HTS Materials and Devices for RF Applications

John Talvacchio Northrop Grumman Corporation, Baltimore, MD

- Potential markets / motivation for HTS RF electronics
- Preparation of materials
- Measurement of RF properties
- Northrop Grumman's interest in HTS
 - Analog subsystems for Cryoradar[™]
- Specific devices and applications
 - Microwave filters
 - Wireless communications
 - Oscillators
 - Delay lines
 - Tunable devices
 - Navy HTSSE program
- Comments on refrigeration
- Predictions

HTS Materials and Devices for RF Applications: Bibliography

The proceedings of Applied Superconductivity Conferences from 1992 to 1998 are the best general sources for relevant papers. These are published in issue No. 2 of Vols. 3, 5, 7, and 9, respectively, of the *IEEE Trans. on Applied Superconductivity*.

- M. J. Lancaster, *Passive Microwave Device Applications of High-Temperature Superconductors* (Cambridge University Press, Cambridge, 1997).
- M. M. Fitelson, "Cryogenic Electronics in Advanced Sensor Systems," IEEE Trans. on Applied Superconductivity 5(2), 3208 (1995).
- S. H. Talisa, M. A. Janocko, D. L. Meier, J. Talvacchio, C. Moskowitz, D. C. Buck, R. S. Nye, S. J. Pieseski, and G. R. Wagner, "High-Temperature Superconducting Space-Qualified Multiplexers and Delay Lines," IEEE Trans. Microwave Theory and Techniques 44(7), 1229 (1996).
- M. M. Driscoll and R. W. Weinert, "Low-Noise, Microwave Signal Generation Using Cryogenic, Sapphire Dielectric Resonators: An Update," Proc. IEEE Symposium on Frequency Control, 157 (1992).

Viable Electronic Applications of HTS: Grouped by Markets

Radar / Military RF

- Front-end preselection
- Low-phase-noise waveform generator
- Antenna matching networks
- High dynamic range A/D conversion

Communications

- Low-loss, small-size filters
- Channelizers / multiplexers
- Spread spectrum comm
- High data-rate switching

Magnetic Anomaly Sensors

- Mine detection
- Submarine detection / ASW
- Geophysics

Medical Systems

- Magneto-encephalography
- Magneto-cardiography
- NMR and MRI pick-up coils

Computing

- Crossbar switches
- Cryo-CMOS MCM interconnects

Infrared Imaging

- On-FPA preprocessors
- VLWIR detection

Instrumentation

- Voltage and current standards
- Spectrum analyzer
- Sampling oscilloscope/ timedomain reflectometer

NORTHROP GRUMMAN

Passive RF Applications of HTS are Critical to the Cryogenic Electronics Industry

SQUID Sensors:

Market is too small to develop industrial infrastructure

Instrumentation (e.g. voltage standards):

Market is too small to develop industrial infrastructure

LTS Digital:

- High-speed signal processing capabilities demonstrated
- Integrated circuit fabrication well developed
- No one wants the size, cost, power consumption, and reliability risk of coolers

HTS Digital:

 Integrated circuit fabrication capability is relatively primitive

HTS Microwave Devices:

• Pay the bills at large and small companies *NORTHROP GRUMMAN* specializing in superconducting electronics

LTS 2 x 2 Network Switch

HTS 39-Jct Digital Circuit

Orders of Magnitude Performance Advantage From Superconductivity and Cryogenics

1. Low Surface Resistance: Improved Performance of Microwave Devices

3. Unique Quantum Accuracy: Voltage Standard, DAC, ADC 2. Reduced Power Dissipation and Delay: High-Speed Logic

4. Low Noise from Cryogenic Operation

NORTHROP GRUMMAN

Two-Fluid Model of a Superconductor Relates dc and Microwave Properties

What did we have to learn to do? Low RF Surface Resistance of YBCO

- Epitaxial films grown on single-crystal substrates
- C-axis orientation (Cu-O planes parallel to substrate)

Having obtained low R_s, other factors will determine whether passive HTS devices are ultimately successful:

- manufacturing costs CAIV
- power handling
- dynamic range (linearity)
- weight and volume

NORTHROP GRUMMAN

Large-Area, Double-Sided YBCO Films: Materials Base for a First Generation of Devices

Northrop Grumman Proprietary

High-T_c Superconductors Reduce Refrigeration Requirements

Film Deposition Techniques for Epitaxial Oxide Superconductors

Oxygen Phase Diagram for YBCO: Oxygen Order and Stoichiometry are Keys to Performance

All of the sophistication of this process is in the heater design

- High vacuum permits high deposition rates and good rate control
- Oxygen gas pocket permits YBCO phase formation

NORTHROP GRUMMAN

Measurement of RF Surface Resistance

Most measurements of R_s use a resonant cavity and infer R_s from the measured Q where,

- For a sensitive measurement, Q_s should be the smallest of all of these Q_s, i.e., the low-loss superconductor should be the lossiest part of the device
- A well-designed measurement apparatus will have low $\rm Q_s$ even when $\rm R_s$ is small
- In contrast, a well-designed device will have a high Q

Measurement Techniques for R_s

NORTHROP GRUMMAN

Measurement of Non-Linear Response

Frequency ®

1. Apply two high-power tones within filter passband

2. Measure output power as a function of input power at f_1 , f_2 , $2f_2 - f_1$, and $2f_1 - f_2$ (Third-order products would not exist for a perfectly linear response)

- System Dynamic Range is a function of materials and design (keep current density low)
- LNAs usually limit dynamic range

Summary of RF Properties of HTS Films

- Only epitaxial c-axis films have the low rf loss, R_s(77K, 10 GHz) < 1 mW, needed for applications
 - TBCCO or YBCO but I(T) for YBCO is still changing at 77K
- High-quality films and clever device designs that minimize current density permit up to 100s W devices no problem for receive applications
- Low signal attenuation is only one benefit of HTS
 - Cryogenic operation [®] Low noise
 - Elimination of amplification stages [®] High dynamic range
- Yield is longer a critical factor but overall film production costs are still high

Transmission-Line Dimensions for Microstrip and Stripline

The primary requirement is for a 50 Wcharacteristic impedance,

 $Z = (L/C)^{1/2} =$ function of (h/w)

For a 50 Wline on $LaAlO_3$ (e = 24), the conductor width must be:

	Wafer Thickness		
	<u>10 mils</u>	<u>20 mils</u>	
<u>Microstrip</u>	88 m m	176 mm	
<u>Stripline</u>	22 mm	44 mm	

- Reducing wafer thickness reduces the overall device size proportionally
- For thin-film dielectrics (e.g. 1 mm) linewidths must be < 1/2 mm

Optimum Dielectric Thickness for Compact HTS Microwave Components

For HTS Microstrip Transmission Lines, 2 Configurations Now Available (also applies to stripline):

Substrate Dielectric:

- Low HTS Conductor Loss
- Relatively Large Size

Thin Film Dielectric:

- Extremely Compact
- Relatively High Conductor Loss

Ideally, use an intermediate dielectric thickness

Materials Parameters:

- $R_s(77K, 10 \text{ GHz}) = 0.5 \text{ m}\Omega$
- Single Crystal: LaAlO₃
- Dielectric Films: Sr₂AlTaO₆

Substrates for HTS Microwave Devices

LaAlO₃ was the most widely used substrate for development programs

Problems with LaAlO₃:

- anisotropic dielectric constant
- movement of twin boundaries
- for mm-wave applications, the high e results in structures that are too small

Problems with alternate substrates:

- Thermal expansion mismatch of Si and sapphire to YBCO limits films thicknesses
- Loss tangent is much too high in YSZ, somewhat too high in NdGaO₃
- 30% LaAIO₃ + 70% Sr(Ta,AI)O₃ (LSAT) is untwinned but e is not sufficiently uniform
- MgO is not readily available in large wafers; cleaves easily Nevertheless, best alternative available today

HTS Technology Enables CRYORADAR™ to Find Targets in Clutter

Cryoelectronic Radar Subsystems Provide:

Pure Transmit Signal

- 100x increase in microwave resonator Q
- 50x increase in dynamic range
- 50x reduction in size

Low Noise / High Dynamic Range Reception

- 10x increase in speed
- 10x reduction in power of logic circuits
- ~20 dB improvement in target detectability in clutter

Large Background Signals Establish Full Scale . . . but Small Signals Can Be Important

NORTHROP GRUMMAN

Superconducting Filters Uniquely Provide Low Loss and Small Volume

Filter Loss Calculation

NORTHROP GRUMMAN

CONDUCTUS

Conductus is Betting Its Existence on HTS Filters for Cellular and PCS Base Stations

- YBCO Filters combined with cryogenic LNA reduce noise
- Low insertion loss permits higher number of poles, sharper skirts
- Compact, lightweight systems can be mounted on towers
- Cellular systems (800 MHz) in the field; PCS ir
- Similar military systems fielded

STI is Betting Its Existence on HTS Filters for Cellular and PCS Base Stations

- TBCCO Filters combined with cryogenic LNA reduce noise
- Low insertion loss permits higher number of poles, sharper skirts
- Compact, lightweight systems can be mounted on towers
- Cellular systems (800 MHz) in the field; PCS in development
- Similar military systems fielded
- Recently added spectrum for A and B is, "The FCC's gift to HTS"

Cryocooler Technology is Making Significant Advances in Affordability, Reliability, and Size

- Most users want integrated, closed-cycle cryocoolers their existence transparent to the operator
- Only volume sales can bring down cooler costs

	1992	1994	1996/97	1999
Cost	\$20k	\$15k	\$3k	\$1.5k
Reliability (MTBF)	5,000 hrs.	15,000	40,000	100,000
Size	1x			1/3x

• Based on 4W Heat Lift at 77K

HTS Four-Channel Filterbank: Example of HTSSE II Device

- Centered at 4 GHz
- 50 MHz-Wide Channels
- 4 YBCO Films on 2" Wafers
- Integrated 50 WTerminations
- Integrated Branchline Couplers
- Integrated Channel Interconnections

NORTHROP GRUMMAN

Motivation for Switched Filterbanks

Preselector Switched Filterbank: YBCO Films Packaged with GaAs FET Switches

Northrop Grumman Proprietary

Cryo Resonator for STALO: Example of Cryocooler Integration

Key Fabrication Issues

- Vibration Isolation
- Grounding HTS Films
- Frequency Trimming
- Temperature Stability
- System Delivered to NRL in 1997
- Demonstrated in Navy Radar Testbed
- Significant Improvement in Radar Sensitivity (Limited by ADC Used)

Advanced cryo package will reduce volume by 10x

Introduction / Motivation for Tunable Microwave Devices

- Interest is in materials where dielectric constant, e(<u>E</u>), is a function of applied electric field
- Used to produce tunable capacitors: capacitance, C μ e(E)

For a length of transmission line: tunable resonators: wavelength, $f \mu (CL)^{1/2} \mu (em)^{1/2}$

tunable delay: phase velocity, $v_p \mu (1 / CL)^{1/2} \mu (em)^{-1/2}$

However, characteristic impedance, $Z \mu (L/C)^{1/2} \mu (m/e)^{1/2}$ Ideally, impedance would be independent of tuning

- Analogous magnetic field tuning is easier, already in use, but potential for dm/mis smaller than for de/e
- DARPA's program, "Frequency Agile Materials for Electronics," (FAME) started in 1998

- goal is for factor of 2 shift in frequency

Motivation for Tunable Filters

Integrated HTS / Ferroelectric Band Reject Filter

Other RF Devices Based on HTS

- China Lake NWC: Electrically short UHF antenna matching networks; HTS improves antenna efficiency
- Brucker Instruments: NMR or MRI pick-up coils improve sensitivity for small samples and low magnetic fields
- Neocera, Inc.: RF circulators for antenna manifolds, etc.; compact and low loss but HTS films are exposed to H = 0.2 tesla
- Lincoln Labs: Variable phase shifters for beam steering combine HTS and ferrites

Navy High-T_c Superconductor Space Experiments (HTSSE I and II)

HTSSE I

- Simple passive devices, mostly filters and resonators
- "Failed to achieve orbit"

HTSSE II

- More complex subsystems but still just for testing
- Originally scheduled for August, 1996 launch - delayed
- Launched Feb 23, 1999 *NORTHROP GRUMMAN*

Cryogenic Packaging Fundamentals

Conclusions

- Analog HTS electronics are based on low RF surface resistance
- Materials technology is relatively mature
 - No trade-off between LTS and HTS
 - Device performance can be accurately modeled
- Microwave filters for the commercial wireless market
 - Best (only?) hope for a substantial market -- big enough for volume to reduce costs and pay for special tools
 - Assist defense electronics development with experience in scaling up production of films, packaging, and cryocooler integration
- Performance has been demonstrated for a range of devices -but few applications are based solely on performance
- Cost and reliability of cryocoolers is a major barrier to wider application