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1 Physics of one vortex line in harmonic trap

Assume general three-dimensional trap potential

Vtr(r) = 1
2M

(
ω2

xx
2 + ω2

yy
2 + ω2

zz
2
)

Basic idea (Bogoliubov): for weak interparticle potentials,
nearly all particles remain in condensate for T ¿ Tc

• dilute: s-wave scattering length as ¿ interparticle
spacing n−1/3

• equivalently, require na3
s ¿ 1

• assume self-consistent condensate wave function Ψ(r)

• gives nonuniform condensate density n(r) = |Ψ(r)|2
• for T ¿ Tc, normalization requires N =

∫
dV |Ψ(r)|2

• assume an energy functional

E[Ψ] =

∫
dV


Ψ∗ (T + Vtr) Ψ︸ ︷︷ ︸

harmonic oscillator

+ 1
2g|Ψ|4︸ ︷︷ ︸

2−body term


 ,

where T = −~2∇2/2M is kinetic energy operator
and g = 4πas~2/M is interaction coupling parameter
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• balance of kinetic energy 〈T 〉 and trap energy 〈Vtr〉
gives mean oscillator length d0 =

√
~/Mω0 where

ω0 = (ωxωyωz)
1/3 is geometric mean

• balance of kinetic energy 〈T 〉 and interaction energy
〈gn〉 gives healing length

ξ =
~√

2Mgn
=

1√
8πasn

• treat energy E[Ψ] as a functional of Ψ and seek sta-
tionary solution

• with fixed normalization and µ the chemical potential,
this gives Gross-Pitaevskii (GP) equation


T + Vtr + g|Ψ|2︸ ︷︷ ︸

Hartree


 Ψ = µΨ

• can interpret nonlinear term as a Hartree potential
VH(r) = gn(r), giving interaction with nonuniform
condensate density

• generalize to time-dependent GP equation

i~
∂Ψ

∂t
= (T + Vtr + VH) Ψ

• this result implies that stationary solutions have time
dependence exp(−iµt/~)
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Introduce hydrodynamic variables

• write Ψ(r, t) = |Ψ(r, t)| exp [iS(r, t)] with phase S

• condensate density is n(r, t) = |Ψ(r, t)|2
• current is

j =
~

2Mi
[Ψ∗∇Ψ− Ψ∇Ψ∗] = |Ψ|2~∇S

M
= nv

• identify last factor as velocity v = ~∇S/M

• note that v is irrotational so ∇ ∧ v = 0

• general property: circulation around contour C is∮

C
dl · v =

~
M

∮

C
dl ·∇S =

~
M

∆S|C

• change of phase ∆S|C must be integer times 2π since
Ψ is single-valued

• hence circulation in BEC is quantized in units of κ ≡
2π~/M = h/M

• rewrite time-dependent GP equation in terms of |Ψ|
and S

– imaginary part: ∂n/∂t + ∇ · (nv) = 0

– real part: generalized Bernoulli equation
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Introduction of harmonic trap yields much richer system
than a uniform interacting Bose gas

• trap gives new energy scale ~ω0 and new length scale
d0 =

√
~/Mω0

• assume repulsive interactions with as > 0

• repulsive interactions expand the condensate to larger
mean radius R0 > d0

• as order of magnitude, ground-state energy Eg has
the form [5]

Eg

N
∼ ~ω0


 1

R2︸︷︷︸
kinetic

+ R2︸︷︷︸
potential

+
Nas

d0

1

R3︸ ︷︷ ︸
interaction


 ,

with R = R0/d0 the dimensionless expansion ratio of
radius

• new dimensionless parameter Nas/d0 arises from trap

• minimize Eg with respect to R
• if Nas/d0 . 1, minimum Eg gives R ∼ 1 (ideal gas)
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Properties of Thomas-Fermi (TF) limit

• if Nas/d0 À 1, kinetic energy is small and minimum
Eg gives

R =
R0

d0
∼

(
Nas

d0

)1/5

À 1 (“Thomas-Fermi” limit)

• typically, as ∼ a few nm and d0 ∼ a few µm

• thus Nas/d0 ∼ 103 for N ∼ 106

• ignore kinetic energy (radial gradient of density) and
GP equation reduces to simple equation for density

gn(r) = g|Ψ(r)|2 = µ− Vtr(r)

where right side is positive and zero elsewhere

• central density is n(0) = µ/g

• TF density is n(r) = n(0)
(
1− r2/R2

0

)
for spherical

condensate in isotropic harmonic trap

• condensate radius given by R2
0 = 2µ/Mω2

0

• easily generalized to anisotropic trap: take R2
j = 2µ/Mω2

j

for j = x, y, z
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• normalization integral
∫

dV n(r) = N for TF density
gives N(µTF )

• easy to obtain µTF/~ω0 = 1
2 (15Nas/d0)

2/5 À 1

• expansion ratio is R0/d0 = (15Nas/d0)
1/5 À 1

• define healing length in terms of the central density

ξ2 =
1

8πn(0)as

• easily obtain the result ξR0 = d2
0

• TF limit gives hierarchy of length scales ξ ¿ d0 ¿ R0

• ξ will be seen to characterize the vortex-core radius,
so TF limit corresponds to vortices with small cores
in a large condensate
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(a) One vortex line in trapped BEC

First assume bulk condensate with uniform density n
and a single straight vortex line along z axis

• Gross and Pitaevskii [6, 7]: take condensate wave
function

Ψ(r) =
√

n eiφf

(
r⊥
ξ

)

where r⊥ and φ are two-dimensional polar coordinates

• chemical potential is µ = gn

• speed of sound is s =
√

µ/M

• assume f (0) = 0 and f (x) → 1 for x À 1

• velocity has circular streamlines with v = (~/Mr⊥) φ̂

• this is a quantized vortex line with
∮

dl · v = h/M

• v ∼ s when r⊥ ∼ ξ, so vortex core forms by cavitation

• equivalently, centrifugal barrier gives vortex core of
radius ξ

• energy per unit length of vortex is

Ev ≈ π~2n

M
ln

(
1.46

R

ξ

)
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Static behavior of straight vortex line in a trap

Assume axisymmetric trap with

Vtr(r⊥, z) = 1
2M

(
ω2
⊥r2

⊥ + ω2
zz

2
)

• If ωz/ω⊥ À 1, strong axial confinement gives disk-
shaped condensate

• If ωz/ω⊥ ¿ 1, strong radial confinement gives cigar-
shaped condensate

• axisymmetric shape means angular momentum Lz is
conserved for a single vortex on symmetry axis

• condensate wave function has the form

Ψ(r⊥, z) = eiφ|Ψ(r⊥, z)|
• velocity is v = (~/Mr⊥)φ̂, like uniform condensate

• centrifugal energy again forces wave function to vanish
for r⊥ . ξ

• hence density is now toroidal, with a hole along the
symmetry axis
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In TF limit, the separation of length scales ξ ¿ d0 ¿ R0

means that TF density is essentially unchanged

• to calculate energy, use the density of vortex-free TF
condensate and cut off logarithmic divergences at core
radius ξ

• if condensate is in rotational equilibrium at angular
velocity Ω, the appropriate energy functional is [8]
E ′[Ψ] = E[Ψ] − Ω · L[Ψ] where L is the angular
momentum

• let E ′
0 be energy of rotating vortex-free condensate

• let E ′
1(r0, Ω) be energy of a rotating condensate with

straight vortex that is displaced laterally by distance
r0 from symmetry axis

• approximation of straight vortex works best for disk-
shaped condensate (ωz & ω⊥)

• Difference of these two energies is energy associated
with formation of vortex ∆E ′(r0, Ω) = E ′

1(r0, Ω)−E ′
0

• ∆E ′(r0, Ω) depends on position r0 of vortex and on Ω
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Plot ∆E ′(r0, Ω) as function of ζ0 = r0/R⊥ for various
fixed Ω [9]

curve (a) is ∆E ′(r0, Ω) for Ω = 0

• ∆E ′(r0, 0) decreases monotonically with increasing ζ0

• curvature is negative at ζ0 = 0

• for no dissipation, fixed energy means constant ζ0, so
that only allowed motion is uniform precession at a
fixed distance from origin

• angular velocity is given by variational Lagrangian
method [10, 11, 3]

φ̇0 =
∂E(r0)/∂r0

∂Lz(r0)/∂r0
=

Ωm

1− r2
0/R

2
⊥
,

where Ωm = 3
2

(
~/MR2

⊥
)

ln (R⊥/ξ) is critical angular
velocity for onset of metastability for central vortex
(discussed below)

• E(r0) and Lz(r0) are energy and angular momentum
of off-center vortex in nonrotating TF condensate
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• precession arises from nonuniform trap potential (not
image vortex) and nonuniform condensate density

• for vortex near the center, φ̇0 ≈ Ωm

• for larger r0, precession increases because of reduced
TF density near the edge (not from image vortex)

• compare with experimental studies at JILA [12]

– theory predicts φ̇/2π ≈ 1.58± 0.16 Hz, and

– experiment finds φ̇/2π ≈ 1.8± 0.1 Hz

• in presence of weak dissipation, vortex slowly moves
outward along curve (a), following spiral orbit in xy
plane
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As Ω increases, curvature near r0 = 0 decreases

• curve (b) is when curvature near r0 = 0 vanishes

• it corresponds to angular velocity

Ωm =
3

2

~
MR2

⊥
ln

(
R⊥
ξ

)
=

3

5
Ωc

• for Ω & Ωm, energy ∆E ′(r0, Ω) has local minimum
near r0 = 0

• dissipation would now drive vortex back toward sym-
metry axis

• Ωm is angular velocity for onset of metastability

• vortex at center is locally stable for Ω > Ωm, but not
globally stable, since ∆E ′(0, Ωm) is positive
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As Ω increases beyond Ωm, local minimum of ∆E ′(r0, Ω)
near center decreases

• curve (c) is for Ωc when ∆E ′(0, Ωc) vanishes

• central vortex is degenerate in energy with vortex-free
state at Ωc

Ωc =
5

2

~
MR2

⊥
ln

(
R⊥
ξ

)
=

5

3
Ωm

• for Ω > Ωc, central vortex is both locally and globally
stable

• as Ω increases beyond Ωc, energy barrier near outer
edge becomes thinner

• curve (d) illustrates behavior for Ω = 3
2Ωc
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(b) Feynman’s relation for vortex density in
rotating superfluids

• solid-body rotation has vsb = Ω ∧ r

• vsb has constant vorticity ∇ ∧ vsb = 2Ω

• each quantized vortex at rj has localized vorticity

∇ ∧ v =
2π~
M

δ(2)(r⊥ − rj) ẑ

• assume Nv vortices uniformly distributed in area A
bounded by contour C

• circulation around C is Nv × 2π~/M

• but circulation in A is also 2ΩA
• hence vortex density is nv = Nv/A = MΩ/π~

• area per vortex 1/nv is π~/MΩ ≡ πl2 which defines
radius l =

√
~/MΩ of circular cell

• intervortex spacing ∼ 2l decreases like 1/
√

Ω

• analogous to quantized flux lines (charged vortices) in
type-II superconductors
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(c) Experimental creation and detection of vor-
tices in a dilute trapped BEC

• first vortex made at JILA (1999) [13]

• used nearly spherical 87Rb condensate containing two
different hyperfine components

• spin up condensate by coupling the two components
with a stirring perturbation

• turn off coupling, leaving one component with trapped
quantized vortex surrounding nonrotating core of other
component

• use selective tuning to make nondestructive image of
either component

• study precession of this vortex with filled core around
trap center (also with empty core [12])

• find good fit to theory

• see no outward radial motion for ∼ 1 s, so dissipation
is small on this time scale

16



École Normale Supérieure (ENS) group in Paris studied
vortex creation in elongated rotating cigar-shaped con-
densate with one component [14, 15]

• used off-center toggled rotating laser beam to deform
the transverse trap potential and stir the condensate
at an applied frequency Ω/2π . 200 Hz

• find vortex appears at a critical frequency Ωc ≈ 0.7ω⊥
(detected by expanding the condensate, which now
has a disk shape, with vortex core as expanded hole)

• this value of Ωc is significantly (∼ 70%) higher than
that predicted by TF thermodynamic critical angular
velocity

• vortex nucleation is dynamical process associated with
surface instability (quadrupole oscillation)
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• ENS group observed small vortex arrays of up to 11
vortices (arranged in two concentric rings)

• like patterns predicted and seen in superfluid 4He

• MIT group has prepared considerably larger rotating
condensates in less elongated trap

• they have observed triangular vortex lattices with up
to 130 vortices [16]

• like Abrikosov lattice of quantized flux lines (which
are charged vortices) in type-II superconductors

• JILA group has now made large rotating condensates
with several hundred vortices and angular velocity
Ω/ω⊥ ≈ 0.995 [17]

• these rapidly rotating systems open many exciting
new possibilities (discussed below)
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2 Vortex arrays in mean-field (GP) regime (these
are coherent states)

Qualitative features

As Ω increases, the vortex density nv = MΩ/π~ increases
linearly following the Feynman relation

• in addition, centrifugal forces expand the condensate
radially, so that the area also increases

• hence the number of vorticesNv = nvπR2
⊥ = MΩR2

⊥/~
increases faster than linearly with Ω

• conservation of particles implies that the condensate
also shrinks axially

• TF approximation assumes that interaction energy
〈g|Ψ|4〉 and trap energy 〈Vtr|Ψ|2〉 are large relative to
kinetic energy for density variations (~2/M)〈(∇|Ψ|)2〉

• expansion of condensate means that central density
eventually becomes small and TF picture fails
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(a) Mean-field Thomas-Fermi regime

Quantitative description of rotating TF condensate

Kinetic energy of condensate involves

~2

2M

∫
dV |∇Ψ|2 =

∫
dV

1

2
Mv2|Ψ|2

︸ ︷︷ ︸
superflow energy

+
~2

2M

∫
dV (∇|Ψ|)2

︸ ︷︷ ︸
density variation

where Ψ = exp(iS)|Ψ| and v = ~∇S/M is flow velocity

• generalized TF approximation: retain the energy of
superflow but ignore the energy from density variation

• this approximation will fail eventually when vortex
lattice becomes dense and cores start to overlap

• assume axisymmetric trap Vtr = 1
2M

(
ω2
⊥r2

⊥ + ω2
zz

2
)

• in rotating frame, generalized TF energy functional is

E ′[Ψ] =

∫
dV

[(
1
2Mv2 + Vtr −MΩ · r ∧ v

) |Ψ|2

+1
2g|Ψ|4

]
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For Ω along z, can rewrite E ′[Ψ] as

E ′[Ψ] =

∫
dV

[
1

2
M (v −Ω ∧ r)2 |Ψ|2 +

1

2
Mω2

zz
2|Ψ|2

+
1

2

(
ω2
⊥ − Ω2

)
r2
⊥|Ψ|2 +

1

2
g|Ψ|4

]

• here, v is flow velocity generated by all the vortices
and vsb ≡ Ω ∧ r is solid-body rotation

• in the rotating frame, the dominant effect of the dense
vortex array is that spatially averaged flow velocity
〈v〉 is close to vsb

• hence can ignore first term in E ′[Ψ], giving

E ′[Ψ] ≈
∫

dV

[
1

2
Mω2

zz
2|Ψ|2 +

1

2

(
ω2
⊥ − Ω2

)
r2
⊥|Ψ|2

+
1

2
g|Ψ|4

]

• E ′ now looks exactly like TF energy for nonrotating
condensate but with a reduced radial trap frequency
ω2
⊥ → ω2

⊥ − Ω2
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Now have TF wave function that depends explicitly on Ω
through the altered radial trap frequency ω2

⊥ → ω2
⊥−Ω2

|Ψ(r⊥, z)|2 = n(0)

(
1− r2

⊥
R2
⊥
− z2

R2
z

)

where R2
⊥ = 2µ/[M(ω2

⊥ − Ω2)] and R2
z = 2µ/Mω2

z

• must have Ω < ω⊥ to retain radial confinement

• normalization
∫

dV |Ψ|2 = N shows that

µ(Ω)

µ(0)
=

(
1− Ω2

ω2
⊥

)2/5

in three dimensions

• central density given by n(0) = µ(Ω)/g

• n(0) decreases with increasing Ω because of reduced
radial confinement
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• TF formulas for condensate radii show that

Rz(Ω)

Rz(0)
=

(
1− Ω2

ω2
⊥

)1/5

,
R⊥(Ω)

R⊥(0)
=

(
1− Ω2

ω2
⊥

)−3/10

confirming axial shrinkage and radial expansion

• aspect ratio changes

Rz(Ω)

R⊥(Ω)
=

Rz(0)

R⊥(0)

(
1− Ω2

ω2
⊥

)1/2

• this last effect provides an important diagnostic tool
to determine actual angular velocity Ω [18]

• these JILA experiments [18] obtain rapidly rotating
condensates by rotating thermal cloud above Tc and
then cooling to T ¿ Tc

• method works by deforming the normal cloud from
disk-shaped to cigar-shaped, then removing atoms near
the long ends (they have small angular momentum)

• measured aspect ratio indicated that Ω/ω⊥ became
as large as 0.94
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How uniform is the vortex array?

The analysis of the TF density profile |ΨTF |2 = nTF in
the rotating condensate assumed that the flow velocity v
was precisely the solid-body value vsb = Ω ∧ r

• this led to the cancellation of the contribution∫
dV (v −Ω ∧ r)2 nTF

in the TF energy functional

• a more careful study [19] shows that there is a small
nonuniformity in the vortex lattice

• specifically, each regular vortex lattice position vector
rj experiences a small displacement field u(r), so that
rj → rj + u(rj)

• as a result, the two-dimensional vortex density changes
to

nv(r) ≈ nv (1−∇ · u)

where nv = MΩ/π~ is the uniform Feynman value
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• near the jth vortex core, the flow velocity is a singular
part

vsing =
~
M

ẑ ∧ (r − rj)

|r − rj|2
plus a smooth background v(r)

• the smooth background velocity can be evaluated as
an integral over the slightly nonuniform vortex density

v(r) ≈ ~
M

∫
d2r′ nv [1−∇′ · u (r′)]

ẑ ∧ (r − r′)
|r − r′|2

≈ Ω ∧ [r − 2u (r)]

where the second term follows with an integration by
parts using ∇2 ln |r − r′| = 2πδ(2)(r − r′)

• the first term is the usual solid-body rotation Ω ∧ r,
and the second term shows how the distortion in the
vortex lattice affects the mean induced velocity
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• the new term in the energy is nonzero contribution
from the local integral inside the jth unit cell

∑
j

∫

j

dVj
M

2
(vsing + v −Ω ∧ rj)

2 nTF (rj)

and then summed over the vortex lattice

• since the particle density and the vortex density vary
slowly over each unit cell, replace

∑
j with an integral

weighted with the nonuniform vortex density nv(r)

• the dominant solid-body contribution Ω ∧ r cancels,
and the remaining parts are the energy of the jth
vortex inside the local circular cell (from vsing) and
the contribution from the distortion of the lattice

• the radius of the local unit cell is l(r) = 1/
√

πnv(r),
which includes the lattice distortion

• the additional kinetic energy becomes approximately
∫

dV nTF

[
π~2

2M
nv (1−∇ · u) ln

(
1

πnvξ2

)
+ 2MΩ2u2

]

with no other dependence on u to leading logarithmic
order
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• vary this energy with respect to u and obtain the
Euler-Lagrange equation, which can be solved to give

u(r) ≈ − 1

8πnv
ln

(
l̄2

ξ2

)
∇ ln nTF (r)

≈ l̄2

4R2
⊥

ln

(
l̄2

ξ2

)
r

1− r2/R2
⊥

where l̄2 = 1/πnv can be taken as the mean circular
cell radius inside the slowly varying logarithm

• the deformation of the regular vortex lattice is purely
radial (as expected from symmetry)

• R2
⊥/l̄2 is the number of vortices Nv in the rotating

condensate, so that the nonuniform distortion is small,
of order 1/Nv (at most a few %), even though the TF
number density nTF changes dramatically near edge

• recent JILA experiments [20] confirm these predicted
small distortions for relatively dense vortex lattices

• correspondingly, the vortex density becomes

nv(r) ≈ nv − 1

2πR2
⊥

ln

(
l̄2

ξ2

)
1

(1− r2/R2
⊥)

2

(the correction is again of order 1/Nv)
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Tkachenko oscillations of the vortex lattice

In 1966, Tkachenko [21] studied the equilibrium arrange-
ment of a rotating vortex array as model for superfluid
4He

• assumed two-dimensional incompressible fluid with straight
vortices

• showed that a triangular lattice has lowest energy in
rotating frame

• studied small perturbations about the equilibrium po-
sitions and found unusual collective motion in which
the vortices undergo a nearly transverse wave of lattice
distortions (analogous to two-dimensional transverse
“phonons” in the vortex lattice, but with no change
in fluid density)

• for long wavelengths (small k), Tkachenko found a
linear dispersion relation ωk ≈ cTk

• speed of Tkachenko wave is cT =
√

1
4~Ω/M = 1

2 l̄Ω,

where l̄ =
√
~/MΩ is radius of circular vortex cell
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More generally, the vortices can also undergo bending
motions, leading to a collective version of Kelvin helical
wave on a single vortex (not discussed here)

• analysis of small perturbations in a vortex lattice yields
the long-wavelength dispersion relation [22, 23]

ω2 ≈ (2Ω)2
k2

z + 1
16k

4
⊥l̄2

k2
z + k2

⊥
where kz and k⊥ are the components of k parallel and
perpendicular to the rotation axis

• for kz → 0, this expression reproduces the Tkachenko
result ω ≈ cTk⊥

• for k⊥ → 0, reproduces classical inertial waves with
ω = ±2Ω

• these modes have not been observed in superfluid 4He
because visualizing vortices is very difficult
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In a rotating gas, the compressibility becomes important,
as shown by Sonin [24, 25] and Baym [26]

• let the speed of sound in the compressible gas be cs

• for a wave propagating in the xy plane, the coupling
between the vortices and the compressible fluid leads
to generalized dispersion relation

ω2 = c2
T

c2
sk

4

4Ω2 + c2
sk

2

• if k À Ω/cs, recover Tkachenko’s result ω = cTk
(incompressible limit)

• but if k ¿ Ω/cs, mode becomes soft with ω ∝ k2

• Sonin [25] obtains dynamical equations for waves in a
nonuniform condensate, along with appropriate bound-
ary conditions at the outer surface

• Baym [26] uses theory for uniform condensate plus
approximate boundary conditions from Anglin and
Crescimanno [27]

• rough agreement with JILA experiments [28] on low-
lying Tkachenko modes in rapidly rotating BEC (up
to Ω/ω⊥ ≈ 0.975)
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What happens to vortex core radius as Ω → ω⊥?

• recall simple estimate

ξ2 =
1

8πn(0)as

• this expression implies that vortex core size ξ diverges

for Ω → ω⊥ because n(0) ∝ µ(Ω) ∝ (
1− Ω2/ω2

⊥
)2/5

• improved description generalizes TF model to include
the circulating flow velocity around each core with a
mean Wigner-Seitz circular cell of radius l =

√
~/MΩ

• includes spatial variation of density near core and
treats ξ as a variational parameter [29, 30]

• as Ω increases and l decreases, predict that ξ increases
until ξ2/l2 ∼ 0.5 and this ratio then remains fixed as
Ω continues to increase

• in this limit, the vortex cores occupy a constant finite
fraction (∼ 0.5) of unit cell

• Recent JILA experiments [17] have reached rotation
rates Ω/ω⊥ & 0.99, and more detailed studies confirm
this growth and saturation of the core size [20]
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(b) Mean-field quantum Hall regime

Lowest-Landau-Level (quantum Hall) behavior

When the vortex cores overlap, kinetic energy associated
with density variation around each vortex core becomes
important

• hence the TF approximation breaks down (it ignores
this kinetic energy from density variations)

• it is preferable to return to full GP energy functional
E ′[Ψ] in the rotating frame.

• in this limit of rapid rotations (Ω . ω⊥), Ho [31]
suggested an important rewriting of the same quantity
that incorporates kinetic energy exactly

• in this limit of rapid rotation, the condensate expands
and becomes effectively two dimensional

• for simplicity, treat a two-dimensional condensate that
is uniform in the z direction over a length Z

• condensate wave function Ψ(r⊥, z) can be written
as

√
N/Z ψ(r⊥), where ψ(r⊥) is a two-dimensional

wave function with unit normalization
∫

d2r |ψ|2 = 1
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General two-dimensional energy functional in rotating frame
becomes

E ′[ψ] =

∫
d2r ψ∗

(
p2

2M
+

1

2
Mω2

⊥r2
⊥ − ΩLz +

1

2
g2D|ψ|2

)
ψ,

where p = −i~∇, Lz = ẑ · r × p, and g2D = Ng/Z

This energy functional can be rewritten exactly as

E ′[ψ] =

∫
d2r ψ∗

[
(p−Mω⊥ × r⊥)2

2M

+ (ω⊥ − Ω) Lz +
1

2
g2D|ψ|2

]
ψ,

where ω⊥ ≡ ẑω⊥

• assume that Ω/ω⊥ → 1 and that interaction energy∫
d2r 1

2g2D|ψ|4 is small

• hence focus on the first line
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• in this limit, energy becomes

E ′
L[ψ] =

∫
d2r ψ∗

(p−Mω⊥ × r⊥)2

2M
ψ

• define equivalent uniform magnetic field B = −2Mω⊥/|e|
• define equivalent vector potential A = 1

2 B × r

• here, we use symmetric gauge to describe magnetic
field, with B = ∇×A

• approximate E ′
L[ψ] is precisely the Hamiltonian of

a single particle with charge −|e| moving in the xy
plane in this magnetic field B

HL =

∫
d2r ψ∗

(p− |e|A)2

2M
ψ

• this one-body Hamiltonian was solved by Landau in
1930, but in different gauge (now known as “Landau
gauge”)

• for solution in symmetric gauge, see Ref. [32]
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Here, the exact eigenfunctions can be written ψnm(r⊥),
where n ≥ 0 and m ≥ 0 are non-negative integers and n
specifies the “Landau level”

• for these Landau eigenfunctions, the eigenvalues of
HL are εnm = ~ω⊥ (2n + 1)

• evidently, the eigenvalues are independent of m, so
that the states in a given Landau level are massively
degenerate

• these eigenfunctions are also eigenstates of Lz with
eigenvalues ~ (m− n)

• apart from the interaction energy, the Landau-level
eigenfunction ψnm is an eigenstate of full one-particle
Hamiltonian

(p− |e|A)2

2M
+ (ω⊥ − Ω) Lz

with eigenvalue

~ [(ω⊥ + Ω) n + (ω⊥ − Ω) m + ω⊥]

• small positive value of ω⊥ − Ω ¿ ω⊥ + Ω lifts the
degeneracy associated with the index m
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Interaction effects tend to mix the various single-particle
eigenfunctions ψnm

• if ω⊥−Ω is sufficiently small and if interaction energy
is small, then there is energy gap 2~ω⊥ between the
lowest Landau level and the excited Landau levels,
and energy is independent of m

• this requires g2Dn . ~ω⊥, where n is the mean two-
dimensional particle density (note that g2Dn ∼ µ,
where µ is the chemical potential)

• the assumption of small interaction energy may be
valid because centrifugal forces dramatically expand
the condensate as Ω → ω⊥

• hence assume that the system is solely in the lowest
Landau level (“LLL”) and construct the approximate
solution of the GP equation from this restricted set of
eigenfunctions ψ0m
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LLL eigenfunctions have a very simple form

ψ0m (r⊥) ∝ rm
⊥eimφ e−r2

⊥/2d2
⊥

• here, d⊥ =
√
~/Mω⊥ is analogous to the “magnetic

length” in the Landau problem

• in terms of a complex variable ζ ≡ x + iy, these LLL
eigenfunctions have an extremely simple form

ψ0m ∝ ζm e−r2
⊥/2d2

⊥

with m ≥ 0 (note that ζ = r⊥ eiφ when expressed in
two-dimensional polar coordinates)

• assume that the GP wave function is a finite linear
combination of these LLL eigenfunctions

ψGP (r⊥) =
∑
m

cmψ0m(r⊥) = f (ζ) e−r2
⊥/2d2

⊥

where f (ζ) is an analytic function of the complex
variable ζ

• specifically, f (ζ) is a finite polynomial and thus can
be factorized as f (ζ) =

∏
j (ζ − ζj) apart from overall

constant
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In this way, we are led to the very simple approximate
GP solution

ψLLL(r⊥) = C
∏

j

(ζ − ζj) e−r2
⊥/2d2

⊥

where C is a normalization constant

• the product
∏

j (ζ − ζj) is a complex polynomial that
vanishes at each of the points {ζj}, so that these are
the positions of the nodes of ψ

• in addition, phase of wave function increases by 2π
whenever ζ moves around any of these zeros {ζj}

• we conclude that the LLL trial solution has singly
quantized vortices located at positions of zeros {ζj}

• spatial variation of number density n(r⊥) = |ψLLL(r⊥)|2
is determined by spacing of the vortices, so that core
size is comparable with the intervortex spacing l̄ =√
~/MΩ which is simply d⊥ in the limit Ω ≈ ω⊥

• this approximate solution thus generalizes previous
TF wave function in the limit Ω → ω⊥
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Take this LLL trial function seriously and study its
properties

• since LLL wave functions play a crucial role in the
quantum Hall effect (two-dimensional electrons in a
strong magnetic field), this LLL regime has been called
“mean-field quantum Hall” limit [33]

• note that we are still in the regime governed by GP
equation, so there is still a BEC

• corresponding many-body ground state is simply a
Hartree product with each particle in same one-body
solution ψLLL(r⊥), namely

ΨGP (r1, r2, · · · , rN) ∝
N∏

j=1

ψLLL(rj)

• this is coherent (superfluid) state, since a single GP
state ψLLL has macroscopic occupation
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• study logarithm of the particle density for this LLL
state ln nLLL(r⊥) = ln |ψLLL(r⊥)|2

• use ψLLL to find

ln nLLL(r⊥) = −r2
⊥

d2
⊥

+ 2
∑

j

ln |r⊥ − rj|

• apply two-dimensional Laplacian

• use ∇2 ln |r − rj| = 2πδ(2) (r − rj)

• find

∇2 ln nLLL(r⊥) = − 4

d2
⊥

+ 4π
∑

j

δ(2) (r⊥ − rj)

• here, sum over delta functions is precisely the vortex
density nv(r⊥)

• this result relates particle density nLLL(r⊥) in LLL
approximation to vortex density nv(r⊥) [31, 33]

1

4
∇2 ln nLLL(r⊥) = − 1

d2
⊥

+ πnv(r⊥)
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• if vortex lattice is exactly uniform (so nv is constant),
then density profile is strictly Gaussian, with nLLL(r⊥) ∝
exp(−r2

⊥/σ2) and σ−2 = d−2
⊥ − πnv

• in this case, σ2 À d2
⊥

• more precisely, σ−2 ∝ ω⊥ − Ω

• Watanabe et al. [33] argue that the density profile
should independently have an inverted parabolic (TF)
shape nLLL(r⊥) ∝ 1− r2

⊥/R2
⊥

• then find nonuniform vortex density with

nv(r⊥) ≈ 1

πd2
⊥
− 1

πR2
⊥

1

(1− r2
⊥/R2

⊥)
2

similar to result at lower Ω [19]

• independently, numerical work by Cooper et al. [34]
shows that allowing the vortices in the LLL to deviate
from the triangular array near the outer edge lowers
the energy
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3 Behavior for Ω & ω⊥

What happens beyond the “mean-field quantum Hall”
regime is still subject to vigorous debate

(a) Beyond GP regime (correlated states)

• define the ratio ν ≡ N/Nv of the number of atoms
per vortex

• because of similarities to a two-dimensional electron
gas in a strong magnetic field, ν is called the “filling
fraction” [35, 36]

• current experiments [17] have N ∼ 105 and Nv ∼
several hundred, so ν ∼ a few hundred

• numerical studies [36] for small number of vortices
(Nv . 8) and variable N indicate that the coherent
GP state is favored for ν & 6
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• for smaller ν there is a sequence of highly correlated
states similar to some known from the quantum Hall
effect, in particular a bosonic version of the Laughlin
state [36] (here zj = xj + iyj refers to jth particle)

ΨLau(r1, r2, · · · , rN) ∝
N∏

j<k

(zj − zk)
2 exp


−

N∑
j=1

|zj|2
2d2
⊥




• these correlated many-body states are qualitatively
different from coherent GP form

– ΨGP (r1, r2, · · · , rN) ∝ ∏
j ψ(rj) is the Hartree

product of N factors of same one-body function
ψ(r)

– the product
∏

jk(zj − zk)
2 in ΨLau(r1, r2, · · · , rN)

involves N(N−1)/2 factors for all possible pairs of
particles and vanishes whenever two particles are
close together

– this is the source of the correlations

– for large N , correlated form ΨLau is much more
difficult to use
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(b) Addition of quartic potential

One way to avoid singularity when Ω → ω⊥ is to add a
quartic confining potential [37, 38, 39]

• now have a total potential with quadratic and quartic
terms

Vtr =
1

2
Mω2

⊥

(
r2 + λ

r4

d2
⊥

)

where the dimensionless constant λ fixes the quartic
admixture

• allows access to regime Ω/ω⊥ ≥ 1

• studied experimentally at ENS, Paris [40], where a
blue-detuned axial laser provided the weak quartic
confinement (λ ∼ 10−3 and ω⊥/2π ≈ 64.8 Hz)

• find regular vortex lattice for Ω . ω⊥

• find disordered vortex lattice for ω⊥ . Ω

• near Ω ≈ 1.05 ω⊥, the system seems to break up

• TF theory predicts a reduced density at center, which
is observed
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What is happening?

• ENS condensate is nearly spherical for Ω ∼ ω⊥, so
three-dimensional effects are important

• they suggest repeating the experiment with strong
axial confinement to see if three-dimensional effects
dominate and cause instability

• GP analysis in two dimensions finds nothing like the
observed break up [38, 39, 41]

• is there some sort of transition from a GP state to a
highly correlated state in the regime Ω & ω⊥?

• this issue remains very uncertain
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