = 1 (1.16)

since an individual will be alive at time t + dt if it was alive at time t and did
not die within the time interval [t, t + dt]. The ensuing differential equation,
Q̇ = −λQ is solved by Q(t) = e−λt. This identifies τ = 1/λ as the expected
waiting time for a particular individual to die. We conclude that the waiting
times for the population to change by one individual is distributed exponentially
and its expected value is τN = τ/N for a population of size N ; note that each
individual in a population has the same chance to die. Hence we can write for
the expected extinction time for a population with initial size N0

T = τN0 + τN0−1 + · · ·+ τ1 =
N0∑
N=1

τ

N
≈ τ

∫ N0

1

1
N
dN = τ lnN0 . (1.17)

We have learned that for a system with a “drift” towards the absorbing bound-
ary of the state space the expected time to reach this boundary scales only
logarithmically in the initial population size, T ∼ lnN0. Note that within a
deterministic description, Ṅ = −λN , the population size would exponentially
decay to zero but never reach it, N(t) = N0e

−t/τ . This is, of course, flawed in
two ways. First, the process is not deterministic and, second, the population
size is not a real number. Naively, one may estimate the extinction time by
N(T ) = 1, and indeed this gives T = τ lnN0.

Now we would like to contrast the linear death process with a “neutral pro-
cess” where death and birth events balance each other, i.e. the birth rate µ
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equals the death rate λ. In a deterministic description one would write

∂tN(t) = −(λ− µ)N(t) = 0 (1.18)

and conclude that the population size remains constant at its initial value. In a
stochastic description, one starts from the master equation

∂tP (N, t) = λ(N + 1)P (N + 1, t) +λ(N − 1)P (N − 1, t)− 2λNP (N, t) . (1.19)

Though this could again be solved exactly using generating functions it is in-
structive to derive an approximation valid in the limit of a large population
size, i.e. N � 1. This is most easily done by simply performing a second order
Taylor expansion without worrying to much about the mathematical validity of
such an expansion. With[

(N ± 1)P (N ± 1, t)
]
≈ NP (N, t)± ∂N

[
NP (N, t)

]
+

1
2
∂2
N

[
NP (N, t)

]
(1.20)

we obtain
∂tP (N, t) = λ∂2

N

[
NP (N, t)

]
. (1.21)

Measuring the population size in units of the initial population size at time t = 0
and defining x = N/N0, this becomes

∂tP (x, t) = D∂2
x

[
xP (x, t)

]
. (1.22)

where the “diffusion constant” D = λ/N0
1. This implies that all time scales

in the problem scale as t ∼ D−1 ∼ N0; this is easily seen by introducing a
dimensionless time τ = Dt resulting in a rescaled equation

∂τP (x, τ) = ∂2
x

[
xP (x, τ)

]
. (1.23)

Hence for a (deterministically) “neutral dynamics” the extinction time, i.e. the
time reaching the absorbing state N = 0, scales linear in the initial system size
T ∼ N0.

Finally, there are processes like the snowdrift game where the deterministic
dynamics drives the population towards an interior fixed point well separated
from the absorbing boundaries, x = 0 and x = 1. In such a case, starting from
an initial state in the vicinity of the interior fixed point, the stochastic dynamics
has to overcome a finite barrier in order to reach the absorbing state. This is
similar to a chemical reaction with an activation barrier which is described by an
Arrehnius law. Hence we expect that the extinction time scales exponentially in
the initial population size T ∼ eN0 . This will be corroborated later by explicit
calculations for the snowdrift game.

To summarize, the mean extinction time T can be used to classify evolution-
ary dynamics into a few fundamental regimes. For systems with a deterministic

1If instead of a linear birth-death process one would consider a symmetric random walk with
hopping rate ε on a one-dimensional lattice with sites xi = ia, the resulting equation would be
a diffusion equation ∂tP (x, t) = D∂2

xP (x, t) with diffusion constant D = εa2. Restricting the
random walk to a finite lattice with absorbing boundaries at x0 = 0 and xN = Na := 1 this
would result in a diffusion constant scaling as the inverse square of the system size, D ∼ 1/N2.
In the linear birth-death process, the corresponding amplitude D, measuring the magnitude
of stochastic effects, scales as D ∼ 1/N since the rates are proportional to the size of the
system; each individual has the same probability of undergoing a reaction.



1.5. SOME ELEMENTARY NOTES ON EXTINCTION TIMES 11

drift towards the absorbing boundaries of states space, as frequently encoun-
tered in nonlinear dynamic systems with unstable interior fixed points, typical
extinction times are expected to scale as T ∼ lnN . We refer to such a system
as an “unstable” system. If, in contrast, the deterministic dynamics is char-
acterized by a stable fixed point with some domain of attraction, we expect
extinction times to scale as T ∼ eN . We will refer to those systems as “stable”.
The case of neutral dynamics yields T ∼ N and will be referred to as “neutral”
(or marginally stable). There may also be intermediate scenarios with extinc-
tion times scaling as a power law in the population size, T ∼ Nγ . Transitions
between these regimes can occur and manifest as crossovers in the functional
relation T (N).
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Recommended reading:

• Introductory: S.H. Strogatz, Nonlinear Dynamics and Chaos, Westview;

• Advanced: S. Wiggins, Introduction to Applied Nonlinear Dynamical Sys-
tems and Chaos, Springer.



Chapter 2

The May-Leonard model

Consider three subpopulations A, B and C which cyclically dominate each
other. An individual of subpopulation A outperforms a B individual through
“killing” (or “consuming”), symbolized by the (“chemical”) reaction AB → A�,
where � denotes an available empty space. In the same way, B outperforms
C, and C beats A in turn, closing the cycle. We refer to these processes as
selection and denote the corresponding rate by σ. To mimic a finite carrying
capacity, we allow each subpopulation to reproduce only if an empty space is
available, as described by the reaction A� → AA and analogously for B and C.
For all subpopulations, these reproduction events occur with rate µ, such that
the three subpopulations equally compete for empty space. To summarize, the
reactions that define the model (selection and reproduction) read

AB
σ−→ A� , A� µ−→ AA ,

BC
σ−→ B� , B� µ−→ BB ,

CA
σ−→ C� , C� µ−→ CC . (2.1)

Let a, b, c denote the densities of subpopulations A, B, and C, respectively.
The overall density ρ then reads ρ = a + b + c. As every lattice site is at
most occupied by one individual, the overall density (as well as densities of each
subpopulation) varies between 0 and 1, i.e. 0 ≤ ρ ≤ 1. With these notations,
the rate equations (RE) for the reaction (2.1) are given by

∂ta = a[µ(1− ρ)− σc] ,
∂tb = b[µ(1− ρ)− σa] ,
∂tc = c[µ(1− ρ)− σb] . (2.2)

or in short
∂t~a = ~F (~a) (2.3)

These equations have been introduced and investigated by May and Leonard [1].
In the following, we discuss some of their properties. This will serve as an in-
troduction to some of the standard tools on nonlinear dynamics: linear stability
analysis, invariant manifolds, and normal forms.

The phase space of the model is organized by fixed point and invariant
manifolds. Equations (2.2) possess four absorbing fixed points. One of these
(unstable) is associated with the extinction of all subpopulations, (a∗1, b

∗
1, c
∗
1) =

13
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0

1

1

1

a

b

c

yA

yB

yC

Figure 2.1: The phase space of the May-Leonard model. It is spanned by the densities
a, b, and c of species A, B, and C. On an invariant manifold (yellow), the flows obtained
as solutions of the rate equations (2.2) (an example is shown in blue) initially in the
vicinity of the reactive fixed point (red) spiral outwards, approaching the heteroclinic
cycle which connects three trivial fixed points (blue). In Subsection 2.2, we introduce
the appropriate coordinates (yA, yB , yC) which reveal the mathematical structure of
the manifold and reflect the cyclic symmetry of the system.

(0, 0, 0). The others are heteroclinic points (i.e. saddle points underlying the
heteroclinic orbits) and correspond to the survival of only one subpopulation,
(a∗2, b

∗
2, c
∗
2) = (1, 0, 0), (a∗3, b

∗
3, c
∗
3) = (0, 1, 0) and (a∗4, b

∗
4, c
∗
4) = (1, 0, 0), shown in

blue (dark gray) in Fig. 2.1. In addition, there exists a fixed point, indicated in
red (gray) in Fig. 2.1, where all three subpopulations coexist (at equal densities),
namely (a∗, b∗, c∗) = µ

3µ+σ (1, 1, 1).
For a non-vanishing selection rate, σ > 0, Leonard and May [1] showed that

the reactive fixed point is unstable, and the system asymptotically approaches
the boundary of the phase space (given by the planes a = 0, b = 0, and c = 0).
There, they observed heteroclinic orbits: the system oscillates between states
where nearly only one subpopulation is present, with rapidly increasing cycle
duration. While mathematically fascinating, this behavior was recognized to
be unrealistic [1]. For instance, in a biological setting, the system will, due to
finite-size fluctuations, always reach one of the absorbing fixed points in the
vicinity of the heteroclinic orbit, and then only one population survives.

2.1 Linear stability analysis: Jordan normal
form

Our goal is to study the nonlinear dynamics close to the coexistence (reactive)
fixed point ~a∗. We would like to know its stability and the typical behavior of
a trajectory in its vicinity. To this end we introduce a shifted reference frame
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by defining a displacement vector

~x = ~a− ~a∗ = (a− a∗, b− b∗, c− c∗)T . (2.4)

Then
∂t~x = ~F (~x+ ~a) = DF |~a∗ ~x+ ~G(~x) (2.5)

where A ≡ DF |~a∗ is the Jacobian of ~F at the reactive fixed point ~a∗, and ~G(~x)
is the remaining nonlinear part of ~F (~a+ ~a). From the structure of ~F , we know
that ~G is quadartic in xA, xB , and xC . Explicitly one finds

A = − µ

3µ+ σ

 µ µ µ+ σ
µ+ σ µ µ
µ µ+ σ µ

 . (2.6)

and

~G =

µxA(xA + xB) + xAxC(µ+ σ)
µxB(xB + xC) + xBxA(µ+ σ)
µxC(xC + xA) + xCxB(µ+ σ)

 . (2.7)

As the matrix A is circulant, its eigenvalues can be obtained from a particularly
simple general formula (see e.g. [2]); they read:

λ0 = −µ ,
λ± = c1 ± iω (2.8)

with

c1 =
1
2

µσ

3µ+ σ
,

ω =
√

3
2

µσ

3µ+ σ
. (2.9)

and corresponding (complex) eigenvectors ξ0, and ξ±; note that ξ0 = 1
3 (1, 1, 1)T

is easy to guess. This shows that the reactive fixed point is linearly stable along
the eigendirection of the first eigenvalue λ0. As elaborated below, there exists
an invariant manifold [3] (including the reactive fixed point), that the system
quickly approaches. To first order such a manifold is the plane normal to the
eigendirection of λ0. On this invariant manifold, flows spiral away from the
reactive fixed point, which is an unstable spiral, as sketched in Fig. 2.1 (blue
trajectory). 1

1The linear stability analysis only reveals the local stability of the fixed points. The global
instability of the reactive fixed point is proven by the existence of a Lyapunov function L
[2, 1]:

L =
abc

ρ3
. (2.10)

In fact, using Eqs. (2.2), the time derivative of L is found to be always non-positive,

∂tL = −1

2
σρ−4abc

ˆ
(a− b)2 + (b− c)2 + (c− a)2

˜
≤ 0 . (2.11)

We note that ∂tL vanishes only at the boundaries (a = 0, b = 0 or c = 0) and along the
line of equal densities, a = b = c. The latter coincides with the eigendirection of λ0, along
which the system approaches the reactive fixed point. However, on the invariant manifold we
recover ∂tL < 0, corresponding to a globally unstable reactive fixed point, as exemplified by
the trajectory shown in Fig. 2.1.
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To complete the linear stability analysis, it is useful to transform to Jordan
normal form by introducing suitable coordinates (yA, yB , yC) originating in the
reactive fixed point. We choose the yC-axis to coincide with the eigenvector of
λ0, and the coordinates yA and yB to span the plane normal to the axis yC ,
forming an orthogonal set. The coordinates (yA, yB , yC) are shown in Fig. 2.1.
Such coordinates ~y = (yA, yB , yC) are, e.g., obtained by the linear transforma-
tion ~y = S~x, with the matrix S given by

S =
1
3

√3 0 −
√

3
−1 2 −1
1 1 1

 , (2.12)

To linear order this gives
∂t~y = J~y (2.13)

with

J = SAS−1 =

 c1 ω 0
−ω c1 0
0 0 −µ

 (2.14)

With these results we may now rewrite the dynamics in the reference frame of
the Jordan normal form which is the optimized frame for the linear stability
analysis.

∂t~y = J~y + S ~G(S−1~y) ≡ J~y + ~H(~y) (2.15)

where one finds (with a straightforward calculation)

~H(~y) =


√

3
4 σ
[
y2
A − y2

B

]
− σ

2 yAyB − 1
2yC

[
(6µ+ σ)yA −

√
3σyB

]
−σ4
[
y2
A − y2

B

]
−
√

3
2 σyAyB − 1

2yC
[√

3σyA + (6µ+ σ)yB
]

−(3µ+ σ)y2
C + σ

4

[
y2
A + y2

B

]
 (2.16)

As the RE (2.2) have one real eigenvalue smaller than zero and a pair of
complex conjugate eigenvalues, they fall into the class of the Poincaré-Andronov-
Hopf bifurcation, well known in the mathematical literature [3]. The theory of
invariant and center manifolds allows us to recast these equations into a normal
form. The latter, as discussed in the next section, will turn out to be extremely
useful in the derivation of the CGLE. In the following, we derive the invariant
manifold to second order as well as the normal form of the RE.

2.2 Invariant manifold

An invariant manifold is a subspace, embedded in the phase space, which is
left invariant by the RE, Eq.(2.2), i.e. by the deterministic dynamics. In the
phase space, this means that flows starting on an invariant manifold always
lie and evolve on it. Here, we consider a two-dimensional invariant manifold M
associated with the reactive fixed point of the RE (2.2) onto which all trajectories
(initially away from the invariant manifold) decay exponentially quickly. We call
this manifold M the reactive manifold. Upon restricting the dynamics to that
reactive invariant manifold, the system’s degrees of freedom are reduced from
three to two, which greatly simplifies the mathematical analysis.

To determine this invariant manifold, we notice that the eigenvector of the
eigenvalue λ0 < 0 at the reactive fixed point is a stable (attractive) direction.
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Therefore, to lowest order around the reactive fixed point, the invariant manifold
is simply the plane normal to the eigendirection of λ0. To parameterize the
invariant manifold sketched in Fig. 2.1, we seek a function M(yA, yB), with
yC = M(yA, yB). If all nonlinearities of the RE are taken into account, this is
a very complicated problem. However, for our purpose it is sufficient to expand
M to second order in yA, yB . As the invariant manifold is left invariant by the
RE, by definition, M must obey

∂tM
(
yA(t), yB(t)

)
=
∂M

∂yA
∂tyA +

∂M

∂yB
∂tyB = ∂tyC

∣∣∣
yC=M

. (2.17)

To linear order in yA and yB , we simply have M = 0 and recover yC = 0,
corresponding to the plane normal to the yC-direction. We have anticipated this
result above: to first order, the invariant manifold coincides with this plane, and
is tangential to it when higher orders are included. To second order, only linear
terms of ∂tyA, ∂tyB contribute to Eq. (2.17). The latter are invariant under
rotations in the (yA, yB)-plane, and M must obey the same symmetry. It is
therefore proportional to y2

A + y2
B . After some simple calculations, one obtains:

yC = M(yA, yB) =
σ

4µ
3µ+ σ

3µ+ 2σ
(y2
A + y2

B) + o(~y2) . (2.18)

The comparison of this expression for the invariant manifold, valid to second
order, with the numerical solutions of the RE (2.2) (which should, up to an
initial transient, lie on the invariant manifold) confirms that (2.18) is an accurate
approximation, with only minor deviations occurring near the boundaries of the
phase space.

2.3 Normal form

Nonlinear systems are notably characterized by the bifurcations that they ex-
hibit [3]. Normal forms are defined as the simplest differential equations that
capture the essential features of a system near a bifurcation point, and there-
fore provide insight into the system’s universal behavior. Here, we derive the
normal form associated with the RE (2.2) of the May-Leonard model and show
that they belong to the universality class of the Hopf bifurcation [3]. Below,
we demonstrate that this property allows to describe the system in terms of a
well-defined complex Ginzburg-Landau equation.

Restricting the (deterministic) dynamics onto the invariant manifold, given
by Eq. (2.18), the system’s behavior can be analyzed in terms of two variables.
Here, we choose to express yC as a function of yA and yB , with the resulting
rate equations (up to cubic oder) given up to third order by:

∂tyA =
µσ

2(3µ+ σ)
[
yA +

√
3yB

]
+
√

3
4
σ
[
y2
A − y2

B

]
− σ

2
yAyB

− σ(3µ+ σ)
8µ(3µ+ 2σ)

(
y2
A + y2

B

)[
(6µ+ σ)yA −

√
3σyB

]
+ o(y3) ,

∂tyB =
µσ

2(3µ+ σ)
[
yB −

√
3yA

]
− σ

4
[
y2
A − y2

B

]
−
√

3
2
σyAyB

− σ(3µ+ σ)
8µ(3µ+ 2σ

(
y2
A + y2

B

)[√
3σyA + (6µ+ σ)yB

]
+ o(y3) . (2.19)
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This set of nonlinear equations can be cast into a normal form (see [3] Chapter
2.2) by performing a nonlinear variable transformation ~y → ~z which eliminates
the quadratic terms and preserves the linear ones (i.e. ~y and ~z coincide to linear
order). As an Ansatz for such a transformation, we choose the most general
quadratic expression in ~y for the new variable ~z. 2 One finds for the normal
form of the RE in the new variables:

∂tzA = c1zA + ωzB − c2
(
zA + c3zB

)
(z2
A + z2

B) + o(~z3) ,

∂tzB = c1zB − ωzA − c2
(
zB − c3zA

)
(z2
A + z2

B) + o(~z3) . (2.22)

In these equations,

ω =
√

3
2

µσ

3µ+ σ
, (2.23)

is the (linear) frequency of oscillations around the reactive fixed point. The
constant

c1 =
1
2

µσ

3µ+ σ
, (2.24)

gives the intensity of the linear drift away from the fixed point, while

c2 =
σ(3µ+ σ)(48µ+ 11σ)

56µ(3µ+ 2σ)
, (2.25)

c3 =
√

3(18µ+ 5σ)
48µ+ 11σ

, (2.26)

are the coefficients of the cubic corrections. In complex notation, z = zA + izB ,
we have

∂tz = (c1 − iω)z − c2
(
1 + ic3

)
| z |2 z . (2.27)

To gain some insight into the dynamics in the normal form, it is useful to
rewrite (2.22) in polar coordinates (r, φ), where zA = r cosφ, zB = r sinφ. This
leads to

∂tr = r[c1 − c2r2] ,

∂tθ = −ω + c2c3r
2 . (2.28)

2The equations of motion (2.19) comprise quadratic and cubic terms. To recast Eqs. (2.19)
in their normal form, we seek a transformation allowing to eliminate the quadratic terms.
We make the Ansatz of a quadratic transformation ~y → ~z and determine the coefficients by
cancelling the quadratic contributions to the RE in the ~z variables, this leads to

zA = yA +
3µ+ σ

28µ
[
√

3y2A + 10yAyB −
√

3y2B ] ,

zB = yB +
3µ+ σ

28µ
[5y2A − 2

√
3yAyB − 5y2B ] . (2.20)

To second order, this nonlinear transformation can be inverted:

yA = zA −
3µ+ σ

28µ
[
√

3z2A + 10zAzB −
√

3z2B ] +
(3µ+ σ)2

14µ2
[z3A + zAz

2
B ] + o(z3) ,

yB = zB −
3µ+ σ

28µ
[5z2A − 2

√
3zAzB − 5z2B ] +

(3µ+ σ)2

14µ2
[z2AzB + z3B ] + o(z3) . (2.21)

With these expressions, one can check that equations of motion (2.19) are recast in the normal
form (2.22).
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These equations only have a radial dependence, which clearly reveals a polar
symmetry. They predict the emergence of a limit cycle of radius r =

√
c1/c2 and

therefore fall into the universality class of the (supercritical) Hopf bifurcation.
However, when all nonlinearities are taken into account, the RE (2.2) give rise
to heteroclinic orbits instead of limit cycles. The latter rapidly approach the
boundaries of the phase space, and thus are in general well separated from the
limit cycles predicted by (2.28). When comparing results inferred from the
CGLE and stochastic lattice simulations in the results section, we have shown
how this causes some quantitative mismatch, stemming from the differences
between the solutions of (2.2) and (2.28). However, we have also seen that most
features of the system are actually aptly captured by the normal form (2.22).
Elsewhere, it will be shown that mutations between subpopulations lead to limit
cycles resulting from a Hopf bifurcation.
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Recommended reading:

• P. Glendinning, ”Stability, Instability and Chaos”, Cambridge University
Press.

• S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and
Chaos, Springer.



Chapter 3

Spatial Games with Cyclic
Dominance

In this chapter we analyze the stochastic spatially-extended version of the May-
Leonard model [1]. We adopt an interacting particle description where indi-
viduals of all subpopulations are arranged on a lattice. Denote L the linear
size of the d-dimensional hypercubic lattice (i.e. the number of sites along one
edge), such that the total number of sites reads N = Ld. In this approach, each
site of the grid is either occupied by one individual or empty, meaning that the
system has a finite carrying capacity, and the reactions (see Fig.3.1) are then
only allowed between nearest neighbors. In addition, we endow the individuals
with a certain form of mobility. Namely, at rate ε all individuals can exchange
their position with a nearest neighbor. With that same rate ε, any individual
can also hop on a neighboring empty site. These exchange processes lead to an
effective diffusion of the individuals described by a diffusion constant D.

Selection, rate σ: Reproduction, rate µ:

A B
C

Figure 3.1: Individuals on neighboring sites may react with each other according
to the rules of cyclic dominance (selection), or individuals may give birth to new
individuals if they happen to be next to an empty site (reproduction).

The goal of this chapter is to analyze the spatio-temporal dynamics at
asymptotically long time scales as a function of the hopping and reaction rates.
We will learn that the mobility of the individuals, characterized in terms of their
diffusion constant, has a critical influence on species diversity. When mobility
exceeds a certain value, biodiversity is jeopardized and lost. In contrast, be-
low this critical threshold all subpopulations coexist and the spatial stochastic
model of cyclically interacting subpopulations self-organizes into regular, geo-
metric spiral waves. The latter become visible on the scale of a large number

21
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of interacting individuals, see Fig. 3.2 (right). In contrast, stochastic effects
solely dominate on the scale of a few individuals, see Fig. 3.2 (left), which inter-
act locally with their nearest neighbors. Spatial separation of subpopulations
starts to form on an intermediate scale, Fig. 3.2 (middle), where mobility leads
to fuzzy domain boundaries, with major contributions of noise. On a larger
scale, Fig. 3.2 (right), these fuzzy patterns adopt regular geometric shapes. As
shown below, the latter are jointly determined by the deterministic dynamics
and intrinsic stochastic effects.

Figure 3.2: The stochastic spatial system at different scales. Here, each of the colors
yellow, red, and blue (level of gray) represents one species, and black dots identify
empty spots. Left: Individuals are arranged on a spatial lattice and randomly in-
teract with their nearest neighbors. Middle: At the scale of about 1,000 individuals,
stochastic effects dominate the system’s appearance, although domains dominated by
different subpopulations can already be detected. Right: About 50,000 mobile inter-
acting individuals self-organize into surprisingly regular spiral waves.

In the following, we elucidate this subtle interplay between noise and space
by mapping - in the continuum limit - the stochastic spatial dynamics onto a
set of stochastic partial differential equations (SPDE) and, using tools of dy-
namical systems (such as normal forms and invariant manifolds), by recasting
the underlying deterministic kinetics in the form of a complex Ginzburg-Landau
equation (CGLE). The CGLE allows us to make analytical predictions for the
spreading velocity and wavelength of the emerging spirals waves.

3.1 Simulation results for the lattice gas model

We start with a description of the results obtained from stochastic simulations
of the lattice gas model. Typical snapshots of the steady states are shown in
Fig. 3.3 1. When the mobility of the individuals is low, one finds that all species
coexist and self-arrange by forming patterns of moving spirals. Increasing the
mobility D, these structures grow in size, and disappear for large enough D. In
the absence of spirals, the system adopts a uniform state where only one species
is present, while the others have died out. Which species remains is subject to
a random process, all species having equal chances to survive in the symmetric
model defined above.

The transition from the reactive state containing spirals to the absorbing
state with only one subpopulation left is a non-equilibrium phase transition.

1You may also want to have a look at the movies posted on http://www.theorie.

physik.uni-muenchen.de/lsfrey/research/fields/biological_physics/2007_004/. There
is also a Wolfram demonstration project which you can download from the web: http:

//demonstrations.wolfram.com/BiodiversityInSpatialRockPaperScissorsGames/.

http://www.theorie.physik.uni-muenchen.de/lsfrey/research/fields/biological_physics/2007_004/
http://www.theorie.physik.uni-muenchen.de/lsfrey/research/fields/biological_physics/2007_004/
http://demonstrations.wolfram.com/BiodiversityInSpatialRockPaperScissorsGames/
http://demonstrations.wolfram.com/BiodiversityInSpatialRockPaperScissorsGames/
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3e!6 3e!5 3e!4 Dc           D

Figure 3.3: Snapshots obtained from lattice simulations are shown of typical states
of the system after long temporal development (i.e. at time t ∼ N) and for different
values of D (each color, blue, yellow and red, represents one of the species and black
dots indicate empty spots). Increasing D (from left to right), the spiral structures
grow, and outgrow the system size at the critical mobility Dc: then, coexistence of all
three species is lost and uniform populations remain (right).

One way to characterize the transition is to ask how the extinction time T , i.e.
the time for the system to reach one of its absorbing states, scales with system
size N . In our analysis of the role of stochasticity in the Introduction we have
found the following classification scheme. If T ∼ N , the stability of coexistence is
marginal. Conversely, longer (shorter) waiting times scaling with higher (lower)
powers of N indicate stable (unstable) coexistence. These three scenarios can
be distinguished by computing the probability Pext that two species have gone
extinct after a waiting time t ∼ N . In Fig. 3.4, the dependence of Pext on
the mobility D is shown for different system sizes. For illustration, we have
considered equal reaction rates for selection and reproduction, and, without loss
of generality, set the time-unit by fixing σ = µ = 1. Increasing the system size
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Figure 3.4: The extinction probability Pext that, starting with randomly distributed
individuals on a square lattice, the system has reached an absorbing state after a
waiting time t ∼ N . Pext is shown as function of the mobility D (and σ = µ = 1) for
different system sizes: N = 20× 20 (green), N = 30× 30 (red), N = 40× 40 (purple),
N = 100 × 100 (blue), and N = 200 × 200 (black). As the system size increases, the
transition from stable coexistence (Pext = 0) to extinction (Pext = 1) sharpens at a
critical mobility Dc ≈ (4.5± 0.5)× 10−4. Figure taken from Ref.[4]
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N , a sharpened transition emerges at a critical value Dc = (4.5 ± 0.5) × 10−4

for the fraction of the entire lattice area explored by an individual in one time-
unit. Below Dc, the extinction probability Pext tends to zero as the system size
increases, and coexistence is stable. In contrast, above the critical mobility, the
extinction probability approaches one for large system size, and coexistence is
unstable.

As a central result one finds that there exists a critical value Dc such that a
low mobility D < Dc guarantees coexistence of all three species, while D > Dc

induces extinction of two of them, leaving a uniform state with only one species.

3.2 Reaction-diffusion equations

Before embarking into the endeavor of fully analyzing the non-equilibrium dy-
namics let us disregard for the moment the effect of noise and consider the
deterministic spatial dynamics. We consider a continuum limit where the linear
dimension of the lattice is chosen as the basic length unit, L ≡ 1, and hence
the lattice constant becomes a = 1/N1/d. Then the ensuing diffusion-reaction
equations for the density vector ~a(~r, t) = (a(~r, t), b(~r, t), c(~r, t)) reads

∂t~a(~r, t) = D∇2~a+ ~F (~a) (3.1)

with the macroscopic diffusion constant

D =
ε

dN2/d

(
d = 2 : D =

ε

2N

)
. (3.2)

We are interested in the limit N → ∞ and want the macroscopic diffusion
constant D to be finite in that limit. This implies that the rate ε becomes large
compared to the selection and reproduction rates, µ and σ, and thus - in the
lattice model - a large number of hopping and exchange events occurs between
two reactions.

Upon employing the results of the nonlinear dynamics we may project those
reaction-diffusion equations onto the reactive manifold M , and obtain:

∂tz = D∇2z + (c1 − iω)z − c2(1 + ic3)|z|2z . (3.3)

Here, we recognize the celebrated complex Ginzburg-Landau equation (CGLE),
whose properties have been extensively studied [5, 6]. In particular, it is known
that in two dimensions the latter gives rise to a broad range of coherent struc-
tures, including spiral waves whose velocity, wavelength and frequency can be
computed analytically.

3.2.1 The linear spreading velocity

In the stochastic simulations we have found that in the long-time regime the
system exhibits traveling waves. In the steady state, regions with nearly only
A individuals are invaded by a front of C individuals, which is taken over by B
in turn, and so on. This can be understood as a front propagation phenomenon
into an unstable state as follows. The complex Ginzburg-Landau equation has
an unstable fixed point at the reactive center, z = 0. Hence any small pertur-
bation will grow and lead to a spreading pulse whose form is determined by the



3.2. REACTION-DIFFUSION EQUATIONS 25

nonlinearities in the equation. Its velocity, however, can already be calculated
by analyzing the linearized equations; for a recent review on the theory of front
propagation into unstable states see Ref.[7].

The CGLE (3.3) linearized around the coexistence state z = 0 reads

∂tz(~r, t) = D∆z(~r, t) + (c1 − iω)z(~r, t) (3.4)

We perform a Fourier transformation

z̃(~k, t) =
∫ ∞
−∞

d~r z(~r, t)e−i~k ·~r , (3.5)

and make the Ansatz
z̃(~k, t) = z̄(~k) e−iΩ(~k)t (3.6)

for each Fourier mode. The linearized CGLE then give the following dispersion
relation

Ω(k) = ω + i(c1 −Dk2) , (3.7)

where k = |~k|. As Im Ω(k) > 0 for k2 < c1/D, the state z = 0 is linearly
unstable in this range of wavevectors k. This confirms the analysis of the spa-
tially homogeneous nonlinear dynamics (2.2), where we already found that the
coexistence fixed point is unstable. As for other systems characterized by fronts
propagating into unstable states [7], from Eq. (3.4) one can now compute the
linear spreading velocity, i.e. the speed v∗ at which fronts (e.g. generated by
local perturbations around z = 0) propagate. For completeness, we repeat the
classical treatment which can, e.g., be found in [7]. A Fourier back-transform
of the above results gives

z(~x, t) =
∫

d2k

(2π)2
z̄(~k) ei~k · ~x−iΩ(~k)t (3.8)

Say the front is propagating with a speed ~v∗ = v∗êx in the x-direction. Then in
the co-moving frame, ~ξ = ~x− ~v∗t, this velocity is determined (self-consistently)
such that the ensuing expression of the pulse form does neither grow nor decay

z(~ξ, t) =
∫

d2k

(2π)2
z̄(~k) ei~k · ~ξ−i[Ω(~k)−~v∗ ·~k]t (3.9)

For large times, t → ∞, the integral may be performed by a saddle-point ex-
pansion with the saddle k∗ determined by

d[Ω(k)− v∗k]
dk

|k∗= 0 ⇒ v∗ =
dΩ(k)
dk

|k∗ (3.10)

and the integral given to leading order by

z(~ξ, t) ∝ ei~k · ~ξ−i[Ω(k∗)−~v∗ ·~k]t (3.11)

In order for this to neither grow or decay we must have

Im Ω(k∗)− v∗Im k∗ = 0 ⇒ v∗ =
Im Ω(k∗)

Im k∗
(3.12)
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Hence the linear spreading velocity is obtained by determining a wavevector k∗
according to

dΩ(k)
dk

∣∣∣∣
k∗

=
Im Ω(k∗)

Im k∗
≡ v∗ . (3.13)

The first equality singles out k∗ and the second defines the linear spreading
velocity v∗. Here, one finds:

Re k∗ = 0 , Im k∗ =
√
c1/D , (3.14)

and

v∗ = 2
√
c1D = 2

√
D

√
1
2

µσ

3µ+ σ
. (3.15)

3.2.2 Wavelength and frequency

To determine analytically the wavelength λ and the frequency Ω of the spiral
waves, the (cubic) nonlinear terms of the CGLE (3.3) have to be taken into
account. From the understanding gained in the previous sections, we make a
traveling-wave ansatz z(~r, t) = Ze−iΩt−i

~k ·~r leading to the following dispersion
relation (with k = |~k|)

Ω(k) = ω + i(c1 −Dk2)− c2(i+ c3)Z2 . (3.16)

Separating real and imaginary parts, we can solve for Z, resulting in Z2 =
(c1 − Dk2)/c2. As already found above, the range of wavevectors that yield
traveling wave solutions is therefore given by k <

√
c1/D. The dispersion

relation can, upon eliminating Z, be rewritten as

Ω(k) = ω + c3(Dk2 − c1). (3.17)

As manifests on the RHS of (3.17), Ω comprises two contributions. On the
one hand there is ω, acting as a “background frequency”, which stems from the
nonlinear nature of the dynamics and is already accounted by (2.2) when the
system is spatially homogeneous. On the other hand, the second contribution
on the RHS of (3.17) is due to the spatially-extended character of the model
and to the fact that traveling fronts propagate with velocity v∗, therefore gen-
erating oscillations with a frequency of v∗k. Both contributions superpose and,
to sustain a velocity v∗, the dynamics selects a wavenumber ksel according to
the relation Ω(ksel) = ω + v∗ksel [7]. Solving this equation for ksel under the
restriction ksel <

√
c1/D yields

ksel =
√
c1

c3
√
D

(
1−

√
1 + c23

)
. (3.18)

Analytical expressions of the frequency Ω(ksel) and of the wavelength of the
spirals, λ = 2π/ksel, can be obtained immediately from (3.17) and (3.18). In
fact, the frequency reads

Ω = Ω(qsel) = ω +
2c1
c3

(
1−

√
1 + c23

)
, (3.19)
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and the wavelength is given by

λ =
2πc3
√
D

√
c1
(
1−

√
1 + c23

) . (3.20)

The expressions (3.18)-(3.20) have been derived by considering a traveling
wave ansatz as described above. The latter hold in arbitrary dimensions. How-
ever, while traveling waves appear in one dimensions, in higher dimensions, the
generic emerging structures are somewhat different. E.g. rotating spirals arise
in two dimensions, as described in this article, while scroll waves are robust
solutions of the CGLE (3.3) in three spatial dimensions [6]. However, the char-
acteristic properties of these patterns, such as wavelength and frequency, still
agree with those of traveling waves. Indeed, concerning the dynamical system
investigated in this article, we have shown how the self-forming spirals are well
characterized by the expressions (3.19) and (3.20). The same system studied in
three dimensions is therefore expected to exhibit an entanglement of scroll waves,
whose wavelengths and frequencies are again given by Eqs. (3.19) and (3.20).

As will become clear later, these results for the spreading velocity and the
wavelength actually remain valid even in the presence of noise!

3.3 The role of noise

There is noise in the system due to the stochastic nature of all processes and the
discrete character of the individuals. It plays an important role for the system’s
dynamics. In particular - as we will see - it is responsible for the non-equilibrium
phase transition from the reactive state into one of the absorbing states.

The way one can deal with the noise depends on the expected stationary
state! If the stationary state contains many individuals of each species (a macro-
scopic number) one may perform a Kramers-Moyal expansion (low noise limit).
If, however, the stationary state is some kind of absorbing state where all fluctu-
ations have died out, a different approach is called for. Then one has to employ
a Fock space formulation to map the dynamics of the master equation to a path
integral measure with an appropriate action S (Doi-Peliti formalism). From
this action one may then derive a Langevin equation for a set of complex den-
sity fields whose averages and correlation functions characterize the dynamics
towards the absorbing state (strong noise limit). Though both of these ap-
proaches look superficially the same, they are fundamentally different. In a
low-noise approximation the noise always turns out to be real but it becomes a
complex (imaginary) quantity in the strong noise limit!

Here, we restrict ourselves to the behavior of the system in the reactive
state where we can use a low noise approximation to find the appropriate noisy
diffusion-reaction equation. We consider large system sizes N where a stochastic
description in terms of Fokker-Planck equations is generally appropriate [8, 9].
The latter can be obtained from Kramers-Moyal expansion (i.e. a system-size
expansion) of the underlying master equation. In Fokker-Planck equations, fluc-
tuations are encoded in a noise matrix denoted B. Equivalently, a set of Ito
stochastic (partial) differential equations (often referred to as Langevin equa-
tions) can be systematically derived. For these stochastic partial differential
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equations (SPDE), the noise, often white, is encoded in the “square root” of
the matrix B. Namely, in this framework, the strength of fluctuations and the
correlations are given by a matrix C, defined as CCT = B. Below, we derive
the relevant contributions to the noise matrices B and C, which lead to the
appropriate stochastic partial differential equations (SPDE) of the system.

As discussed in the next two subsections, the noise resulting from the reaction
terms dominates by a factor

√
N over the noise originating from hopping, and

we find the following set of stochastic nonlinear differential equations

∂ta(~r, t) = D∆a(~r, t) +AA[~a] + CA[~a]ξA , (3.21)
∂tb(~r, t) = D∆b(~r, t) +AB [~a] + CB [~a]ξB , (3.22)
∂tc(~r, t) = D∆c(~r, t) +AC [~a] + CC [~a]ξC , (3.23)

or in short
∂t~a(~r, t) = D∆~a(~r, t) +A[~a] + C[~a] · ~ξ (3.24)

where ∆ denotes the Laplacian operator, and the Gaussian white noise terms
ξi(~r, t) have a spatio-temporal dependence, with the correlations

〈ξi(~r, t)ξj(~r′, t′)〉 = δijδ(~r − ~r′)δ(t− t′) . (3.25)

and

CA =
1√
N

√
a(~r, t)

[
µ(1− ρ(~r, t)) + σc(~r, t)

]
,

CB =
1√
N

√
b(~r, t)

[
µ(1− ρ(~r, t)) + σa(~r, t)

]
,

CC =
1√
N

√
c(~r, t)

[
µ(1− ρ(~r, t)) + σb(~r, t)

]
. (3.26)

Note that the reaction term derived in the Kramers-Moyal expansion is identical
- as it must - to the corresponding nonlinear drift term in the diffusion-reaction
equation, ~F [~a] = A[~a].

3.3.1 Kramers-Moyal expansion of the reaction terms

Since noise terms stemming from the reactions (2.1) are local, they may be de-
rived considering the stochastic non-spatial system, i.e. the well-mixed system.
Denotind ~a = (a, b, c) the frequencies of the three subpopulations A, B, and C,
the Master equation for the time-evolution of the probability P (~a, t) of finding
the system in state ~a at time t reads

∂tP (~a, t) =
∑
δ~a

[
P (~a+ δ~a, t)W~a+δ~a→~a − P (~a, t)W~a→~a+δ~a

]
. (3.27)

Hereby, W~a→~a+δ~a denotes the transition probability from state ~a to the state
~a+δ~a within one time step; summation extends over all possible changes δ~a. The
relevant changes δ~a in the densities result from the basic reactions (2.1); as an
example, concerning the change in the density of the subpopulation A, it reads
δa = 1/N in the reaction A� µ−→ AA, δa = −1/N in the reaction CA σ−→ C�,
and zero in the remaining ones. Concerning the rates for these reactions, we
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choose the unit of time such that, on average, every individual reacts once per
time step. The transition rates resulting from the reactions (2.1) then read
W = Nσac for the reaction CA

σ−→ C� and W = Nµa(1 − a − b − c) for
A� µ−→ AA. Transition probabilities associated with all other reactions (2.1)
follow analogously.

The Kramers-Moyal expansion [10] of the Master equation is an expansion
in the increment δ~a, which is proportional to N−1. Therefore, it may be under-
stood as an expansion in the inverse system size N−1. To second order in δ~a, it
yields the (generic) Fokker-Planck equation [10]:

∂tP (~a, t) = −∂i[Ai(~a)P (~a, t)] +
1
2
∂i∂j [Bij(~a)P (~a, t)] . (3.28)

Hereby, the summation convention implies sums carried over the indices i, j ∈
{A,B,C}. According to the Kramers-Moyal expansion, the quantities Ai and
Bij read [10]

Ai(~a) =
∑
δ~a

δsiW(~a→ ~a+ δ~a) ,

Bij(~a) =
∑
δ~a

δsiδsjW(~a→ ~a+ δ~a) . (3.29)

Note that B is symmetric.
As an example, we now present the calculation of AA(~a). The relevant

changes δa result from the reactions A� µ−→ AA and CA
σ−→ C�. The corre-

sponding rates as well as the changes in the density of subpopulation A have
been given above; together, we obtain AA(~a) = µa(1 − a − b − c) − σac. The
other quantities are computed analogously; eventually, one finds

AA(~a) = µa(1− a− b− c)− σac ,
AB(~a) = µb(1− a− b− c)− σab ,
AC(~a) = µc(1− a− b− c)− σbc , (3.30)

and

BAA(~a) = N−1 [µa(1− a− b− c) + σac] ,

BBB(~a) = N−1 [µb(1− a− b− c) + σab] ,

BCC(~a) = N−1 [µc(1− a− b− c) + σbc] . (3.31)

The well-known correspondence between Fokker-Planck equations and Ito cal-
culus [9] implies that (3.28) is equivalent to the following set of Ito stochastic
differential equations:

∂ta = AA + CAAξA ,
∂tb = AB + CBBξB ,
∂tc = AC + CCCξC . (3.32)

Hereby, the ξi denotes (uncorrelated) Gaussian white noise terms. The matrix
C is defined from B via the relation CCT = B [9]. As B is diagonal, we may
choose C diagonal as well, with the square roots of the corresponding diagonal
entries of B on the diagonal.
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3.3.2 Kramers-Moyal expansion of the diffusion term

Diffusion couples two nearest neighboring lattice sites ~r and ~r′. The rate for an
individual A to hop from ~r to ~r′ is given by εz−1a(~r)[1 − a(~r′)] (for simplicity,
we drop the time-dependence). Together with the reverse process, i.e. hopping
from site ~r′ to ~r, this yields the non-diagonal part of B(~r, ~r′) (see e.g. [10]):

B(~r, ~r′ 6= ~r) = − ε

Nz

{
a(~r)[1− a(~r′)] + a(~r′)[1− a(~r)]

}
. (3.33)

Similarly, the diagonal entries of B read

B(~r, ~r) =
ε

Nz

∑
n.n.~r′′

{
a(~r)[1− a(~r′′)] + a(~r′′)[1− a(~r)]

}
, (3.34)

where the sum runs over all nearest neighbors (n.n.) ~r′′ of the site ~r. It follows
from these expressions that

B(~r, ~r′) =
ε

Nz

∑
n.n.~r′′

(δ~r,~r′ − δ~r′,~r′′)

×
{
a(~r)[1− a(~r′′)] + a(~r′′)[1− a(~r)]

}
. (3.35)

In the continuum limit, with δr → 0, we use the fact that δ~r,~r′ → δrdδ(~r − ~r′)
and obtain

B(~r, ~r′) =
ε

Nz
δrd

d∑
±,i=1

[
δ(~r − ~r′)− δ(~r ± δr~ei − ~r′)

]
×
{
a(~r)[1− a(~r ± δr~ei)] + a(~r ± δr~ei)[1− a(~r)]

}
. (3.36)

As in Eq. (??), we expand δ(~r ± δr~ei − ~r′) and a(~r ± δr~ei) to second order and
observe that only quadratic terms in δr do not cancel. With ε = DdN2/d and
δr = N−1/d, we thus find:

B(~r, ~r′) =
D

N2
∂~r∂~r′

[
δ(~r − ~r′)a(~r)(1− a(~r)

]
. (3.37)

The noise matrix B of the Fokker-Planck equation associated with the exchange
processes therefore scales as N−2. In the corresponding SPDE, the contribution
to noise of the exchange processes scales like N−1.

3.3.3 Stochastic partial differential equations

The comparison of snapshots obtained from lattice simulations with the numer-
ical solutions of the SPDE reveals a remarkable coincidence of both approaches
(see Fig. 3.5). Of course, due to the inherent stochastic nature of the interact-
ing particle system, the snapshots do not match exactly for each realization. To
reach a quantitative assessment on the validity of the SPDE (3.23) to describe
the spatio-temporal properties of the system in the continuum limit, we have
computed various correlation functions for the system’s steady state. The at-
tainment of the steady state is assessed by computing the long time evolution of
the densities and various snapshots as those of Fig. 3.5. When the densities are
found not to fluctuate significantly around their average values and the snap-
shots display statistically the same robust features at various times (typically
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D = 1× 10−6 D = 3× 10−6 D = 1× 10−5 D = 3× 10−5 D = 3× 10−4
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Figure 3.5: The reactive steady states. We show snapshots emerging in simulations of
the interacting particle system (2.1) (top row) and obtained by solving the SPDE (3.23)
(bottom row). Each color (level of gray) represents a different species (black dots
denote empty spots). From left to right, the diffusion constant is increased from
D = 1×10−6 to D = 3×10−4. The latter value is slightly below the critical threshold
above which the spiral structures can no longer fit within the system [4]; see text. The
system sizes used in the stochastic simulations are L = 1000 in the upper two panels,
L = 300 for that at bottom, and L = 500 for the other two (middle). The selection
and reproduction rates are chosen as σ = µ = 1.
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Figure 3.6: Correlation functions. The spatial correlation gAA(r) as function of r
in the reactive steady state is shown. We report results obtained from stochastic
simulations (red circles, for a lattice of linear size L = 1000) and numerical solutions
of the SPDE (3.23), blue squares, and notice an excellent agreement. In both cases,
results have been obtained for a value D = 3 × 10−6 and µ = σ = 1. The typical
correlation length `corr as a function of the diffusion constant D is shown in the inset
(on a double logarithmic scale). The scaling relation `corr ∼

√
D, indicated by a black

line, is clearly confirmed. We have also reported the results for the static correlation
function gAA(r) of the patterns predicted by the deterministic PDE (green triangles);
see text. The latter are found to be markedly less damped than those arising in the
stochastic descriptions of the system.
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Figure 3.7: Autocorrelation. We show the correlation gAA(t) as a function of time t.
Results from stochastic simulations (red/gray line) are compared with those obtained
from the numerical solutions of the SPDE (blue squares), as well as with those com-
puted from the deterministic PDE (green triangles). All results are in excellent agree-
ment with each other and are characterized by oscillations at frequency Ωnum ≈ 0.103
(for µ = σ = 1); the latter is independent from the value of the diffusion D. These
oscillations reflect the rotation of the spiral waves. The results from the SPDE and
deterministic PDE have been obtained using D = 10−5, while stochastic simulations
have been performed on a lattice of length L = 300 with D = 10−4.

t ∼ 100 − 1000), the system is considered to be settled in its (reactive) steady
state.

We first consider equal-time correlation functions, which yield information
about the size of the emerging spirals. As an example, we focus on the cor-
relation gAA(|~r − ~r′|) at ~r and ~r′ of the subpopulation A, gAA(|~r − ~r′|) =
〈a(~r, t)a(~r′, t)〉 − 〈a(~r, t)〉〈a(~r′, t)〉. Here, the brackets 〈...〉 stand for an aver-
age over all histories. In the steady state, the time dependence drops out and,
because of translational and rotational invariance, the latter depends only on the
separating distance |~r−~r′|. In Fig. 3.6, we report results for gAA obtained from
lattice simulations (red circles) and from numerical solutions of the SPDE (3.23)
(blue squares), finding an excellent agreement between them. When the sep-
arating distance vanishes, the correlation reaches its maximal value and then
decreases, exhibiting (damped) spatial oscillations. The latter reflect the un-
derlying spiralling spatial structures, where the three subpopulations alternate
in turn. Damping results from the averaging over many small spirals. As de-
scribed in the previous subsection, the correlation functions are characterized
by their correlation length `corr, which conveys information on the typical size
of the spirals. In the inset of Fig. 3.6, we show the dependence of the correlation
length on the diffusion rate D in a double logarithmic plot which confirms the
scaling relation `corr ∼

√
D, also inferred from general considerations.

We now consider the time dependence of the correlation functions and study
the autocorrelation gAA(|t − t′|) of subpopulation A at times t and t′, for a
fixed spatial position. This quantity is given by gAA(|t− t′|) = 〈a(~r, t)a(~r, t′)〉−
〈a(~r, t)〉〈a(~r, t′)〉 and only depends on the time difference |t − t′|. Both lattice
simulations and SPDE (3.23) yield oscillating correlation functions, as shown
in Fig. 3.7. This periodic behavior, with a frequency numerically found to
be Ωnum ≈ 0.103 (for σ = µ = 1), stems from the rotational nature of the
spiral waves and is independent of the diffusion constant D. Below, this value is
compared with an analytical prediction inferred from a deterministic description
of the spatial system. In the time intervals which we have investigated, t ∼
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1, 000, the oscillations, as reported in Fig. 3.7, are undamped. Therefore, on this
time-scale, the position of the spirals’ vortices is stable in the steady state and
not influenced by noise. On larger time-scales, however, we expect the vortices
to perform random walks (see [5] for a general discussion as well as [11, 12] for
investigations of vortex dynamics in rock-paper-scissors models), with associated
vortex annihilation and creation processes. Studies exploring such a behavior
are promising for further broadening the understanding of stochastic effects on
nonequilibrium steady state.

3.3.4 The spirals’ velocities, wavelengths, and frequencies

Above, we have found that characteristic properties of the emerging spiral waves,
like their wavelength and frequency, are unaffected by noise. To compute these
quantities analytically, it is therefore not necessary to take noise into account,
and we may focus on the study of the deterministic PDE (??). In Subsection ??,
we show how the dynamics of the latter is essentially captured by an appropri-
ate complex Ginzburg-Landau equation (CGLE), given by Eq. (3.3) for the case
under consideration here. The CGLE (3.3) allows to derive analytical results for
the emergence of spiral waves, their stability and their spreading velocity, as well
as their wavelength and frequency. We detail these findings in Subsections ??
and 3.2.2. Here, we assess the accuracy and validity of these analytical predic-
tions by comparing them with values obtained from the numerical solutions of
the SPDE (3.23).

Figure 3.8: Spreading velocity. We report the dependence of front velocity v∗ (rescaled
by a factor

√
D) on the reproduction rate µ. The time scale is set by keeping σ = 1.

In red (full line), we report the analytical predictions (3.14) obtained from the CGLE,
which are compared with numerical results (black dots). The latter are obtained from
the numerical solutions of the SPDE (3.23).

Let us first consider the spreading velocity v∗ of the emerging wave fronts.
The analytical value, inferred from the CGLE (3.3) and derived in Subsection ??
[see Eq. (3.14)], reads v∗ = 2

√
c1D, where c1 = µσ/[2(3µ + σ)] is a coefficient

appearing in the CGLE (3.3). In numerical computations, the front velocity is
obtained from the wavelength λ and the frequency Ω of the emerging spirals.
Namely, the wavelength λnum can be inferred from snapshots (as in Fig. 3.5),
and the frequency Ωnum is computed from the oscillations of the autocorrelation
(as in Fig. 3.7). The velocity then follows via vnum = λnumΩnum/2π. As the
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wavelength is proportional to
√
D and the frequency does not depend on the

diffusion constant, one can easily check that the relation vnum = λnumΩnum/2π
confirms that vnum ∼

√
D, as in Eq. (3.14). In Fig. 3.8, we compare the analyt-

ical prediction (3.14) for v∗ with results obtained from the numerical solution of
the SPDE (3.23), as function of the reproduction rate µ (setting σ = 1, we fix
the time scale), and find a good agreement. On the one hand, for small values
of µ (much lower than the selection rate, µ� 1), reproduction is the dominant
limiter of the spatio-temporal evolution. In the limit µ → 0, the front velocity
therefore only depends on µ. From dimensional analysis, it follows v∗ ∼ √µ,
as also confirmed by the analytical solution Eq. (3.14). On the other hand, if
reproduction is much faster than selection, µ� 1, the latter limits the dynam-
ics, and we recover v∗ ∼ √σ. In Fig. 3.8, as σ = 1, this behavior translates
into v∗ being independent of µ in this limit. While the numerical and analytical
results coincide remarkably for low reproduction rates (i.e. µ ≤ 0.3), systematic
deviations (≈ 10%) appear at higher values. As an example, when selection and
reproduction rates are equal, σ = µ = 1 (as was considered throughout the last
section), we have numerically found a velocity vnum ≈ 0.63

√
D, while Eq. (3.14)

yields the analytical result v∗ =
√
D/2 ≈ 0.71

√
D.

Figure 3.9: The spirals’ wavelength. We show the functional dependence of the
wavelength λ on the rate µ (with σ = 1), and compare numerical results (black circles),
obtained from the numerical solutions of the SPDE (3.23), to analytical predictions
(red line). The latter stem from the CGLE and are given by Eq. (3.20). They differ
from the numerics by a factor of 1.6, see text. Adjusting this factor, c.f. the blue line,
the functional dependence is seen to agree very well with numerical results.

Concerning the spirals’ wavelengths and frequencies, in Subsection 3.2.2,
we analytically infer predictions from the CGLE (3.3) given by Eqs. (3.19)
and (3.20). We have checked these results against numerical computations.
In Fig. 3.9, the analytical estimates for the wavelength λ are compared with
those obtained from the numerical solution of the SPDE (3.23) for different val-
ues of the reproduction rate µ. We notice that there is an excellent agreement
between analytical and numerical results for the functional dependence of λ on
µ. For low reproduction rates (µ � 1) we have λ ∼ 1/

√
µ, while when repro-

duction occurs much faster than selection (µ� 1), the dynamics is independent
of µ and λ ∼ 1/

√
σ. We have also found that the analytical result predicts an

amplitude of λ which exceeds that obtained from numerical computations by a
constant factor ≈ 1.6, taken into account in Fig. 3.9. We attribute this devia-
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tion to the fact that the CGLE (3.3) (stemming from the normal form (2.22))
describes a dynamics exhibiting a limit cycle, while the full May-Leonard rate
equations (2.2) are characterized by heteroclinic orbits. The correct functional
dependence of the wavelength λ on the reproduction rate µ is therefore espe-
cially remarkable. Elsewhere it will be shown that in the presence of mutations,
inducing a limit-cycle behavior, the description of the emerging spiral waves in
terms of CGLE (3.3) becomes fully accurate.

For the spirals’ frequency, we analytically obtain Ω = Ω(qsel) = ω +
2(c1/c3)

(
1−

√
1 + c23

)
, see Subsection 3.2.2. As already inferred from numer-

ical simulations (Sec. III.B), Ω does not depend on the diffusion D. Quanti-
tatively, and as an example for µ = σ = 1, we obtain the analytical prediction
Ω ≈ 0.14, which differs by a factor ≈ 1.4 from the numerical value Ωnum ≈ 0.103
found in Fig. 3.7. As for the wavelength, this difference stems from the fact that
the May-Leonard rate equations (2.2) predict heteroclinic orbits approaching
the boundaries of the phase space, while the dynamics underlying the CGLE is
characterized by limit cycles (usually distant from the edges of the phase space)
resulting from a (supercritical) Hopf bifurcation.

3.3.5 Scaling relation and critical mobility

An important question is to understand what is the mechanism driving the
transition from a stable coexistence to extinction at the critical mobility Dc. To
address this issue, we first note that varying the mobility induces a scaling effect,
as illustrated in Fig. 3.3. In fact, increasing the diffusion D results in zooming
into the system. As discussed above, the system’s dynamics is described by
a set of suitable stochastic partial differential equations (SPDE) whose basic
properties help rationalize this scaling relation. In fact, the mobility enters
the stochastic equations through a diffusive term D∆, where ∆ is the Laplace
operator involving second-order spatial derivatives. Such a term is left invariant
when D is multiplied by a factor α while the spatial coordinates are rescaled
by
√
α. It follows from this reasoning that varying D into αD translates in a

magnification of the system’s characteristic size by a factor
√
α (say α > 1).

This implies that the spirals’ wavelength λ is proportional to
√
D (i.e. λ ∼

√
D)

up to the critical Dc .
When the spirals have a critical wavelength λc, associated with the mobility

Dc, these rotating patterns outgrow the system size which results in the loss
of biodiversity. In the “natural units” (length is measured in lattice size units
and the time-scale is set by keeping σ = 1), we have numerically computed
λc = 0.8 ± 0.05. This quantity has been found to be universal, i.e. its value
remains constant upon varying the rates σ and µ. However, this is not the case of
the critical mobility Dc, which depends on the parameters of the system. Below
the critical threshold Dc, the dynamics is characterized by the formation of
spirals of wavelength λ(µ,D) ∼

√
D. This relation, together with the universal

character of λc, leads to the following equation:

Dc(µ) =
( λc
λ(µ,D)

)2

D , (3.38)

which gives the functional dependence of the critical mobility upon the sys-
tem’s parameter. To obtain the phase diagram reported in Fig. 3.10 we have
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used Eq. (3.38) together with values of λ(µ,D) obtained from numerical simu-
lations. For computational convenience, we have measured λ(µ,D) by carrying
out a careful analysis of the SPDE’s solutions. The results are reported as black
dots in Fig. 3.10. We have also confirmed these results through lattice simula-
tions for systems with different sizes and the results are shown as blue dots in
Fig. 3.10. Finally, we have taken advantage of the analytical expression (up to a
constant prefactor, taken into account in Fig. 3.10) of λ(µ,D) derived from the
complex Ginzburg-Landau equation (CGLE) associated with the system’s dy-
namics: with Eq. (3.38), we have obtained the red curve displayed in Fig. 3.10.
This figure corroborates the validity of the various approaches (SPDE, lattice
simulations and CGLE), which all lead to the same phase diagram where the
biodiverse and the uniform phases are identified.
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Figure 3.10: Phase diagram. The critical diffusion constant Dc as a function of
the reproduction rate µ yields a phase diagram with a phase where biodiversity is
maintained as well as a uniform one where two species go extinct. Time unit is set
by σ = 1. On the one hand, we have computed Dc from lattice simulations, using
different system sizes. The results are shown as blue crosses. On the other hand, we
have calculated Dc using the approach of stochastic PDE (black dots, black lines are
a guide to the eye) as well as analytically via the complex Ginzburg-Landau equation
(red line). Varying the reproduction rate, two different regimes emerge. If µ is much
smaller than the selection rate, i.e. µ� σ, reproduction is the dominant limiter of the
temporal development. In this case, there is a linear relation with the critical mobility,
i.e. Dc ∼ µ, as follows from dimensional analysis. In the opposite case, if reproduction
occurs much faster than selection (µ � σ), the latter limits the dynamics and Dc

depends linearly on σ, i.e. Dc ∼ σ. Here, as σ = 1 is kept fixed (time-scale unit), this
behaviour reflects in the fact that Dc approaches a constant value for µ� σ.

3.4 Discussion

Individuals’ mobility as well as intrinsic noise have crucial influence on the self-
formation of spatial patterns. We have quantified their influence by investigating
a stochastic spatial model of mobile individuals experiencing cyclic dominance
via interactions of ‘rock-paper-scissors’ type. We have demonstrated that indi-
viduals’ mobility has drastic effects on the emergence of spatio-temporal pat-
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terns. Low exchange rate between neighboring individuals leads to the formation
of small and irregular patterns. In this case coexistence of all subpopulations is
preserved and the ensuing patterns are mainly determined by stochastic effects.
On the other hand, in two dimensions, larger exchange rates (yet of same order
as the reaction rates) yield the formation of (relatively) regular spiral waves
whose rotational nature is reminiscent of the cyclic and out-of-equilibrium en-
suing kinetics. In fact, the three subpopulations endlessly, and in turn, hunt
each other. The location and density of the spirals’ vortices is either deter-
mined by initial spatial inhomogeneities, if these take pronounced shape, or by
stochasticity. In the latter case, internal noise leads to an entanglement of many
small spirals and a universal vortex density of about 0.5 per square wavelength.
Increasing the diffusion rate (i.e. individuals’ mobility), the typical size of the
spiral waves rises, up to a critical value. When that threshold is reached, the spi-
ral patterns outgrow the two-dimensional system and there is only one surviving
subpopulation covering uniformly the system [4].

The language of interacting particles enabled us to devise a proper treat-
ment of the stochastic spatially-extended system and to reach a comprehensive
understanding of the resulting out-of-equilibrium and nonlinear phenomena. In
particular, we have shown how spatio-temporal properties of the system can
be aptly described in terms of stochastic partial differential equations (SPDE)
and confirmed our findings with lattice simulations. We have paid special at-
tention to analyze the wavelength and frequency of the spiral waves, as well as
the velocity of the propagating fronts. Numerical solutions of the SPDE have
been shown to share (statistically) the same steady states as the lattice sim-
ulations, with the emerging spiral waves characterized in both cases the same
wavelength, overall sizes and frequency. We have also studied the influence of
stochasticity on the properties of the coexistence state and its spatio-temporal
structure. Namely, we have compared the results obtained from the SPDE with
those of the deterministic PDE (obtained by dropping the noise contributions in
the SPDE), which still yield spiralling structures. This allowed us to shed light
on the fact that, in the presence of (sufficient) mobility, the wavelength and
frequency of the spirals are not affected by internal noise. However, there are
major differences between the stochastic and deterministic descriptions of the
system. One of the most important is the influence of the initial conditions. On
the one hand, if initial spatial inhomogeneities are larger than the noise level, or
if noise is absent as in the deterministic descriptions, these initial spatial struc-
tures determine the position of the spirals’ vortices. In this situation, the system
“memorizes” its initial state, and the latter crucially influences the overall size
of the emerging spiral waves. On the other hand, for rather homogeneous initial
densities (at values of the unstable reactive fixed point), the patterns emerging
from the stochastic descriptions (lattice simulations and SPDE) are caused by
noise and characterized by a universal density of 0.5 spiral vortices per square
wavelength. While we have provided qualitative explanations of these findings,
a more profound understanding is still desirable and could motivate further
investigations.

We have also shown that analytical expressions for the spirals’ wavelength
and frequency can be determined by means of a complex Ginzburg-Landau
equation (CGLE) obtained by recasting the PDE of the system, restricted onto
an invariant manifold, in a normal form. There is good agreement between
analytical predictions stemming from the system’s CGLE and the numerical
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results (obtained from stochastic lattice simulations as well as the numerical
solution of the SPDE). This can be traced back to the fact that May-Leonard
rate equations are characterized by heteroclinic orbits very much reminiscent of
limit cycles resulting from a Hopf bifurcation. The fact that the dynamics can
be recast in the form of a CGLE, known to give rise to the emergence of coherent
structures, reveals the generality of the phenomena discussed in this work and
greatly facilitates their quantitative analysis. In particular, the emergence of an
entanglement of spiral waves in the coexistence state, the dependence of spirals’
size on the diffusion rate, and the existence of a critical value of the diffusion
above which coexistence is lost are robust phenomena. This means that they
do not depend on the details of the underlying spatial structure: While, for
specificity, we have (mostly) considered square lattices, other two-dimensional
topologies (e.g. hexagonal or other lattices) will lead to the same phenomena,
too. Also the details of the cyclic competition have no qualitative influence,
as long as the underlying rate equations exhibit an unstable coexistence fixed
point and can be recast in the universality class of the Hopf bifurcations. We
still note that instead of defining the model in terms of chemical reactions, as
done here (2.1), we can equivalently choose a formulation in terms of payoff
matrices [13, 2].

We have investigated the system’s behavior in two spatial dimensions. How-
ever, our approach, using a continuum limit to derive the SPDE (3.23) as well as
the CGLE (3.3), is equally valid in other dimensions and expected to describe
the formation of spatial patterns, as long as the mobility is below a certain
threshold value [4]. As examples, in one dimension, the CGLE yields traveling
waves, while “scroll waves”, i.e. vortex filaments, result in three dimensions [6].

In these lecture notes, we have mainly focused on the situation where the
exchange rate between individuals is sufficiently high, which leads to the emer-
gence of regular spirals in two dimensions. However, when the exchange rate is
low (or vanishes), we have seen that stochasticity strongly affects the structure of
the ensuing spatial patterns. In this case, the (continuum) description in terms
of SPDE breaks down. In this situation, the quantitative analysis of the spatio-
temporal properties of interacting particle systems requires the development of
other analytical methods, e.g. relying on field theoretic techniques [14]. Fruitful
insights into this regime have already been gained by pair approximations or
larger-cluster approximations [11, 15, 16, 17]. The authors of these studies inves-
tigated a set of coupled nonlinear differential equations for the time evolution of
the probability to find a cluster of certain size in a particular state. While such
an approximation improves when large clusters are considered, unfortunately
the effort for solving their coupled equations of motion also drastically increases
with the size of the clusters. In addition, the use of those cluster mean-field
approaches becomes problematic in the proximity of phase transitions (near an
extinction threshold) where the correlation length diverges. Investigations along
these lines represent a major future challenge in the multidisciplinary field of
complexity science.
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