
Quantum Many-Body Systems Boulder School
Ashwin Nayak (U. Waterloo & Perimeter) July 22, 2010

Quantum Complexity Theory II

In the last lecture, we saw what it means to compute a function efficiently, and saw subproblems of ISING

GROUND STATE and k-SAT for which we know efficient algorithms. We also saw that the best known
algorithms or these problems in their full generality are not efficient, and in fact are not qualitatively better
than taking a brute-force search approach. Today, we’ll develop a theory that explains to some extent the
difficulty in designing efficient algorithms for these problems.

The complexity class NP

Let us revisit the language ISING GROUND STATE. If someone gave us a state σ claiming that it had en-
ergy H(σ) at most the required threshold k, we would be able to efficiently check whether that is true.
In fact, whenever an instance (G, c, b, k) is in the language, there is such a state—the ground state would
be one such. When the instance is not in the language, there is no such state, and any claimed state can
efficiently be checked and rejected.

The problem k-SAT enjoys the same property. If we are presented with an assignment, and we can check
efficiently whether it satisfies the given formula or not. By definition, whenever the formula is satisfiable,
there is evidence supporting this (e.g., a satisfying assignment), and when the formula is not satisfiable any
claimed evidence (like a putative satisfying assignment) can be checked and rejected efficiently.

This property is common to a wide array of problems, including the travelling salesman problem, graph
isomorphism, scheduling with constraints, etc., and is the defining characteristic of the complexity class NP.

Formally, we say that a language L is in NP if the following conditions are met. There is an efficient
verification algorithm, i.e., uniform family of polynomial-size circuits {Cn}, that take two arguments x, y
as input. The two inputs to Cn are of length n, and p(n), respectively, where p(n) is a polynomial in n.
Furthermore, for every n, and for any input x of length n,

1. if x ∈ L, there is a “witness” y of length p(n) such that Cn(x, y) = 1, i.e., the verification procedure
accepts the witness.

2. if x 6∈ L, every putative witness y of length p(n) is rejected by the verification procedure, i.e., Cn(x, y) =
0.

We may think of the witness as a “proof” that x is in the language, and the verification algorithm as a
proof system, which checks whether a proof is correct or not. The two conditions above correspond to
completeness and soundness of the proof system: every correct statement x ∈ L has a valid proof, whereas
no incorrect statement has one. Moreover, a putative proof can be checked efficiently. In other words, NP
consists of languages which admit short, efficiently verifiable proofs.

The name NP is an abbreviation for “non-deterministic polynomial time”, and comes from its original
definition in terms of non-deterministic Turing machines. It should not be mistaken for “non-polynomial
time” eventhough we do not know of efficient solutions to many of the problems in the class, and it is
widely believed that P 6= NP.

Note that every language in P is in NP by the above definition, as for these languages we do not need the
aid of a proof to efficiently verify whether x ∈ L. There are a plethora of problems not known to be in
P which are in NP; some were mentioned above, others are integer linear programming, decoding linear
error-correction codes, factoring integers, etc. Whether P 6= NP remains one of the defining open problems
of the field of theoretical computer science today. Besides being of interest for practical computation, it
touches upon a fundamental question about mathematics itself: is devising a proof harder than checking
that a putative proof is correct?

1

We mention in passing that there are problems that are not known to have short proofs, and therefore are
not known to be in NP. For example, we do not know of short proofs of unsatisfiability of boolean formulae,
or that the permanent of a matrix is bounded by some threshold.

NP-hardness

In the early 1970s, Cook and Levin independently proved a remarkable fact about 3-SAT that greatly simpli-
fies the study of problems in NP. They showed that 3-SAT is NP-complete, which essentially means that if
there is a polynomial time algorithm for this problem, then every language in NP has an efficient algorithm.

A many-one or Karp reduction from a language L1 to another language L2 is an efficient algorithm that given
an instance x for the problem L1 produces an instance y of the problem L2 such that x ∈ L1 iff y ∈ L2.
Since y is produced by an efficient, i.e., polynomial-time algorithm, it is only polynomially longer than x.
When there is such a reduction, a polynomial time algorithm for L2 implies a polynomial time algorithm
for L1, and we say that L1 reduces to L2. Clearly, reducibility is a transitive relation, so that if L1 reduces
to L2, and L2 reduces to L3, then L1 reduces to L3.

We say that a language L is NP-hard if every language in NP reduces to L (via Karp reductions). We say
that a language is NP-complete if it is also contained in NP.

Theorem 1 (Cook-Levin) 3-SAT is NP-complete.

Proof : Since we have seen that 3-SAT is contained in NP, we need only prove that it is NP-hard.

Consider some language L in NP, and an instance x of the problem of length n. By definition, there is a
polynomial time constructible verification circuit Cn that takes as input x and a “witness” y of length m, a
polynomial in n. Recall that there is a assignment for y such that Cn(x, y) = 1 iff x ∈ L.

Let the gates in Cn be g1, . . . , gT , so that the circuit has size T . We construct a 3-CNF formula φ over n vari-
ables (x′

i), m variables (y′

j), and a further T auxiliary variables (g′k) with a number of clauses proportional
to n + m + T .

The formula consists of three types of clause: input, output, and propagation. The output clause is sim-
ply g′T . This is to ensure that if φ is satisfiable, then the output of the verification circuit is 1.

There are n input clauses: if the input bit xi = 1, then we include the clause x′

i, otherwise we include ¬xi.
These clauses ensure that the variables x′

i take the values of the input bits xi.

The propagation clauses ensure that the variable g′k takes the value computed by the gate gk. Suppose gk =
¬, and that the input wire is z, with the corresponding variable z′ in our construction. Then we include
the clauses (¬z′ ∨ ¬g′k) and (z′ ∨ g′k). These are true iff g′k is the negation of z′. Suppose gk = ∧, and that
the input wires are z1, z2, with the corresponding variables z′1, z

′

2 in our construction. Then we include the
clauses (z′1 ∨¬g′k), (z′2 ∨¬g′k), and (¬z′1 ∨¬z′2 ∨ g′k). All three clauses are simultaneously true iff g′k takes the
value z′1 ∧ z′2, as intended.

Summing up, we see that φ(x′, y′, g′) is satisfiable iff there is an assignment to y such that Cn(x, y) = 1.
Equivalently, iff x ∈ L. This means that L reduces to 3-SAT, which is what we set out to prove.

The problem 3-SAT is only one of hundreds of problems known to be NP-complete today. There are only a
handful of problems in NP that are neither known to be in P nor known to be NP-complete. Examples of
such problems include integer factorisation and graph isomorphism.

The Cook-Levin theorem allows us to easily show NP-hardness of other problems: we need only design a
Karp-reduction from 3-SAT to the problem, and invoke transitivity. A sequence of such reductions from 3-
SAT terminating with ISING GROUND STATE shows that the latter problem is also NP-complete, even when
the underlying graph structure is planar, and the interactions are in the set {−1, 0, +1} and the strengths
are all 1. As an illustration, we describe the first reduction in this sequence, which shows that the CLIQUE

problem is also NP-complete.

2

4 5 123 (a)
C 1 , x 1C 1 , � x 2C 1 , x 3

C 2 , � x 1C 2 , � x 4C 2 , x 2
e d g e s t o o t h e r c l a u s e s

(b)
Figure 1: (a) A graph with a clique of size 4, and (b) a part of the graph obtained from a 3-SAT instance with
clauses (x1 ∨ ¬x2 ∨ x3) and (¬x1 ∨ ¬x4 ∨ x2).

A clique in a graph is a subset of vertices all of which are connected by edges. Its size is the number of
vertices in the subset.The graph in Figure 1(a) has a clique {1, 2, 3, 4} of size 4, but not one of size 5.

The input to CLIQUE is a graph G = (V, E), and an integer k ≥ 1, and the problem is to determine whether
there is a clique of size k in G.

Theorem 2 CLIQUE is NP-complete.

Proof : That CLIQUE is in NP is straightforward. We show NP-hardness by reducing 3-SAT to CLIQUE.
Given a 3-CNF formula φ, we construct a graph G, and a threshold k as follows.

For each clause c in φ, and each literal l in c, we have a vertex (c, l) in G. There is an edge between two
vertices (c, l) and (c′, l′) iff c 6= c′, and l, l′ are not a variable and its negation. We set k to be the number
of clauses in φ. We see that the number of edges, and therefore the size of the instance G, k of CLIQUE is
at most quadratic in the number of clauses in φ. Figure 1(b) depicts a portion of a graph obtained from a
formula in this manner.

We claim that φ is satisfiable iff G has a clique of size k. Suppose φ has satisfying assignment a. Consider
the subset of vertices (c, l), exactly one for each clause c such that the literal l is true under assignment a.
These vertices form a clique in G, of size k.

Now suppose that G has a clique of size k. Note that no two vertices with the same clause can be part
of a clique, so the clique has exactly one vertex for each clause in φ. Moreover, the set of literals in these
vertices does not contain both a variable and its negation. Setting all these literals to true, we get a satisfying
assignment for φ.

All the above imply that 3-SAT is reducible to CLIQUE, and the theorem follows.

Probabilistic algorithms

A major development in the design of algorithms was the discovery in the late 1970s that using randomness
during the course of a computation could lead to significantly simpler and more efficient algorithms. In
many cases, including random numbers to guide computation allows the design of efficient algorithms
where no such deterministic algorithm is known. For testing primality of an integer, for example, until 2002
the only known polynomial time algorithms were randomized. Similarly, the only known efficient way

3

of estimating the partition function of the Ising model in the ferromagnetic case, for general graphs, is
randomized, and the fastest known, albeit exponential time, algorithm for k-SAT is also randomized.

To see how using randomness may help, consider the problem of checking whether the product AB of
two given n× n matrices A, B over Z2 equals a third matrix C. The straightforward method of solving this
would be to explicitly multiply the two matrices A, B, and check the result against C. This takes time O(nω),
where ω < 2.38 is a constant, using a sophisticated method due to Coppersmith and Wingorad. (The
straightforward method would have complexity O(n3).) Here is a simpler and faster alternative. Pick two
vectors u, v ∈ Z

n
2 , and check if uTABv = uTCv. Since matrix-vector multiplication takes time O(n2), this

check can be performed in the same amount of time. If AB = C, the check is always passed. If AB 6= C, the
check detects inequality with probability at least 1/4. (We leave the proof of this fact as an exercise to the
reader.) By repeating the check t times, and reporting “unequal” if we detect this in any one of the t trials,
we can amplify the probability of detection to at least 1 − (3/4)t.

Another example is that of computing a prime number larger than a given integer n. It is known that there
is a prime between n and 2n, and therefore we may run through numbers n + 1, n + 2, . . . and output the
first prime we find. Recall that testing primality is in P, so that each check is efficient. However, we may
run the primality algorithm up to Ω(n) times, which is exponential in the input length log2 n. The use of
randomness allows an efficient solution: we pick a random number in the interval [n, 2n), and check for
primality. If we succeed, we stop, otherwise we repeat the process up to a total of t log2 n times. Since there
are Ω(n/ logn) primes in this interval, we succeed with probability at least 1/ log2 n in any one iteration.
So the probability that we fail to find a prime within t log2 n iterations is at most exp(−Ω(t)). The net time
complexity is polynomial.

Yet another example is that of polynomial identity testing. In this problem, we are presented with a poly-
nomial over the integers, described by an arithmetic circuit C(x) with n indeterminates x = (xi). This is
a circuit with multiplication and linear combination gates, much like the boolean circuits we have stud-
ied. The problem is to determine if the polynomial defined by the circuit is identically 0. The intermediate
results of the circuit may have exponentially many monomials, so explicitly computing the polynomial is
inefficient. Here is a randomized test, that is efficient. Pick a prime p larger than 2d = 2m+1, where m is
the multiplication gates in the circuit. The number d is an upper bound on the degree of the polynomial
described by the circuit. Pick independently, and uniformly at random, n numbers r1, . . . , rn ∈ Zp. Eval-
uate C(r), and check if it is 0. If C(x) is identically 0, then the check passes with probability 1. If not, by
the Schwartz-Zippel Lemma, the probability that C(r) 6= 0 is at least 1/2. As before, we may drive up the
probability of detection by repeating the test.

These are all examples of bounded-error probabilistic polynomial time (or BPP) algorithms. We say a lan-
guage L is in the complexity class BPP if there is a uniform family of polynomial-size circuits {Cn}, that
take two arguments x, r as input. The two inputs to Cn are of length n, and p(n), respectively, where p(n)

is a polynomial in n. The input r is is chosen uniformly at random from {0, 1}
p(n)

, and x is an instance of
the problem L. For every n, and for any input x of length n,

1. if x ∈ L, Prr[Cn(x, r) = 1] ≥ 2/3.

2. if x 6∈ L, Prr[Cn(x, r) = 1] ≤ 1/3.

In other words, the output of the circuit is the correct answer with probability at least 2/3 in either case. The
choice of the values 2/3, 1/3 for the probabilities above is not set in stone. We may allow probabilities q1, q0,
respectively, such that q1 − q0 ≥ 1/q(n) for some polynomial q.

Suppose we start with a probabilistic algorithm A that accepts with probability at least q1 when the input
is in the language, and accepts with probability at most q0 when it is not, where q1, q0 are as above (for
inputs of length n). We can amplify the probability of correctness to 2/3 by running independent trials
polynomially many times. In fact, we can amplify it all the way to 1− exp(−s(n)) for any polynomial s. We
run A a total of t = O(q(n) s(n)) times, using independent random bits r for each trial. We output 1 iff the
number of outcomes of the t trials is at least t(q1 + q0)/2. A straightforward “tail bound” on the Binomial
distribution (the Hoeffding-Chernoff bound) tells us that the probability we output the incorrect answer is
at most exp(−s(n)).

4

Of course, BPP includes all languages in P. Does randomness help us solve NP-hard problems? The
answer to this is not known, but indications are that it does not. For example, integer factorisation is in
NP, but we do not know of an efficient probabilistic algorithm for it. There is growing evidence that the
use of randomness may be eliminated entirely using “pseudo-random” number generators, so that BPP
may equal P. Nonetheless, we do not know whether certain problems in BPP, such as polynomial identity
testing, are also in NP, let alone in P.

You might ask whether it is reasonable to find sources of uniformly random bits in nature, i.e., whether the
model of probabilistic algorithms is reasonable. There is a well-developed theory of randomness extraction
which enables us to efficiently distil nearly uniform random bits from imperfect sources, which suggests it
is. This is precisely what lead to the reformulation of the Church-Turing thesis to essentially state that all
computers are created equal, and in particular equal to the probabilistic Turing machine.

5

