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Einstein’s Photoelectric effect
XPS, UPS, ARPES
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remove one

Correlated vs. uncorrelated systems

Static Dynamic

Si, Ge, Cu, etc.
Band theory

Works even though 1023

electrons!

Correlated systems
Many-body theories

Dynamic interactions --> Novel and rich physics and materials systems.



Crystal structure of the manganites
Cubic perovskite

manganite 
(ie. La0.6Sr0.4MnO3)
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Bilayer manganite -  La2-2xSr1+2xMn2O7
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Evidence for half-metallicity

• Strong spin polarization in La0.67Sr0.33MnO3 epi-films:

J.H. Park et al., PRL 81, 1953 (1998), Nature 392, 794 (1998).

T = 40K



Double Exchange Theory
Kinetic energy gain for ferromagnetic alignment
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Double Exchange Theory
Kinetic energy gain for ferromagnetic alignment

Change in conductivity going across Ferro-Para transition:  ~ 30%
Real materials - many orders of magnitude effect!  Why?
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Can study with ARPES
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Transport without polarons Transport with polarons

To help manganite problem, polaronic effect
must be stronger above Tc than below Tc

Feedback effect necessary - Polaronic effect
cooperates with Double-exchange and/or other
phenomena (charge ordering).

Polarons and conductivity

negative
magneto-
resistance

Temperature (K)
Re

sis
tiv

ity
 (o

hm
-c

m
) H=0T

H=1T

H=3T
H=5T

H=7T

H=2T

10-1

100

10-2

1000 200 300



Temperature dependent pseudogaps in CMR
Oxides
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Questions
• How to explain very poor conductivity

– In the “metallic” state of the manganites?
– M-I transition into the high T insulating state?  (--> CMR)

• Possible mechanisms.
•Polarons?    Large scattering?    Charge/orbital ordering?
•Temperature dependent pseudogap (includes some of above).

negative
magneto-
resistance

Temperature (K)

R
es

ist
iv

ity
 (o

hm
-c

m
) H=0T

H=1T

H=3T
H=5T

H=7T

H=2T

10-1

100

10-2

1000 200 300

Very poor metal Insulator



binding energy 

emission angle

MDC

EDC

Angle Resolved Photoemission (ARPES)

E vs k relation

EDC: Energy Distribution Curve (ARPES
intensity versus binding energy)

MDC: Momentum Distribution Curve
(ARPES intensity versus momentum)
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ARPES on La1.2Sr1.8Mn2O7  (n=2, x=0.4)
(Low T Ferromagnetic state) 

Integrated spectral weight over (0.2eV,-0.2eV) window

LSDA Fermi surface topology
(N. Hamada unpublished)

3d x2-y2 
hole pockets 

3d 3z2-r2 
electron pocket 

Y.D. Chuang et al., Science 292, 1509 (2001)



Angle-scanned (unsymmetrized) Fermi Surface
 bilayer manganite  x=0.4    (Low T Ferromagnetic state)
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ARPES on bilayer x=0.4 samples - Low T (20K) ferro state
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Double Exchange Theory
Kinetic energy gain for ferromagnetic alignment

Change in conductivity going across Ferro-Para transition:  ~ 30%
Real materials - many orders of magnitude effect!  Why?
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hv=22.4 eV   200K spectra taken first  
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Energy Relative to EF  (eV)

.06 eV

Temperature dependence of  (LaSr)Mn2O7  x=.4  Tc ~ 130K

Bandwidth change : .06 eV/1.5 eV = 4%.    Much less than the DE prediction of 30%.
==> DE relevant but not key effect.

T. Saitoh et al., PRB (2000)



fitting results
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Extraction of the key transport parameters - low T ferrometal state

1)Fermi velocity (from band dispersion near EF)
   vF ~ 0.038 c

2)Band mass (fitting dispersion with parabola)
   m ~0.27 me

3)Number of carriers (measurement of the FS volume)
   n ~ 3.4*1021 holes/cm3

4)Momentum width (HWHM)
   Dk ~1.2o ~ 0.09 p/a ~ 0.07 A-1 (original)
4b)Mean free path (lower limit)
   l=1/ Dk ~ 14 A ~7 times the Mn-O bond length
4c) Mean free time between scattering (lower limit)
   t=l/vF ~1.24 fs

rARPES = 1/s = m* / n e2t ~ 1.3*10-4 W-cm  (Drude)
Real value r0 ~ 2*10-3 W-cm (more resistive)

Key ingredient not considered in the Drude calculation: pseudogap.  Presence of the pseudogap
can effectively remove carriers from conduction process thus increasing the resistivity
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Temperature dependence of the pseudogap

Pseudogap correlates
with and may drive
the M-I transition.
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The pseudogap affects all families of the manganites - some very strongly
(single layer) and some less so (pseudocubic). Resistivity varies in kind.

Dimensionality dependence of near-EF weight



Optical Conductivity of layered manganite

T. Ishikawa et al., Phys. Rev B 57, R8079 (1998)

• Spectral weight transfer with temperature over large energy scale
• Gapped low energy spectral weight (no Drude peak)



Loss of near-EF weight (pseudogap)
Simple superposition of metallic and insulating regimes?
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(Need many many types of regions, all with different size gaps)
- May consider fluctuations in space and time to get this.

Also, FS volume matches total # carriers expected by chemical doping
(no regions with extra # holes, regions with fewer # holes).
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Real-space Charge Density Waves (CDW’s) and CDW gaps
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Extra periodicity induced by CDW
observable in diffraction experiments as

weak superlattice spots at (1/4,1/4,0).

Commensurate/static “CE” ordering

Example:  LaSr2Mn2O7 (x=0.5)    commensurately doped insulator
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System gains energy when gap is
centered at EF (commensurate

doping levels).



k-space driven CDW’s and Fermi Surface nesting

Entire measured FS of La1.2Sr1.8Mn2O7 is gapped due to large parallel segments
(nearly perfect nesting).
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We can guarantee that CDW gap is centered at EF in a
k-space driven CDW --> gain extra energy.

If many parts of the Fermi Surface connect (nesting
condition) the instability is greatly enhanced.
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Charge density wave incommensurate with lattice.
Short range in space.  Fluctuates in time. Elusive!



Real space picture of the k-space driven CDW fluctuations

• Fermi-Surface-driven CDW cooperates with
the Jahn-Teller effect to distort MnO6
octahedra. --> increased energy scale of gap.

• Elastic strain mediates the correlations.
• Incommensurability with the lattice --> order

is short ranged in real space

x ~ 6a

a
c

Mn La/SrO

O3a
O1
O2

O3b

B. Campbell et al, (Phys. Rev. B 2001)

From an analysis of the intensity of 108 superlattice
reflections (only observed in the high temperature

paramagnetic state)
Temperature Dependence
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Sharpness of the energy gap

E k
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Including polaronic (Jahn-
Teller) energy scale

Looks like lower figure even in low T ferromag state!
Polarons and/or charge order at all Temps (with varying strengths).



Temperature dependence of the pseudogap

Pseudogap correlates
with and may drive
the M-I transition.
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electronic

(0.3,0,1)
orbital stripe

(k-space)

Fermi surface
topology

k-space

charge/orbital
modulation

Jahn-Teller distortions
of various magnitude

r-space

+
CDW (short range)

pseudogap

ARPES

XRD,EXAFS

Double Exchange

CMR effect

lattice

charge
orbital

spin

Competition and cooperation


