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1. Introduction

One usually associates quantum mechanics with microscopic particles such as
electrons, atoms or photons and classical mechanics with macroscopic objects
such as billiard balls, solar systems and sound waves. In recent years however,
the notion has emerged that some systems, referred to as macroscopic quantum
systems, have a status intermediate between microscopic particles and classical
macroscopic objects [1]. Like billiard balls, they are macroscopic in the sense
that they contain a large number of microscopic particles and are “artificial”, i.e.
built according to certain specifications. However, these macroscopic quantum
systems have collective degrees of freedom, analogous to the position of the cen-
ter-of-mass of the ball, that behave quantum-mechanically. The parameters in-
fluencing this quantum behavior are not fundamental, “God-given” constants like
the Rydberg energy or the fine structure constant. They are phenomenological
parameters which can be tailored by the design of the system. Macroscopic quan-
tum mechanics is a new area of research where novel quantum pheromena that
have no equivalent in the microscopic world can be imagined and observed [2].

To make the discussion more concrete, let us imagine a LC oscillator circuit
(see Fig. la) fabricated with the technology of microelectronic chips. Typical
values that can be easily obtained for the inductance and the capacitance are L =
10 nH and C = 1 pF. They lead to a resonant frequency wo/27 = 1/27/LC ~
1.6 GHz in the microwave range. Nevertheless, because the overall dimensions
of the circuit do not exceed a few hundred pm, which is much smaller than the
wavelength corresponding to wy, the circuit is well in the lumped element limit.
It is described with only one collective degree of freedom which is the flux & in
the inductor. This variable is the electric analog of the position of the mass in a
mass-spring mechanical oscillator, the momentum of the mass corresponding to
the charge Q on the capacitor. The variables Q and & are conjugate coordinates
in the sense of Hamiltonian mechanics.

The chip on which this circuit has been patterned is enclosed in a well-shielded
copper box anchored thermally to the cold stage of a dilution refrigerator at T =
20 mk. With these precautions, the thermal fluctuation energy is smaller than the
energy quantum associated with the resonant frequency: kgT <« Fuwg. But this
latter condition is not sufficient to ensure that & needs to be treated as a quantum
variable: the width of the energy levels must also be smaller than their separation.
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Fig. 1. (a) LC oscillator. (b) LC oscillator connected to an electromagnetic environment represented
by an admittance Y (w) in parallel with the circuit.

This means that the quality factor of the LC oscillator needs to satisfy @ > 1, a
constraint on the damping of the oscillator.

Of course, a superconducting metal can be used for the wire of the inductor.
But we also need to make measurements on the circuit via leads which can transfer
energy in and out the oscillator. The leads and the measuring circuit constitute the
electromagnetic environment of the LC oscillator. The strong coupling between
the oscillator and its environment is the main limiting factor for the quanticity
of ®. The influence of the environment on the oscillator can be modelled as a
frequency dependent admittance Y (w) in parallel with the capacitance and the
inductance (see Fig. 1b). The environment shifts the oscillator frequency by the
complex quantity A+2wo/Q = fwnY (o) Zo, where Zo = \/% is the impedance
of the elements of the oscillator on resonance. In our example Zj has the value
10£2. We can engineer leads that do not bring too much external noise and at the
same time do not load the oscillator too much: a typical value for |Y ()|~ is
1002 [3], yielding Q@ ~ 10.

This example shows how electrical circuits, which are intrinsically fast and
flexible, constitute a class of macroscopic quantum systems well adapted to ex-
perimental investigations.

However, the particular LC circuit we have considered only displays rather
trivial quantum effects. Because it belongs to the class of harmonic oscillators,
it is always in the correspondence limit. The average value of the position or
the momentum follows the classical equations of motion. Quantum mechanics is
revealed in higher moments like the variance of these basic variables, but these
higher moments are considerably much more difficult to measure than average
quantities since we are dealing with a single quantum system.

Non-trivial and directly observable macroscopic quantum effects appear in cir-
cuits which contain at least one non-linear component. A very basic non-linear
component is a Josephson tunnel junction. In contrast with most other non-lin-
ear electronic devices, its relevant properties remain temperature independent as
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Fig. 2. (a) A Josephson tunnel junction can be modelled as a Josephson tunnel element (cross) in
parallel with a capacitor. (b) Current-flux relation of the Josephson element. The dashed line is the
current-flux relation of a linear inductance whose value is equal to the effective inductance of the
junction.

the temperature is lowered to reach the conditions required for the observation of
quantum effects. The Josephson tunnel junction consists of two superconductors
separated by a thin oxide layer (see Fig. 2a). It is modelled as a pure supercon-
ducting tunnel element (also called Josephson element), which can be thought of
as a non-linear inductor (Fig. 2b), in parallel with a capacitance. The latter cor-
responds to the parallel plate capacitor formed by the two superconductors. The
Josephson element is traditionally represented by a cross in circuit diagrams. The
origin of the non-linearity of the Josephson element is very fundamental: as we
will see, it is associated with the discreteness of charge that tunnels across the
thin insulating barrier.

At a temperature of a few tens of mK, all the electrons in the superconduct-
ing electrodes on each side of the junction are condensed into Cooper pairs. All
internal degrees of freedom in the electrodes are thus frozen and the junction is
characterized only by two a priori independent collective degrees of freedom: the
charge Q (¢) on the capacitance and the number N (z) of Cooper pairs having tun-
neled across the Josephson element. The charge Q; (t) = —2eN (¢) having flown
through the Josephson element up to a time ¢ differs from Q (¢) if the junction
is connected to an electrical circuit. Note that while Q is a continuous variable
corresponding to a bodily displacement of the electron fluid in the electrodes with
respect to the ion lattice, N is an integer variable. The Josephson element can also
be characterized by a flux &, a position-like variable which generalizes the flux
in an inductor and which can be defined as the time integral of the instantaneous
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voltage v across the element.

t
;1) =/ v (') dr'. (1.1)

—0Q
At time t = —o0, all electromagnetic fields in the circuit are supposed to have
been zero and the voltage v includes in particular electromotive forces due to
the appearance of magnetic field through the loops of the circuit containing the
Josephson junction.
Whereas for an inductance L there is a linear relation between the current i (f)
that flows through it and the flux @ (¢) in it

1
iM= ZQD @) (1.2)

the Josephson element is characterized by the following current-flux relation:
. . [ 2e
i (t) = Ipsin g¢j @®]- (1.3)

As previously mentioned, the scale of non-linearity in this relation is set by the
superconducting flux quantum fi/2e based on the Cooper pair charge 2e. The
dimensionless combination § = (h/2e) ®; is known under the esoteric name
“gauge invariant phase difference” or simply “phase difference”. The presence of
Fi in the argument of the sine function in the current-flux relationship should not
obscure the fact that ®; is a macroscopic collective variable. For ®; <« h/2e
the tunnel element behaves as an inductor with an effective inductance L; =
k/ ely).

Josephson’s unexpected discovery [4] was that the parameter /o (and corre-
spondingly L) which characterizes the tunnel element is a macroscopic param-
eter proportional to the area of the junction and the transparency of the tunnel
barrier. Typical values for /, in experiments on macroscopic quantum effects are
in the A — nA range. Correspondingly, the junction capacitances are in the
pF — fF range. These orders of magnitude make characteristic frequencies of the
junction in the GHz range. There is a thus a similarity between experiments on
quantum effects in Josephson junction systems and cavity QED experiments [5].
Josephson junctions play the role of Rydberg atoms while the rest of the circuit
plays the role of the cavity and the preparation/detection apparatuses.

In contrast with the LC oscillator, whose quantum ftuctuations are completely
decoupled from the average current and voltage that may be present in the oscilla-
tor due to an external dc source, the quantum fluctuations of a Josephson junction
(or of more complex complex systems involving several junctions) manifest them-
selves directly in transport experiments during which average voltages or currents
are measured in the circuit as a function of external bias sources [6,7]. This rela-
tive experimental simplicity has a counterpart, however. Josephson junctions are
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so well coupled to their electromagnetic environment that dissipation cannot be
treated as a perturbation. In fact, dissipation combines with the non-linearity of
tunnel elements to produce qualitatively new quantum effects which are not en-
countered for example in the almost dissipation-free quantum systems studied in
atomic physics. The most spectacular new quantum feature is the localization of
position-like degrees of freedom when dissipation exceeds a certain threshold set
by the quantum of resistance &/ (2e)? ~ 6.4 k2 [8-10].

This course is not intended as a review of the now important literature on quan-
tum effects in tunnel junction circuits (for a recent snapshot, see for example [10]
and [11]). It rather aims at discussing some basic concepts which, in the author’s
opinion, are important to understand the various points of view adopted in the
specialized articles.

Thus, the references given in this course constitute an incomplete and sub-
jective picture of the field. They must be thought of only as entry points in the
literature.

This course is organized as follows. In the next section, we explain how the
Hamiltonian formalism, which provides a well-treaded path to go from the clas-
sical to the quantum description of a system, can be applied to electrical circuits.
Whereas the Hamiltonian framework can be straightforwardly applied to the LC
oscillator of Fig. 1, it is much less obvious to do so in complicated circuits,
in particular with non-linear elements, and we describe a systematic procedure.
A thorough understanding of the classical properties of tunnel junction circuits
is needed to separate clearly effects due to the non-linear constitutive relation
of tunnel elements (which originates from microscopic quantum effects in the
junction and can be taken as purely phenomenological) and genuine macroscopic
quantum effects originating from quantum fluctuations of macroscopic electrical
quantities. We then treat in the following section the quantum mechanics of linear
dissipative circuits. We discuss in particular the case of the LC circuit with damp-
ing. The quantum fluctuations of this system can be computed analytically and
they provide a useful benchmark for the quantum fluctuations in circuits involving
Josephson junctions which are treated in the last section.

2. Hamiltonian description of the classical dynamics of electrical circuits
2.1. Non-dissipative circuits

2.1.1. Branch variables

An electrical circuit can be formally described as a network whose branches con-

sist of two-terminal electrical elements such as capacitors, inductors or more com-
plex elements (see example on Fig. 3). We will first restrict ourselves to non-dis-
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Fig. 3. Example of non-dissipative circuit whose branches consist of linear inductances and capac-
itances. The nature and number of degrees of freedom of the circuit would not change if the linear
elements were replaced by non-linear ones.
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Fig. 4. Sign convention for the voltage and current associated with an arbitrary branch b of an
electrical circuit.

sipative elements. However, we allow non-linear elements such as Josephson
junctions.

The element of each branch b at time ¢ is characterized by two variables: the
voltage v, (¢) across it and the current i, (r) flowing through it (the branch b has
an orientation which determines the sign of voltage and current as shown on Fig.
4). These variables play the role of velocities and forces in mechanical systems,
respectively. They can be defined from the underlying electromagnetic fields by
the line integrals

end of b N
vb=/ -3, @.1)
beginning of b
1
ib=—f B - ds. 2.2)
M0 Jaround »

Because we consider circuits in the lumped element approximation, these def-
initions make voltages and currents independent of the precise path of integration
along which fields are integrated, provided “natural” paths are chosen. These
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paths are outside the wire of inductors for the line integral of electric field and
outside the dielectric of capacitors for the loop integral of magnetic field. Note
that these definitions are sufficiently general to include the contribution to volt-
ages of emf’s due to time-varying magnetic fields and the contribution to currents
of displacement currents due to time-varying electric fields. Note also that the
factor wp in the definition of current comes from our choice of working with SI
units throughout this course.

An Hamiltonian description of electrical circuits requires the introduction of
branch fluxes and branch charges which are defined from branch voltages and
branch currents by

t
Py (1) = / v (t)dr’, (2.3)
-0
t
Qy (1) = f ip(t)dt'. (2.4)
—00
The circuit is supposed to have been at rest at time ¢ = —oo with no voltages

and currents. Static bias fields imposed externally on the circuit such as magnetic
fields through the inductors are supposed to have been switched on adiabatically
fromt =—ocotot =0.

Each element is characterized by a constitutive relation linking current and
voltage variations. We must distinguish between capacitive elements for which
the relation is of the form

vy = f(Qp) (2.5)
and inductive elements for which the relation is of the form*
i = g(Ps). (2.6)

Usual linear capacitances and inductances are special cases corresponding to
f(Qs) = Q»/C and g(Pp) = ®,/L. As we have seen with Eq. (1.3), a Joseph-
son tunnel junction is an inductive element where g is a sine function.

Since the power flowing into the element of branch b is given by vpip =
vy Q) = ipdy, the energy of capacitive elements is

O
h(Qs) = A f(@do 2.7

while the energy of inductive elements is
P,
h(dp) = / g(®)do. 2.8)
0

* . . . . . . .

We neglect here mutual inductances. In general the current in a given inductive branch is a function
of the fluxes in all the inductive branches. Avoiding this complication does not fundamentally alter
the formalism.
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2.1.2. The degrees of freedom of a circuit

The branch fluxes and charges do not directly constitute the degrees of freedom
of the circuit because they are not independent variables. They must follow con-
straints imposed by the topology of the circuit. These constraints are expressed
by Kirchhoff’s laws which state that the sum of voltages around a loop / and the
sum of currents arriving at a node n should be zero as long as the flux ¢; through
the loop and the charge O, of the node remain constant.

@, =y, 2.9)

all b around /

> =0, (2.10)

all & arriving at n

In standard circuit theory, the constraints imposed by Kirchhoff’s laws are dealt
with by introducing node voltages or loop currents, either of which can constitute a
set of independent degrees of freedom. In the following, we will rather emphasize
the node variable representation which is often more adapted to the treatment of
circuits involving tunnel elements like Josephson junctions.

Unlike branch variables, node variables are electrical quantities which depend
on a particular description of the topology of the circuit. The description of the
topology of the circuit is given as follows. One node is first chosen as a reference
node called “ground”. The remaining nodes of the network are referred as “activer
nodes”. From the ground node one then constructs a “spanning tree” by choosing
a set of branches such that every active node of the network is connected to the
ground node by only one path along the tree (see example of spanning tree on
Fig. 5). The remaining branches are “closure branches”. Each of them defines a
loop obtained by joining the two ends of the branch by the minimal path on the
spanning tree. These “irreducible loops” form a basis set from which each loop
of the network can be constructed. The spanning tree thus partitions the branches
of the network into two sets: the set T of branches belonging to the spanning tree,
each of which is associated with an active node, and the set C of closure branches,
each of which is associated with an irreducible loop.

The choice of ground node and spanning tree is analogous to the choice of a
particular gauge in electromagnetic field theory and to the choice of a system of
position coordinates in classical mechanics.

We can now introduce the flux ¢, of a node n which is defined by the time
integral of the voltage measured along the path connecting the node to the ground
on the spanning tree. One has

$n = Su®s. @.11)
b

In this last definition, the matrix element S, is 1, —1 or 0 depending on
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Fig. 5. Example of spanning tree for the circuit of Fig. 3. Closure branches are in dashed line. The
constant @ is the magnetic flux through the loop formed by the three inductors.

whether the path joining the ground to n follows b with the proper orientation,
the opposite orientation or does not follow b. Conversely, the flux of a branch b
can be obtained from the fluxes of the end nodes n and n’ of the branch, provided
that the static fluxes through the loops corresponding to the closure branches are
given.

PpeT = ¢n — Ows 2.12)
®peC = P — b + Prit)- (2.13)

Instead of node fluxes, one could have introduced irreducible loop charges ob-
tained by taking the time integral of the current in the closure branches. We would
then arrive at the loop variable representation which is the dual of the node vari-
able representation.

It is important to realize that the concept of node flux is closely related to
the condensate phase ¢ at a given point of a superconducting circuit. The two
quantities satisfy the relation

2
Q= -hftp mod 2.

The node flux ¢ can be defined for any circuit, whether it is superconducting or
not, whereas the phase ¢ is usually introduced only in superconducting systems.

2.1.3. Lagrangian of a circuit

We can now obtain the equations of motion of the circuit by equating, for each
active node, two currents: i) the sum of currents arriving from the inductive ele-
ments connected to that node and ii) the sum of currents going into the capacitive
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elements connected to that node. As an example, the circuit of Fig. 3, for which
one can choose as the two active nodes the nodes a and b, has the following
equations of motion:

s s ¢a+¢a_¢b+¢’

Ci¢a + C3 (¢a — B5) = I 5 (2.14)
. . — b, —
Cagpp + C3 (¢ — ¢a) = %’; + di”-—li— (2.15)

It is easy to show that these equations of motions are the Euler-Lagrange equa-
tions associated with a Lagrangian obtained by subtracting the energy of the in-
ductive elements from the energy of the capacitive elements, these energies being
expressed as functions of the node variables ¢, and their time derivative ¢3,,. For
the circuit of Fig. 3 and the choice of spanning tree of Fig. 5 the Lagrangian is

Ci¢2  Copf  Cs(da— (/3b)2
2 + 2 + 2
2 2 _ x\2 .
—,[ 0 95, (Gt O) ] . (2.16)

L (¢a’ ¢ag ¢b’ ¢b) =

2L, 2L, 2L,
Our approach for the construction of the Lagrangian of a circuit generalizes
the work of Yurke and Denker [12].

2.1.4. Node charges: the conjugate momenta of node fluxes
From the Lagrangian we can now define conjugate momenta of node fluxes by
the usual relation
oL

d¢n

The node charge g, is the algebraic sum of the charges on the capacitances
connected to node n (in the loop variable representation the conjugate momenta
of the loop charge is the sum of the fluxes in the inductors of the loop). Since for all
circuits of interest each active node is connected to a capacitance (in a real circuit
there is always some parasitic capacitance between nodes), the g, are always
defined [13] and we can perform a Legendre transformation of the Lagrangian
with respect to g,. We obtain by this systematic procedure an Hamiltonian of the
circuit.

2.17)

qn
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2.1.5. Hamiltonian of a circuit
Taking again the example of the circuit of Fig. 3, we can apply this procedure
and obtain the following Hamiltonian
1 [<c2 +C3)q?
Ci1Cy 4+ C1C3 + CrC3 2

LC1+C)a | Cilga- %)T

H (Pas Ga> O, qp) =

2 2

(2.18)

2L, + 2L, + 2L,

[ 92, 0 (da—0n+ 5)2]

The first term in H is the electrostatic energy of the circuit expressed as a
function of the node charges while the second term is the magnetic energy ex-
pressed as a function of node fluxes. This structure is a general characteristic
of the Hamiltonian of a circuit in the node variable representation and does not
depend on whether the elements are linear or not. The Hamiltonian formulation
shows clearly the role of ® as an offset term in the magnetic energy. In the case
of a linear inductor, the effect of this term is simply to induce an offset dc current.
However, in the case of non-linear inductors like Josephson junctions, this term
changes the dynamics of the circuit.

One can easily verify that Hamilton’s equations

bn = 2” (2.19)
qn

; oH

=5 (2.20)

are equivalent to-the equations of motion (2.14) and (2.15) .

It is important to note that although the Hamiltonian of the circuit always gives
its total energy, its functional form depends on the particular choice of spanning
tree, even when the choice of a representation in terms of node variables or loop
variables has been made.

However, the Poisson bracket [14] of the flux and charge of a branch is inde-
pendent of the choice of the spanning tree and is always unity.

ad, 0 0 od
{d)b,Qb}=Z b3Qp  3Qs b _

2.21)
— 3n 34n  3n 34n

2.1.6. Mechanical analogy
In the node variable representation, the node fluxes play the role of position coor-
dinates and the node charges the role of momentum coordinates. The electrostatic
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Fig. 6. LC ladder circuit. In the limit of an infinite number of elements, it can model the propagation
of the TEM mode of a coaxial transmission line.

energy plays the role of the kinetic energy and the magnetic energy plays the role
of the potential energy. However, the form of the Hamiltonian of Eq. (2.18) with
electrostatic cross-terms shows that the particular circuit of Fig. 3 has no direct
mechanical analog. In the cases where the capacitances are only connected be-
tween the active nodes and ground, they can be interpreted as the masses of the
active nodes and a direct mechanical analog can be found for the circuit. The
inductors then correspond to elastic coupling interactions between the nodes.

2.1.7. Fields to circuits, circuits to fields

Distributed electromagnetic systems can often be caricatured by lumped element
circuits which retain the properties of the lowest frequency modes. The link be-
tween a microwave cavity and an LC oscillator is very well discussed by Feynman
[15]. Thus inductors and capacitors are “bottles” for magnetic and electric fields
respectively. On the other hand, if one considers infinite circuits, one can obtain
lattice versions of electromagnetism. A simple example is the infinite LC ladder
(see Fig. 6) which sustains propagating modes that are equivalent, in the limit
of wavelengths long compared with the unit cell, to the TEM modes of a coaxial
transmission line. The Hamiltonian formulation is useful in the exploration of
such correspondences.

2.2. Circuits with linear dissipative elements

2.2.1. The Caldeira—Leggett model
We would like now to treat circuits with linear dissipative elements like resistors.
It would seem that the Hamiltonian formalism is powerless to treat a dissipa-
tive system, whose behavior is irreversible, since Hamilton’s equations of mo-
tion (2.19) and (2.20) are invariant upon time reversal. However this reversibility
problem can be solved by slightly extending the formalism. This extension has in
fact been made recurrently throughout the history of theoretical physics. We will
present here a particularly clear and useful version known as the Caldeira—Leggett
model [16] which applies to systems with linear dissipation.

The essence of the Caldeira—Leggett model is to replace, in the context of elec-
trical circuits, a linear dissipative element characterized by a frequency dependent
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Fig. 7. Caldeira—Leggett model of an admittance Y ().

admittance Y () by an infinite set of LC oscillators in parallel (see Fig. 7). The
internal degrees of freedom of the admittance can be thought of as the fluxes of
the intermediate nodes of the LC oscillators (open dots in Fig. 7). It is the pas-
sage from a finite number of degrees of freedom to an infinite one that reconciles
the irreversible behavior on physical time scales and the formal reversibility of
Hamilton’s equations of motion.

The reversibility problem appears when one notices that for every oscillator
m in the series, the admittance given by the usual combinatorial rules of circuit
theory

-1
Yo(w) = [ija) + ] (2.22)

JjCnw
is purely imaginary while ¥ (w) has both a real and imaginary part (we use here
the symbol

j=—-1=—i (2.23)

of electricians but with an opposite value to ensure later compatibility with the
sign convention of quantum mechanics concerning Fourier transforms). This
manifestation of the reversibility problem disappears by extending the notion of
admittance function to complex frequencies.

Let us recall that Y () is defined from the relationship between the voltage
across a linear element and the current flowing across it

+00

i) = / dr'¥ () v — 1), (2.24)
+00 ~

Y (@) = / dr Y (r)exp (iwt). (2.25)
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We can define an extension of ¥ (w) by

+00

Y [w+in] =f dr ¥ () exp[i (@ +in)1] (2.26)
—00
(there is no problem at t — —o0 singe 14 (1) is a causal function).
All information on the shape of Y () after t ~ n~! is erased in Y [w + in].
Let us now define the generalized admittance function by
Y[wl= lim Y[w+in]. (2.27)
n—0
n>0

We find that the generalized admittance for the nth oscillator is given by

Yo (0] = i { S0m 18 — ) +8(0+ 0m)]

I W Wm
NI R

where w,, = 1/+/LCy and y, = +/C,,/L,,. It has both a real and an imagi-
nary part. The idea of Caldeira and Leggett thus consists in replacing the smooth
Re[Y (w)] function by an infinitely dense comb of § functions. Mathematically
this corresponds to the following relations between Y () and the series of oscil-
lators:

Wm0 = MAw, (2.29)
ymz0 =Re[Y (mAw)], (2.30)
1

= m, (2.31)

Lo = ymla)m’ (2.32)
Crzo = z)—:. (2.33)

1 -1
Y [w] = [jC,,, (w+in)+ m] , (2.34)
0
Y[w+ln] m Z a)+tn n > 0. (2.35)

It is important to note that the Caldeira—Leggett model does not constitute a
representation of the internal workings of a dissipative element. It is helpful only
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to calculate the influence that such an element will have for the rest of the circuit.
We calculate this influence by adding to the Hamiltonian of the rest of the circuit
the Hamiltonian Hy of the admittance

2C, 2L,

m

2 N2
Hy =Y [‘I_m + @n—9) ] _ (2.36)

This Hamiltonian has been written in the node representation where the ground
has been chosen on one terminal of the admittance. The node flux ¢ corresponds
to the other terminal of the admittance while the node fluxes ¢,, correspond to the
intermediate nodes of the LC oscillators. The charges g,, on the capacitances Cy,
are the momenta conjugate to ¢p,.

2.2.2. Voltage and current sources

Sources of voltages and current can also be treated by the Hamiltonian formalism.
A voltage source can be represented as a large capacitor Cys in which is stored
initially a large charge Qs such that Qg/Cs = V in the limit Cs — oo. Likewise
a current source can be seen represented by large inductor Lg in which is stored
initially a large flux &s.

2.2.3. The classical fluctuation—dissipation theorem

The value of the Caldeira-Leggett model becomes apparent when we use it to
derive the fluctuation—dissipation theorem. Suppose that the admittance Y (w),
which we suppose in thermal equilibrium at temperature T, is short-circuited. In
that case the variable ¢ in the Hamiltonian (2.36) is identically zero and all the
oscillators become independent. The current i (¢) through the short is zero on av-
erage but will fluctuate. We can easily caiculate the spectral density of these fluc-
tuations by setting to %kBT the average value of each energy term in the Hamil-
tonian (2.36). For each oscillator m we can obtain the correlation function of the
charge on the capacitance Cy,

{gm @)gm(0)) = CnkpT cos (wn?) . (2.37)

The correlation function of the current through the mth oscillator is therefore
2
Cdr?

Using the relation (2.28) we can rewrite this relation as

(im ()i (0)) = (Gm(1gm(0)) = YymwmkpT cos (wn?) . (2.38)

{(im(@)in(0)) = kBTT /dw Re (Y [w]) exp (—iwt) . (2.39)
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Fig. 8. Caldeira-Leggett representation of an impedance.

Since all the oscillators are independent, we can add their correlation functions
to obtain the correlation of the current through the short

(i) = k_;{ f dwRe (Y [w]) exp (—iwt). (2.40)

We finally obtain the spectral density of current fluctuations in equilibrium
defined by

S (w) = /da) ()i () exp (iwr) (2.41)

in terms of the impedance function (Nyquist theorem)
S; =2kpT Re (Y [w]) . (2.42)

The spectral density of thermal equilibrium voltage fluctuations across a lin-
ear dissipative element can be obtained as a function of its impedance Z(w) =
[Y (w)]"! in a similar manner. Using the Caldeira-Leggett representation of an
impedance (see Fig. 8) and the loop variable representation we obtain

Sy =2kgT Re (Z [w]). (2.43)

We will see in the next section how the quantum treatment of dissipation mod-
ifies the results (2.42) and (2.43).
3. Quantum mechanics of linear dissipative circuits
3.1. Quantum description of electrical circuits

The passage from the classical to the quantum description of electrical circuits is
straightforward in the framework of the Hamiltonian description developed in the
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preceding section. The classical variables are replaced by corresponding operators
and the Hamiltonian function is replaced by a function of operators:

¢ — &,
q9—>9,
H—H. (3.1)

The operators corresponding to the position coordinates all commute and de-
fine an Hilbert space. However, commutation relations are imposed on pairs of
operators corresponding to conjugate variables. In the node variable representa-
tion, the commutator of the node fluxes and conjugate node charges is:

[60, @] = it 3.2)
This relation just follows from the fact that node fluxes play the role of position
coordinates while nodes charges play the role of momentum coordinates. More

generally, as shown by Dirac[18], the value of a classical Poisson bracket imposes
the value of the corresponding commutator

{A, B} » —[A, B]. 3.3)
It follows that the flux and the charge of a branch have the commutator

[®5, 0s] = ik (3.4)
even if they are not conjugate coordinates.

3.2. Useful relations

Usual relations of quantum mechanics can be adapted to electrical systems. We
thus get

ol = (3.5)
9A/3g, -1

[Z, an] - l._hs (36)
dA/ 1 37
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The sign of the right-hand side in these relations can be obtained by matching the
vertical order of the variables on the left-hand side to the order of variables in the
columns of the following mnemonic table:

by > ¢

v L

an «— H
The integral form of these relations will also be useful:
A@)=eR A@0)e T, (3.8)
eLL}":lia\ne_ig :’q\n -q, (39)
WG H =5, + 9. (3.10)

In order to simplify notations, we will, from now on, drop the hat on operators.
We will of course make sure that the distinction between operators and c-numbers
can be made from the context.

3.3. The quantum LC oscillator

The LC oscillator of Fig. 1 can now be treated quantum mechanically. This
circuit with only one active node has a trivial topology. We can immediately adapt
well-known textbook results on the harmonic oscillator. Taking as variables the
integral ¢ of the voltage across the inductor and the corresponding charge g on
the capacitor we have the Hamiltonian

2 2
q- | ¢
=-—4 —. 3.11
" 2C + 2L G-10)
Introducing the usual annihilation and creation operators such that
[c.c]=1 (3.12)
we have
hZ
¢= 70 (c+c), (3.13)
1/ hR
=—f—(c—c 14
q ; 220((: c), (3.14)
huo
H=—2 (cfe+cc’) = R (cTe + 1), (3.15)

2
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where, as in section 1,

\/T

wo = _lf’

Zy= \/Z (3.16)
Cc

Using Eq. (3.8) and the relation

(A) = w[AePH], (3.17)

where 8 = (kgT)~", we can calculate the flux-flux correlation function in thermal
equilibrium (¢ (z) ¢ (0)). We arrive at

(0 () ¢ (0) = hZo ((cTc) e + (cctyemiov) (3.18)
and from
1 B 1
(CTC>=M 2 th< 3 )“E=n(w0)s
1

lec’) = T—pmm =~ (—w0) =n (@) + 1. (3.19)

we get ﬁnally
hZ,
(¢ (1) (0) = — [coth (

Setting t = 0 we get the variance of flux fluctuations

2 hZo Bl
(0%) = —- th( > ) 3.21)

which interpolates between the zero-point fluctuations result {¢2) = hZ/2 and
the high temperature (ks T > hawo) result (¢2) = kpT C.

ﬁhzwo) coswot — i sin a)ot] . (3.20)

From (g (1) q (0)) = —C%d* (¢ (t) ¢ (0)) /dt*> we also get the variance of
charge fluctuations
h Bhiwy
%)= — coth . 22
)=szee(5Y) 62

An important remark can be made: Not only does Eq. (3.20) predict that
the amplitude of fluctuations saturates at low temperature (well-known zero-point
fluctuations) but it also predicts that the quantum correlation function is not real!
The Fourier transform of the correlation function thus cannot be interpreted as a
directly measurable spectral density as is the case classically. Let us now discuss
the case of a general impedance to further examine this point.
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Introducing the generalized impedance function of an LC oscillator

Zic [w] = Zo {%wo [8(e — wp) + (e + wp)] +

i wp wyp
o)) e

we can rewrite (3.20) as

ho(d ho
606 O) =5 / —wf [coth (ﬂT) + 1] Re (Zic [w]) exp —iwr.

(3.24)
3.4. The quantum fluctuation dissipation theorem

We can now obtain the quantum correlation function of the branch flux across an
arbitrary generalized impedance by using the Caldeira—Leggett representation of
Fig. 8. We simply add the contribution of all the oscillators and since the corre-
lation function is a linear function of the real part of the impedance we directly
obtain a result of central importance:

+00
(@) D) = i f d_a) [coth (%) + 1i| Re (Z [w]) exp —iwt.

27 S @ (3.25)
If we now introduce the spectral density of quantum fluctuations
+oo
C(w) = / dt (® (1) ® (0)) expiowt (3.26)
—00
we get the frequency domain relation

I how
C(w)=— [coth (ﬂ—2-> + 1:| Re (Z [w]) (3.27)

w

which is also called the quantum fluctuation dissipation theorem [19]. Note again
that in contrast with a classical spectral density of fluctuations C (—w) # C (w).

How should we interpret C (w)? To make easier the comparison with the clas-
sical case let us calculate the voltage-voltage spectral density

+oo
U(w) = / dt (@ (1) & (0))expiwt (3.28)

which is related to C () by U (0) = ©*C ()

U(w) =how l:coth ('8—2@> + 1:| Re (Z [w]) . (3.29)
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Fig. 9. Caldeira-Leggett representation of the damped LC circuit of Fig. 1b.

In the various limits U (w) is given by

|hw| < kpT U (w) = 2kgT Re(Z [w]),
hw > kT U (w) = hwRe (Z [w]), (3.30)
how « —kgT U (w)=0.

3.5. Interpretation of the quantum spectral density

The form of U in the quantum limit |Aw| 3> kpT shows that the @ < 0 part
of quantum spectral densities correspond to processes during which a “photon”
is transferred from the impedance to the rest of the circuit while the @ > 0 part
corresponds to the reverse process. The quantum fluctuation—dissipation theorem
constitutes a generalization of Planck’s black body radiator law. The impedance
plays the role of the black body radiator while the rest of the circuit plays the role
of the atom. Finally the @ < 0 and @ > 0 processes correspond to absorption and
emission processes respectively. Note that for w > O the fiw Re (Z [w]) part of U
corresponds to spontaneous emission.

3.6. Quantum fluctuations in the damped LC oscillator

How does dissipation modify the results of Egs. (3.21) and (3.22)? We can apply
the quantum fluctuation-dissipation theorem to compute the fluctuations of the
damped LC oscillator of Fig. 1b. This system can be represented by the circuit
diagram of Fig. 9 in which we have replaced the admittance Y (w) by an infinite
set of series LC oscillators in parallel.

Using the node variable representation we arrive at the following total Hamil-
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tonian

H——+_+Z[ ‘f’)] (331)
Since this Hamiltonian is quadratic we can in principle find its normal mode
coordinates. However, there is a more efficient method. We can treat the circuit
taken between ground and the closed dot in Fig. 9 as a dissipative element with
an impedance Z (w) given by
1

V4 3.32
@) = jLw+ij+Y(w) ( )

Taking the spanning tree to go through the main inductance L, the node flux
¢ is identical to the flux ¢ through that inductance and we get

hZy [t ZowiwY
(CDZ) - 20 / Oza)ow (@) coth (ﬂhw) dw.
2 Jox (0? = })” + Z3}w?Y (0)* 2 (3.33)

Similarly, the conjugate charge g is identical to the charge Q on the main
capacitance C and we have

+co 2.3
<Q2)=i/ Zowt Y (w) 2coth<ﬂhw)dw_
22y - (a2 — wd)’ + Z202w?Y () 2 (3.34)

We can now apply these results to the so-called ohmic case (or resistor case)
where the damping admittance is independent of frequency below a cutoff fre-
quency w, which we take to be much larger than wy. We take Y (w) of the form

1
-1

1
Y (w) = - =R — (3.35)
R+jLw 1- za%

The integrals in Eq. (3.33) and Eq. (3.34) can be calculated in closed form
[20] and one finds that in the limit w, — oc, (®?) becomes independent of ..
We have

1
N =hZo 0+ ———=[W (1 +2r) — W +A } 3.36
(¢?) o{ o [V A3 = W (L] (3.36)
where ¥ (x) is the polygamma function and

kT
6 =—"—, 3.37

oy (3.37)
k = (2RCap)~ ", (3.38)

+ k2 -1

A= YK T (3.39)

278
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Fig. 10. Variations of the dimensionless variance (¢3) = (<I>2)/ (hZo) of flux fluctuations of the
LCR circuit as a function of the dimensionless temperature 8 = kp T /hwy for different values of the
dimensionless damping coefficient ¥ = QRCwp)~ L.

In contrast with (®?), (Q?) diverges as w, — 00, a specifically quantum me-
chanical result. We have

(0% = Lz(q,z) + A (3.40)
ZO
where
A= [2\11(1 + ) — L—xy(1 +Ap) + ———=v +,\_)],
nZo Vil =1 NI
(3.41)
huwg W
= SnaT (Z)E - 2/() . (3.42)

These expressions are plotted in Figs. 10 and 11.
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Fig. 11. Variations of the dimensionless variance (qf) = ZO<Q2) /B of charge fluctuations of the
LCR circuit as a function of the dimensionless temperature 8 = kg T /huwp for different values of the
dimensionless damping coefficient k = (2RCawp)~!. For all values of «, the cutoff frequency w, of
the resistor has been chosen such that w, /@y = 10. The curves for ¥k = 0.2 and « = 0.02 are barely
distinguishable.

3.7. Low temperature limit

In the limit # — O we find the analytical expressions

nzo21n (¢ + Vi =1)

%) = — , 3.43

%) 2 7/ —1 G4
s _i if & o2 2ln(K+VK2—1)

(0= 2Zy | @ n (wo) +(1-2) ki =1 ' (.49

It is interesting to calculate how the quantum fluctuations depend on the damp-
ing coefficient « in the ¥ >> 1 limit

hZo21n2 1
(02)= 20 22E L o 25 (3.45)
2 mk K3
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h 4k 1) Ink
2 c
=——In{—|+0(—). 3.46
(Q) 2Zy n<2/cw0>+ < K ) (3.46)
We find that the surface of the uncertainty ellipse grows logarithmically with
damping

Joo)ioy~ 2 [2 In2In ( 2;";0)]% (3.47)

an effect due to the presence of quantum degrees of freedom inside the resistor.
Apart from that feature, we note that the effect of a resistor on the quantum me-
chanical fluctuations of the LC oscillator is essentially to rescale the size of these
fluctuations. We will see in the next section that the non-linear oscillator formed
by a Josephson junction can have a qualitatively distinct behavior.

4. Quantum fluctuations in superconducting tunnel junction circuits
4.1. Energy operator for a Josephson element

As we have seen in the introduction, a superconducting tunnel junction can be
modeled by a pure tunnel element (Josephson element) in parallel with a capacitor.
The Josephson element is such that the charge Q; having passed through it is an
integer number N times the charge —2e of a Cooper pair

Qs (@) =-2eN (). 4.1)

Quantum-mechanically, N should be treated as an operator N whose eigen-
states are macroscopic states of the circuit corresponding to well defined number
of Cooper pairs having passed through the junction

N = Z N|N)(N]|. 4.2)
N

One can show that the tunneling of electrons through the barrier couples the
[N) states [21]. The coupling Hamiltonian is

~ E; &
h1=‘7N;wllN> (N + 1]+ N + 1) (N]]. | 43)

The Josephson energy E; is a macroscopic parameter whose value, in the case
there is the same BCS superconductor on both sides of the junction, is given by [4]
1h
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where A is the superconducting gap and G, the tunnel conductance in the normal
state. The tunnel conductance is proportional to the transparency of the barrier and
to the surface of the junction.

4.2. The phase difference operator

Let us now introduce new basis states defined by

+00
8y =Y eMIN). (4.5)

N=—o00
The index § should be thought of as the position of a point on the unit circle
since
§—>8+2n (4.6)

leaves |6) unaffected.
‘We have conversely
1 27

from which we can obtain the expression of ;l\J in the |8) basis

[N) ds e~V |5) 4.7

hy = _E 17 ds [e +e7] [8) (5]. (4.8)
2 27 Jo
It is natural to introduce the operator
e = L 7 aseit 15y 51 (4.9)
27 Jo
which is such that

P INy =N —1). (4.10)
We can thus write the coupling Hamiltonian (4.3) as

hy = —E; cos3. (4.11)

The operatorgis the quantum-mechanical phase conjugate to the number op-
erator N. Note that the couple N, 3 bears close resemblance to the couple formed
by the number and phase operators for the mode of the electromagnetic field in
quantum optics. However, it should be stressed that here the pair number operator
takes its eigenvalues in the set of all integers, positive and negative, whereas the
number of photon operator takes its eigenvalues in the set of non-negative integers
only. We can write symbolically

5, N|=i (4.12)
(3, N]
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being aware of the fact that due to the circle topology of the manifold |8) , only

periodic functions of 3 like e”® have a non-ambiguous meaning.
From Eqgs. (3.6) and (3.7) we have

d_t‘s_ﬁrﬁ]"‘___ (4.13)

Since N couples linearly to the voltage operator 7 via the Cooper pair charge
—2e, we have

da~ 2e_

—5=— 4.14

dt h v “-19)
We can thus identify R, /2e and the branch flux operator ) J

RS/2e = ®;. (4.15)

This result can also be deduced from (4.12) and the property that the Poisson
bracket of a branch flux and a branch charge is unity.
Using the same type of algebra as in (4.13) and Eq. (4.11), we find that the

current operatorz = —2edN /dt is given by
7= Iy sind (4.16)
where
2e
Iong,. (4.17)

Egs. (4.15) and (4.16) form the quantum constitutive relations of the Joseph-
son element. They could have been obtained directly by treating the Josephson
element phenomenologically as a nonlinear inductance with a sinusoidal current—
flux relation and by replacing the classical quantities by operators. However, the
microscopic approach we have presented explains how the sine function and the
flux scale 2e/h originates from Cooper pair tunneling.

4.3. Macroscopic quantum tunneling

Let us now consider a circuit consisting of a Josephson junction with critical
current Jp and capacitance C connected to a source of current / (see inset of Fig.
12).
Such a source can be thought of as a very large inductor Lg “precharged” with
a very large flux o s such that o s/Ls = I. We take as degree of freedom the
integral ¢ of the voltage on one plate of the capacitance C, the other plate being
set to ground. In this representation, the Hamiltonian of the circuit is
~ 2
¢ (95—9)

H="L 4

2e
— E, cos Z . 41
2C 2L JCOS ¢ 4.18)



382 M.H. Devoret

-1 0 1
2ed/h

Fig. 12. A current-biased Josephson junction (inset) is equivalent to a particle ina washboard potential.
The voltage V across the junction is equivalent to the velocity of the particle.

We have dropped the hat on operators. Note that the flux ¢, in contrast to the
phase difference 8, takes its values on a line and not on a circle. Likewise, its
conjugate variable ¢, the charge on the capacitance, takes continuous values and
not integer ones like N. In the limit Lg — 00, ) s/Ls — 1, the Hamiltonian
(4.18) reduces to

2

H=§—C—I¢—chosz—;¢. (4.19)

This Hamiltonian corresponds to a particle with position ¢ and mass C evolv-
ing in a washboard potential U (¢) = —1¢ — E; cos z—ffqb (see Fig. 12).

Classically, at T = 0 and for I < Iy, the particle is trapped in a potential
well. Because the phase does not increase with time, the d.c. voltage V measured
across the junction is then identically zero and the junction is said to be in its
superconducting state. If now I > Iy, the washboard loses its minima and the
particle rolls down the washboard. In that case  is non zero on average, V has a
finite value and the junction is said to be in the dissipative state.

Quantum mechanically, the particle can escape even when I < Ip. Because
the mass C is finite, ¢ can traverse the potential barrier by quantum tunneling
(see Fig. 13).

This effect, named macroscopic quantum tunneling (MQT) to distinguish it
from the microscopic quantum tunneling of electrons or Cooper pairs, has been
observed in several experiments, along with the quantized energy levels in the
washboard (see for instance the review by Devoret et al. [6]). A related effect
observed recently [22] is resonant tunneling between macroscopic states of a

SQUID.
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Fig. 13. Macroscopic quantum tunneling of the junction out of its superconducting state. The decay
of the ground state in the well has been represented by a dashed arrow. Excited states in the well also
decay by tunneling, but in practice, their main decay process is the relaxation towards lower states.

:
Y él =
! c ly

Fig. 14. Current-biased Josephson junction with its electromagnetic environment represented by an
admittance Y (w).

4.4. Influence of dissipation on macroscopic quantum tunneling

The rate of MQT in the ideal current-biased junction can be computed [1] by the
WKB method and one finds an expression of the form

I'=Aexp—B (4.20)
where the exponent B is given for (Ip — I) /Iy < 1 by
AU
B=72—. 4.21
o, 4.21)

In this last expression, AU is the barrier height and wp the frequency of small
oscillations in the well.

However, in an actual experiment, the bias current source is never perfect.
There is always an admittance Y (@) connected in parallel with the junction rep-
resenting the electromagnetic influence of the leads and the filters connecting
the junction placed at low temperature and the room temperature measurement
apparatus (see Fig. 14).

Dissipation due to Y (w) affects the MQT rate exponentially. For an admittance
smoothly varying with frequency on the scale of wy and such that Re [¥ (wg)] <
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Zy - +/2¢1yC /h, one can calculate using the methods discussed in sections 2
and 3 the effect of Y (w) on B and one finds [1] that

AU 0.87
By =72— {14+ ——F—— 4.22
Y Fiw, { Cw)Re[Y(w))] ] *22)

where wj, is the small oscillation frequency modified by Y (w). This expression is
well-verified experimentally [6]. The effect can be understood in the following
manner: as the dissipation is increased, the zero point fluctuations of the position
of the particle in the well of Fig. 12 decrease in the same manner as with the
harmonic oscillator and tunneling is suppressed.

4.5. Zero-voltage conductance of small Josephson junctions

Junctions used in MQT experiments are large in the sense that the Josephson
energy E; giving the scale of the barriers in the washboard potential is large
compared with the scale Ec = (2¢)? /2C of the energy of zero-point fluctuations
in the well of the washboard. As the size of the junction is reduced, both C and
Iy tend to become smaller and the ratio E;/E¢ diminishes. For E;/E¢ of order
unity, the particle tends to diffuse quantum-mechanically along the washboard
potential. In this regime, the sinusoidal non-linearity of the potential becomes a
crucial feature. Although the relation between the voltage across the junction and
the bias current is presently not fully understood in this regime, it is still possible
to calculate the zero-bias conductance of the system for ¥ (w) = R™! [23].

One calculates the conductance from the Fourier transform of the correlation
function of the current operator

1 0
G ~ lim —/ dr {[i (1), i(0)]) exp(—2ieVi/h). (4.23)
v>0V Jo
This involves as an intermediate step the computation of the important quantity
+00
P(E) = / dt (P9 O/hemi2e0 O/ exp (i Et /) (4.24)
0

which is the probability that during tunneling a Cooper pair excites the electro-
magnetic environment with an energy E. In this last expression ¢ is the flux
across the admittance as in the damped LC circuit of section 3. Since

(ef2e0®/g-i2ep(o)/hy _ -/ P-4 OIp(O) (4.25)

one deduces from Eq. (3.25) that the ratio R/Ro where Ry = (2¢)?/h will
play a critical role in the + — oc limit of the integral of (4.24). At T = 0
one finds that for R > Ry the diffusion of ¢ becomes unbounded and G = 0
(insulating state) whereas for R < Ry the diffusion of ¢ is suppressed, ¢ is
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localized around one well and G = oc (superconducting state). There is now good
experimental evidence for such effects [24]. Dissipation, which tends to suppress
the fluctuations of ¢ and make it more classical, actually favors superconductivity!

4.6. Circuits with islands

We consider now circuits in which junctions are connected to other junctions or to
capacitors. One junction electrode at least will form an isolated superconducting
“island”, a node whose charge g, can vary only by electron tunneling. When the
even—odd free energy of this island is greater than the electrostatic energy e®/2Cx
corresponding to one excess electron [25], then the charge g, will adopt the values
—2en where n is an integer. Here Cy, denotes the total capacitance of the island.
Note that the node flux ¢, conjugate to g, here takes its values on a circle and
coincides, apart from the factor A/2e with the phase of the superconducting
electrons in the island.

Furthermore, if (2¢)?/2Cy is greater than the Josephson energy of the junctions
leading to this island, the number n of Cooper pairs will be a good quantum num-
ber while the conjugate flux ¢, will be completely uncertain quantum-mechani-
cally. This is the regime of Josephson effects with one Cooper pair [26,27]. From
the point of view of node fluxes one is in a quantum regime analogous in quantum
optics to situations where the number of photons in a cavity is a good quantum
number [5]. The interplay between the electrostatic energy which tends to fix
the number of pairs on islands and the Josephson energy which tends to induce
quantum fluctuations of the island pair number lead to new collective quantum
phenomena in circuits containing several junctions and junction arrays [10,28].
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