HTS Materials and Devices for Digital Applications

John Talvacchio Northrop Grumman Corporation, Baltimore, MD

- Motivation for HTS Josephson-based electronics
- Junction status
 - Junction configurations
 - Progress in meeting desired junction parameters
 - What we think we understand
- Multilayer process development
- Some example HTS circuits
- Specific applications of interest to Northrop Grumman
 - A/D converters
 - D/A converters
- Issues & Summary

HTS Materials and Devices for Digital Applications: Bibliography

These papers are written by Northrop Grumman authors whose material is mainly used in this presentation. Other relevant papers can be found in the same sources, particularly in the proceedings of the 1998 Applied Superconductivity Conference published in Vol. 9 No. 2 of the *IEEE Trans. on Applied Superconductivity* (1999).

- B. D. Hunt, M. G. Forrester, and J. Talvacchio, "HTS Josephson Junction Development," in *Encyclopedia of Electrical and Electronics Engineering*, edited by J. G. Webster (John Wiley & Sons, New York, 1999).
- J. X. Przybysz, S. B. Kaplan, D. L. Miller, and S. V. Rylov, "Superconducting Analog to Digital Converters," in *Encyclopedia of Electrical and Electronics Engineering*, edited by J. G. Webster (John Wiley & Sons, New York, 1999).
- B. D. Hunt, M. G. Forrester, J. Talvacchio, and R. M. Young, "High-Resistance HTS Edge Junctions for Digital Circuits," IEEE Trans. on Applied Superconductivity 9(2), 3362 (1999).
- J. Talvacchio, M. G. Forrester, B. D. Hunt, J. D. McCambridge, R. M. Young, and X. F. Zhang, and D. J. Miller, "Materials Basis for a Six-Level Epitaxial HTS Digital Circuit Process," IEEE Trans. on Applied Superconductivity 7(2), 2051 (1997).
- M. G. Forrester, B. D. Hunt, D. L. Miller, J. Talvacchio, and R. M. Young, "Analog Demonstration of an HTS Sigma-Delta Modulator with 27 GHz Sampliing," Supercond. Sci. Technol. 12(11) 698-700 (1999).

Orders of Magnitude Performance Advantage From Superconductivity and Cryogenics

1. Low Surface Resistance: Improved Performance of Microwave Devices

3. Unique Quantum Accuracy: Voltage Standard, DAC, ADC 2. Reduced Power Dissipation and Delay: High-Speed Logic

4. Low Noise from Cryogenic Operation

Josephson Junctions are the Building Blocks of Superconducting Digital Circuits

Picosecond transition between states
▶ ~100 GHz clock speed attainable
Digital "1" & "0" both zero voltage
▶ low power dissipation (µW/gate)

 $I = I_{c} sin(f_{L} - f_{R})$ $V = \frac{\hbar}{2e} \frac{df}{dt}$

HTS vs. LTS Junction Configurations

LTS Junctions:

- < 150°C processing
- randomly-oriented, polycrystalline films
- single-component films
- silicon substrates
- level of integration = 10,000s

HTS Junctions:

- 750°C processing
- epitaxial, oriented films
- single-crystal oxide substrates
- level of integration = 10s

DAMAGE JUNCTIONS Ion or Electron Beam

Wiring level Insulator

Selection of an HTS Junction Configuration: Edge S-N-S Junctions

Schematic

Major Advantages of Edge SNS Junctions

- Contact to long- \mathbf{x}_n and long- \mathbf{x}_s directions of c-axis films
- 50 100 Å bridge lengths, L
 (LTS junctions use ~ 8 Å thick tunnel barriers)
- Small device areas **P** high R_n

Progress in Meeting Required HTS Junction Parameters

• Single Flux Quantum designs require $LI_c \gg F_o = 2 pH-mA$

- Thermal noise constraints require I_c »0.5 mA
 - → SQUIDs must have low L »4 pH
 - → Must use an integrated HTS ground plane
 - → Junctions must face in several directions
- High $R_n (\sim 2 W)$ for digital output signals: max V = $I_c R_n$
- Low R_n (~ 0.01 W) for ac voltage standards
- Circuit margins limit I_c variation

8

Integrated HTS Groundplane Required for Low Inductance

Achieved for two junction technologies

• Simpler process but I_c spread ~ 30%

• More complex process but I_c spread ~ 12%

YBCO

Disadvantage of a Point Compound: CuO "Boulders"

XTEM of a boulder grown in the top YBCO layer

Step Coverage

• Top YBCO deposited under three different conditions

Major Processing Steps for Edge Junctions on a Groundplane

Au 4. N-Layer, Normal Metal YBCO **Top Electrode**, STO 1. Groundplane Contact YBCO STO YBCO YBCO 5. Via Holes, Ex-situ Contacts 2. Groundplane Insulator Au STO STO YBCO YBCO 6. Counterelectrode Patterning 3. Base Electrode / Insulator Bilayer

Au STO YBCO

Alternative Configuration Tested: Groundplanes on Top

- Potential Advantages:
- Simplified, more forgiving process
- Tighter junction spreads
- Passivation

- High quality I-V characteristics,
 same as control chip without groundplane
- Junctions survived high temp. processing
- Groundplane effectiveness under study

Control of SNS Junction Resistance

- High R_n for HTS digital circuits, ~ 1 W
- Low R_n for D/A converters, ~ 0.01 W
- In either case, good fit to proximity effect model

Resistance depends on effective area:

• Conduction is uniform by $I_c(B)$ and I_c spreads

To increase R_n:

- N-layer composition: Higher Co-content
- Thicker N-layer
- Shallower edge angle
- Base electrode composition:

La-doping \mathbf{P} higher R_n than 1:2:3 YBCO sputtered 1:2:3 \mathbf{P} higher R_n than PLD 1:2:3

- Deposition parameters of N-layer and top electrode

These factors apply even without N-layer

Expected Behavior Observed for Modulation in Magnetic Fields

- Nearly ideal I_c(B) modulation suggests uniform current density on the scale of the junction area

 may be inhomogeneous on a much finer scale
- Voltage modulation up to 135 µV at 65 K
- Microstrip inductance ~ 1 pH / sq. at 65K
 suitable for SFQ circuits
- Total SQUID inductance as low as 4.5 pH

I_c(T) Fit to Proximity Effect Model Demonstrates SNS Behavior

- Fits proximity effect model despite high resistance (~ 1 W)
- I_c vs N-layer thickness also fits model

Temperature Dependence of Critical Currents

- Curves tend to have same shape for all devices **P** suggests area variations predominant, rather than coupling across N-layer
- Requires interface resistance which does not significantly decrease inherent I_cR_n:
 - Patchy interface resistance to reduce the active area
 - or SINS (not SINIS) **P** e.g. insulator on base electrode edge

Exponential Behavior Observed for I_c vs. N-Layer Thickness

$$J_c \mu e^{-L/x_n(T)}$$

- Exponential behavior predicted by standard proximity-effect model
- Ca-YBCO has longest x_n(77K) consistent with lowest r(77K)
- For all N-layer materials, \mathbf{x}_n is 5x-10x larger than predicted by \mathbf{r}

Continued Long-Term Progress in Junction Uniformity

- Junction uniformity determines the level of circuit integration
- Uniformity defined as inverse of standard deviation

I_c Uniformity in High R_n Series Arrays

J_c vs R_nA Scaling for Junctions on a Single Chip

Constant I_cR_n indicates

 Tunneling (SINS) with
 variations in barrier width or
 2. Reduced junction area with
 variations in effective area

- Steeper slope in J_c vs R_nA indicates resonant tunneling or hopping conduction
 - -- What is the physical mechanism responsible for nonuniformity?
- Before plasma anneal
- After plasma anneal

Interface-engineered HTS junctions

Advantages

- Uses intrinsic properties of YBCO
- $R_n A$ tunable over 2 orders of magnitude
- Excellent uniformity: $\mathbf{I}_{c} < 8\%$
- No deposited barrier

High-R_n devices not operable at highT
Not yet good enough for

multi-junction circuits

HTS Junctions Formed by Edge Treatment Processes

- Hot-Ion-Damage (HID) based on early JPL work and related to recent hot plasma process of Conductus ("IEJ") (also Japan, IBM)
- Relies on Ar or Xe ion beam to disorder base electrode surface
- Basic Hot-Ion-Damage Device ("HID") Process:
 - Standard ex-situ clean (O_2 plasma, Ar/ O_2 mill, Br etch)
 - In-situ ion mill surface treatment at 400°C
 - 3-15 min. at 200V with 5 mA beam is typical
 - Ar YBCO mill rate is 40-50Å in ten minutes
 - Vacuum anneal at 400°C (following Conductus "IEJ" process)
- Special case of ion-mill time = 0 is Chemical Surface Treatment (CST)

IV Characteristics for Edge-Treatment Junctions (no deposited N-layers)

Integrated Resistor Process Developed for Modulator Circuits

- Two resistor ranges required
 - 0.5 -1.0 W/ square
 - few mW
- Ti / 0.2 mm Au bilayers on *in-situ* Au meet both requirements
- YBCO / in-situ-Au contact resistance determines low-R values

Interdigitated mWinput resistor

Resistance vs. contact area length and width

Via, Xover, & Step-Coverage Test Devices Designed, Fabricated, & Evaluated for HTS Circuits

44-Pin Test Sub-chip (1 of 4 per chip)

Accomplishments: Processes Developed for Crossovers, Vias, and Oxygen Diffusion

- Critical currents for passive devices, J_c >> junction critical currents
- Low-e, low-tan d SAN and SAT insulators replacements for STO
- a-b plane oxygen diffusion measurements determined coef
 - 7x10⁻⁹ cm²/s, in agreement with literature values for single crystals --- impractical times

NORTHROP GRUMMAN

invention of "oxygen vias"

Innovations Used for Modulator Circuits: Mask Layout with "Oxygen Vias"

- With improvements in YBCO film smoothness and insulator integrity, even 4-day oxidation anneals at 450°C cannot restore x 6-90-6.95 in YBCO_x ground planes
- Cooling in oxygen plasma provided solution before changeover from SrTiO₃ to SAN and SAT insulators
- Measurements of a-b plane oxygen diffusion rates in films agreed with single crystals and determine "oxygen via" spacing and oxidation times

Approach: Same Chip Dies Couple Circuit Development to Process Development

- Multiple circuit copies to experiment with component values and layout parameters
- Multiple PCM subchips for process development

HTS SFQ T-Flip-Flops Operate at 65K

Satyr T-FF

(Dale Durand, TRW)

4-Bit Counting A/D Converter for Low-Power Operation

- 39 junction circuit fabricated with extendible process
- All four T flip-flops can store flux & be read out
- First bit toggles with input current

Voltage Divider Utilizing HTS Ramp-edge Junctions with a Ground Plane

Summary of Worldwide Progress in HTS Junctions & Circuits

HTS Sampler (NEC)

- High I_cR_n => good time resolution
- 60K IP 0.5 mV IP 3.5 ps 2 mV IP < 1ps
- Thermally-limited sensitivity d ~ 0.15 μA
 @ 60 K
- 50 WϷ dV ~ 7.5 μV
- GaAs sampler ~ 100 mV @ comparable time res.
- M. Hidaka & J.S. Tsai, IEEE Trans. Appl. Supercond. Vol. 5., No. 2, June 1995 M. Hidaka, H. Terai, T. Satoh, & S. Tahara, ISEC '97, Paper D54

HTS Technology Enables CRYORADAR™ to Find Targets in Clutter

Cryoelectronic Radar Subsystems Provide:

Pure Transmit Signal

- 100x increase in microwave resonator Q
- 50x increase in dynamic range
- 50x reduction in size

Low Noise / High Dynamic Range Reception

- 10x increase in speed
- 10x reduction in power of logic circuits
- ~20 dB improvement in target detectability in clutter

Josephson-Based Circuits Are Needed to Exploit Low-Phase-Noise STALOs

Cryo STALO

- Significant Improvement in Radar Sensitivity (Limited by state-of-theart ADC)
- Demonstrated in Navy Radar Testbed
- Integrated cryocooler

Transmit ...

- Avoid jamming
- Track scintillating targets
- Minimum junction count, ~ 100-300

- Quantized flux provides linearity in the feedback mechanism of ADCs with S-D architecture
- Junction count, ~ 350-1000

Digital (Mixed-Signal) Subsystems for CRYORADAR™

Low-noise DACs and High-dynamic-range ADCs

- HTS DACs are based on the same physics as the US standard volt and new NIST initiative for ac voltage standards
 - Josephson junctions convert frequency of pulses to a voltage level
 - 5 GHz Junction parameters of

```
I_c R_n \gg 10 \text{ mV}
I_c \gg 1 \text{ mA}
R_n \gg 0.01 \text{ W}
```

HTS ADCs designed in S-D architecture

- Quantization of magnetic flux used for precise feedback
- Switching speed needed for oversampling
- 500 GHz Junction parameters of $I_cR_n \gg 1 \text{ mV}$

```
I_c = 0.5 \text{ mA}
R<sub>n</sub> \approx 2 \text{ W}
```

In Japan, S- D ADCs for "software radio"

ADCs and DACs: The Right Niche for HTS Josephson Technology

• Workshop on Superconductive Electronics: Devices, Circuits, & Systems, 9/97, CMOS working group:

– "Deeply scaled CMOS not likely to support high-dynamic-range ANALOG functions ..."

- ADCs and DACs are principally analog circuits
 - Precision tracking/generation of analog signals
 - Bit error rate requirements modest (< 10⁻⁶)
 - Junction count << e.g. processors</p>
- Use properties unique to superconductivity
 - Flux quantization
 - ac Josephson effect

Junction Non-Uniformity Motivates Applications with Low Junction Counts

Northrop Grumman's Approach

- Sigma-Delta architectures for linearity
 - quantization errors remembered and compensated
 - oversampling and feedback to balance the incoming signal
 - standard in the audio recording industry
- Parallel materials technologies:
 - LTS for fastest progress in circuit development and availability for shipboard deployment
 - HTS fabrication development for airborne deployment
- Teaming with NIST on WFG
 - closely related to JJ-based ac voltage standard
- Teaming with universities on HTS fabrication development

Quantized Feedback is the Essential Advantage of an SFQ Design for S-D

- Sigma-Delta ADCs use oversampling and feedback for high dynamic range
- Semiconductor ADCs balance input with electrons on capacitors. Not repeatable.
- Superconductor ADCs balance input with flux quanta. Repeatable. Accurate.

Hybrid ADCs Will Leapfrog the Rate of Progress for Purely Semiconductor ADCs

- Hypres' Approach: All-superconducting, LTS-only architecture, 10⁴ junctions
- Northrop Grumman Approach: Super/Semi hybrid, NORTHROP GRUMMAN HTS-compatible design, ~350 junctions

Proof of Principle Demonstrated in JJ ADC Noise Shaping

Linearity Demonstrated for HTS Single-Loop S- D Modulator

HTS circuit demonstrated

- 27 GHz clock
- SFDR > 75 dB
- Third order intermod products -58 dBc
 First HTS demonstration of rf signal conversion

Conclusions

- Digital HTS electronics are based on circuit speed, low power dissipation, and exploitation of the unique property of flux quantization
- Non-uniformity of HTS junction critical currents limits the junction count in circuits to ~100
- Most important near-term "digital" HTS subsystems are mixed-signal circuits (ADCs and DACs) requiring just 100s of junctions
 - Two ranges of Josephson junction parameters required
 - LTS circuits used to develop and validate circuit concepts
 - HTS junction integration with groundplanes and passive devices demonstrated in small-scale circuits

