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The enemy: Entanglement growth

We have seen that the truncation error, or the number of state that we need 

to keep to control it, depends fundamentally on the entanglement
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We need to understand this behavior if we want to learn how to fight it!

Possible scenarios:

• Global quench

• Local quench

• Periodic quench

• Adiabatic quench

•… 
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All of a sudden, we are no longer in the ground-state, but some high energy 

state. Important questions: thermalization vs. integrability



E-growth: global quench

Calabrese and Cardy, JStatM (05)



Global quench: qualitative picture
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We assume that entangled pairs of quasi-particles are 

created at t=0, and they propagate with maximum velocity
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Global quench: qualitative picture
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The number of entangled pairs saturates
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The perturbation propagates from the center, splitting the 

system into two pieces, inside and outside of the light-cone

Local quench: qualitative picture
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Computational cost

Global quench:

)exp()exp( ctSmctS

Local quench:

const.)exp()log( tSmtS

const.const. mS

Adiabatic quench:



Transport and systems out of equilibrium

References: PRB 78, 195317 (2008); PRA 78, 013620 (2008) ; PRL 100, 166403 (2008) ; 

PRB 73, 195304 (2006); New. J. of Phys (2010) 

Thanks to: F. Heidrich-Meisner, K. Al-Hassanieh, C. Busser, G. Martins, E. 
Dagotto, L. Da Silva, E. Anda



Example: transport in 1d

Spinless fermions with 

interactions.

Typical behavior:

1) Short time transient

2) Plateau (we measure!)

3) Reflection at the 

boundaries. Current 

changes sign.

AEF, P. Fendley, MPA Fisher, C. Nayak, PRL08



Weak link / potential barrier
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Resonant level / double barrier



Quantum dots 
Quantum dot attached to two leads:

single-level Anderson model
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Non-interacting limit (U=0)

F. Heidrich-Meisner, AEF, E. Dagotto, PRB (09)



tDMRG Results for 1 dot
Kondo Effect and magnetic field

Suppression of Kondo effect: Coulomb Blockade peaks are formed



Accessing the Kondo regime
Wilson leads: 1)(   2/l
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Accessing the Kondo regime
Wilson leads: 1)(   2/l
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Entropy growth with Wilson leads



DMRG vs. Bethe Ansatz

F. Heidric-Meisner et al, EPJB (09), N. Andrei, PRL (80), Gerland et al. PRL (00)



I-V characteristics
Particle-hole symmetric point (Vg=-U/2)

F. Heidrich-Meisner, AEF, E. Dagotto, PRB 2009.



I-V characteristics
Finite magnetic field

Eckel, F. Heidrich-Meisner, Jakobs, Thorwart, Pletyukhov, Egger, NJP (10)



Large bias – out of equilibrium

F. Heidrich-Meisner, AEF, E. Dagotto, PRB (09)



Dependence on the initial state



Computational cost and entropy growth



Computational cost and initial conditions

Entanglement entropy grows linearly in time, once the steady state is reached. 


