OXIDE and SEMICONDUCTOR MAGNETISM

J. M. D. Coey

Physics Department, Trinity College, Dublin 2

Ireland.

- I. Single-ion effects
- 2. Collective Effects
- 3. Examples

www.tcd.ie/Physics/Magnetism

3. Examples - A visit to the Zoo

- 3.1 The 'famous five'. Magnetite (Fe_3O_4); Hematite (αFe_2O_3); Goethite ($\alpha FeOOH$); Barium hexaferrite ($BaFe_{12}O_{19}$); YIG ($Y_3Fe_5O_{12}$).
- 3.2 The 'special seven' EuO, CrO_2 , $SrRuO_3$, NiO, a-FeF₃, $(La_{0.7}Sr_{0.3})MnO_3$, Sr_2FeMoO_6 .
- 3.3 Magnetic semiconductors

Some references:

Materials for spin electronics: J. M. D. Coey in Spin Electronics, M. Ziese amd M. J. Thornton, (editors) Springer 2001 p277-297

http://link.springer.de/series/Inpp/

2.1 The famous five.

These are the most common magnetic oxides, which occur naturally or are synthesised industrially.

- \succ Magnetite Fe₃O₄
- \succ Hematite α Fe₂O₃
- \succ Goethite α FeOOH
- > Barium hexaferrite $BaFe_{12}O_{19}$
- > Yttrium iron garnet $Y_3Fe_5O_{12}$

Most common magnetic mineral, source of rock magnetism, lodestones.. A ferrimagnet. Fe²⁺ and Fe³⁺ are disordered on B-sites above the Verwey transition at 120 K, ordered below; $[Fe^{3+}]_{oct} \{Fe^{2+}Fe^{3+}\}_{tet} O_4$ $\downarrow \qquad \uparrow \qquad \uparrow$ $-5 \mu_B +4 \mu_B +5 \mu_B = 4 \mu_B$

- Type IIb half-metal. Fe(B) \downarrow electrons hop in a t_{2g} band
- Potential for spin electronics. Used as toner, and i ferrofluids.

$$\begin{split} J_{s} &= 0.6 \ T & m_{0} &= 4.0 \ \mu_{B} \ / \ fu \\ K_{1} &= -13 \ kJ \ m^{-3} & \lambda_{s} &= 40 \ 10^{-6} \\ T_{C} &= 843 \ K \end{split}$$

spinel; $a_0 = 0.839$ nm

 $[A]\{B_2\}O_4$

Magnetite Fe_3O_4 [Fe³⁺]{Fe²⁺ Fe³⁺}O₄

Maghemite γFe_2O_3 [Fe³⁺]{Fe³⁺_{5/3} _{1/3}}O₄ The B sites are populated by a mixture of $Fe^{3+}(3d^5)$ and $Fe^{2+}(3d^6)$ ions. At RT the $t_{2g}\downarrow$ electrons hop in a narrow polaron band. Resistivity is $\approx 50 \ \mu\Omega$ m.

At the Verwey transition $T_v = 119$ K, the interatomic Coulomb interactions lead to charge ordering – 'Wigner crystallization' Resistivity increases by 100x. Symmetry is reduced to monoclinic; details of charge order are still controversial

$$J_{AB} = -28 \text{ K} \ J_{AA} = -18 \text{ K} \ J_{BB} = +3 \text{ K}$$

Related compounds: Spinel ferrites

Magnetite is the prototype for a family of spinel ferrites, which includes Ni-Zn ferrite for rf applications and γFe_2O_3 i.e. [Fe]{Fe_{5/3 1/3}}O₄ for magnetic recording.

		a ₀ (pm)	T _C (K)	M _s (MA/m)	K ₁ (kJ/m ³)	λ _s (10 ⁻⁶)	ρ(Ωm)
MgFe ₂ O ₄	I	836	700	0.18	-3	-6	105
ZnFe ₂ O ₄	N	844	$T_{N} = 9$	-	-	-	1
MnFe ₂ O ₄	Ι	852	575	0.40	-3	-5	102
Fe ₃ O ₄	Ι	840	860	0.50	-12	40	10-1
CoFe ₂ O ₄	I	839	790	0.45	180	-110	105
NiFe ₂ O ₄	Ι	834	865	0.33	-7	-17	102
Lio_5Fe2_5O4		829	943	0.33	-8	-8	1
γ Fe ₂ O ₃		834	1020*	0.43			

Hematite, Fe₃O₄

corundum; *a* = 0. 5036, *c* = 1.375 nm

Most common iron oxide mineral. Antiferromagnetic hcp oxygen array with Fe³⁺ in 2/3 of octahedral interstices..

Red insulator with localized d electrons. $3d^5 6^{A_1}$ state.

 $T_N = 960 \text{ K.}$ $J_1 = 6.0 \text{ K}, J_2 = 1.6 \text{ K}$ $J_3 = -29.7 \text{ K}, J_4 = -23.2 \text{ K.}$

Af sublattices are slightly canted by D-M interaction

$$\begin{split} &J_{s} = 2.8 \ 10^{=3} \ T & m_{0} = 0.002 \ \mu_{B} \ / \ fu \\ &K_{1} = 23 \ kJ \ m^{-3} & B_{a} = 2\mu_{0}K_{1} \ / \ J_{s} = 20 \ T \end{split}$$

Ar room temperature there is a weak ferromagnetic moment caused by canting of the sublattice magnetizations by the D-M interaction.

-1-1

σ (J/Tkg)

 $\mu_0 H(T)$

α Fe₂O₃

Below 260 K there is a spin reorientation to the c-axis. **D** is then zero by symmetry, and the weak interaction disappears.

Figure 4.6: The temperature dependence of single-ion and magnetic-dipole fields to illustrate the prediction of the Morin temperature.

Figure 2.8: Neutron-diffraction intensities of the (111) and (100) lines as a funct of temperature. The background intensity is also shown.

The spin direction is set by competing cf and dipole dipole interactions, which vary as $(S_z)^2$ and $(S_z)^2$ respectively.

$$B_{dip} = \mu_0 / 4\pi [3(m.r)r/r^5 - m/r^3]$$

α FeOOH Goethite; a = 0.995 nm, b = 0.301 nm

c = 0.462 nm

A brown antiferromagnetic insulator named for Goethe!

The magnetic structure consists of double zig-zag chains ordered antiferromagnetically

 $T_N \approx 460$ K.

The main constituent of rust, also found in tropical soils. Often superparamagnetic when well crystallized.

$BaFe_{12}O_{19}$ hexagonal ferrite; a = 0.589 nm, c = 2.319 nm

- An hcp lattice of .oxygen and Ba, with iron in octahedral (12k, $4f_{2}$, 2a) tetrahedral (4f₁) and trigonal bipyramidal (2b) sites.
- Brown ferrimagnetic insulator. All magnetic ions are Fe³⁺. Structure is $12k \uparrow 2a \uparrow 2b \uparrow 4f_1 \downarrow 4f_2 \downarrow$

 $T_{\rm C} = 740$ K.

The first permanent magnet to break the 'shape barrier'. 98% of all permanent magnets by mass are Ba or Sr ferrite. Found on every fridge door and in innumerable dc motors. 50g manufactured per year for everyone on earth

 $J_s = 0.48 \text{ T}$. $K_1 = 450 \text{ kJ m}^{-3}$. $B_a = 1.7 \text{ T}$

What is the source of the anisotropy ?

Fe³⁺ is an S-state ion.

The 2b site has noncubic symmetry, and the cf mixes an excited term 4G $(t_2^4 e)$ into the ground state.

$$H_{cf} = DS_z^2$$

 $Y_2Fe_5O_{12}$

- A synthetic garnet, with iron in tetrahedral (24d) and octahedral (16a) sites. The Y and O form $a \approx$ close-packed array..
- YIG Yttrium iron garnet is a green ferrimagnetic insulator.

 $T_{c} = 560 \text{ K}$

The magnetic structure is ferrimagnetic, with a magnetic structure 24d ↑, 16a↓

 $J_s = 0.18 \text{ T}$ $m_0 = 5.0 \ \mu_B/\text{fu}$

- YIG is an insulator with excellent high-frequency magnetic properties., and a very narrow ferromagnetic resonance linewidth. It is used for microwave components.
- Also useful as a magneto-optic material when doped with Bi

YIG; $a_0 = 1.238$ nm,

2.1 The special seven.

These are oxides with some unusual feature which is of contemporary interest

- ≻ CrO₂
- EuO
- ➢ SrRuO₃
- ≻ NiO
- \succ a-FeF₃
- ➤ (La_{0.7}Sr_{0.3})MnO₃
- ➢ Sr₂FeMoO₆

CrO_2

rutile; a = 0.442 nm, c = 0.292 nm

The only simple oxide that is a ferromagnetic metal, CrO_2 is a black type Ia half-metal with a spin gap of about 0.5 eV.

The compound is metastable, usually prepared by high-pressure synthesis

Acicular powder with 8:1 aspect ratio and $l \approx 300$ nm has H_c ≈ 50 kA/m; it is used as a particulate medium for video recording

$$\begin{split} J_{s} &= 0.49 \text{ T} & m_{0} &= 2.0 \ \mu_{B} / \text{fu} \\ T_{C} &= 396 \text{ K} & K_{1} &= 30 \text{ kJ m}^{-3} \\ \rho_{0} &\approx 3 \ \mu\Omega \text{ cm} \end{split}$$

Half metals - what are they ?

• Magnetically-ordered metals with fully spin-polarised conduction band

 $P = (N^{\uparrow} N^{\downarrow}) / (N^{\uparrow} N^{\downarrow})$

- Metallic for ↑ electrons but semiconducting for ↓ electrons. Spin gap Δ↓ or Δ↑ for type A or B
- Integral spin moment $n \mu_{\rm B}$
- Mostly oxides, Heusler alloys

$$MR = 2P/(1 + P^2)$$

Co is not a half-metal, there are 4s electrons of both spins at $E_{F_{.}}$ CrO₂ is a Type Ia half metal.

Type I half metals

Examples: CrO_2 ; NiMnSb ($Co_{1-x}Fe_x$)S₂ Sr₂FeMoO₆; Mn₂VAl

Type II half metals

Similar to type I except the bands are narrow, and the electrons form polarons.

EuO

NaCl;
$$a_0 = 0.516 \text{ nm}$$

- A black ferromagnetic insulator when stoichiometric. The Eu²⁺ is $4f^7 J = S = 7/2$
- EuO is metallic below T_C when oxygen deficien and the resistivity increases by up ti 14 order of magnitude there. A colossal magnetoresistance is observed near T_C with effects of up to 10⁶. Carriers in the paramagnetic state are magnetic polarons.
- EuO is a magnetic model compound for Heisenberg exchange. The low T_C precludes uses as a magnetic semiconductor.

$$J_s = 2,37 \text{ T}$$
 $m_0 = 7.0 \ \mu_B/\text{fu}$
 $T_C = 69 \text{ K}$

NiO

NaCl;
$$a_0 = 0.516 \text{ nm}$$

A green insulator when stoichiometric (black conductor when cation deficient).

The Ni²⁺ is 3d⁸ $t_{2g}^{6}e_{g}^{2}$ S = 1, m = 2 μ_{B} T_N = 525 K

Ni²+ ions form an fcc lattice with partly-frustrate antiferromagnetic interactions. <111> is a hard direction, which produces a tiny rhombohedral distortion by magnetostriction

$$J_1 = -50 \text{ K}, J_2 = -85 \text{ K}.$$

NiO was used as an exchange bias layer in early spin valves.

Amorphous FeF₃

An amorphous insulator with a continuous random network of octahedra with 3- 4- and 5membered rings - randomlv frustrated antiferromagnetic superexchange - speromagnetism A brown insulator Spins freeze at ≈ 29 K Small remanence $\approx 0.1 \ \mu_{\rm B}/{\rm f}$

SrRuO₃

O-type perovskite; a = 0.5573 nm b = 0.5538 c = 0.7856

A black metal with spin-split Ru 4d t_{2g} band of width ≈ 1 eV. A rare example of a ferromagnetic 4d metal

Low-spin Ru $^{4+}(t_{2g}^{4})$

The compound is ferromagnetic, with $T_C = 165 \text{ K}$

$$\begin{split} \mathbf{m}_{0} &\approx 1 \mu_{\mathrm{B}} / \mathrm{fu} \\ \mathbf{\rho}_{0} &\approx 4 \ \Omega \ \mathrm{m} \end{split}$$

 $(La_{0.7}Sr_{0.3})MnO_3$

Manganite; a = 0.584 nm $\alpha \approx 60^{\circ}$

A type IIIa half-metal with both $Mn\uparrow(e_g)$ and $Mn\downarrow(t_{2g})$ electrons at E_F The compound is ferromagnetic, and shows CMR near T_C

$$J_s = 0.32 \text{ T} \qquad m_0 = 3.6 \ \mu_B/\text{fu}$$

 $T_C = 370 \text{ K}$
 $\rho_0 \approx 0.1 \ \mu\Omega \text{ m}$

Sr_2FeMoO_6 Double perovskite; a = 0.557 nm, c = 0.791 nm

- A perovskite with an ordered NaCl-type superstructure of Fe and Mo, Sr_2FeMoO_6 is a type Ib half-metal with a spin gap of about 0.5 eV.
- The magnetic structure is ferrimagnetic, with Fermi level in a ↓ band of mainly Mo(5d) character. These electrons couple the Fe(d⁵) cores ferromagnetically

The compound usually includes some antisite disorder, which reduces m_0

$$J_{s} = 0.20 \text{ T} \qquad m_{0} = 3.6 \ \mu_{B}/\text{fu}$$
$$T_{C} = 420 \text{ K}$$
$$\rho_{0} \approx 3 \ \mu\Omega \text{ m}$$

Type III half metals (transport half metals)

Both \uparrow and \downarrow electrons are present at E_F , but one band is localised, the other delocalised.

2.3 Magnetic semiconductors.

Mobility of semiconductors, semimetals and metals

		Curie Point	Mobility (am ² V-1s-1)
		()	(CIII- V -S -)
Semiconductors	Si	-	1400
	InSb	-	30000
	GaAs	-	8000
	(GaMn)As	160	
Semimetals	Graphite	-	2000
	Bi	-	180000
Metals	Cu	-	44
	Au	-	48
	Fe	1044	20
	Со	1380	12
	Ni	628	16
Half Metals	CrO ₂	392	1.4
	Fe ₃ O ₄	860	0.2

Transition metal doped semiconductors

Compound	E _g (eV)	Doping	$T_{C}(K)$	Reference(s)
Ge	0.67	Mn – 3.5 %	116	Park et al Science, 295, 651 (2002)
GaAs	1.43	Mn – 5%	110	Ohno et al Science, 281, 951 (1998)
GaSb	0.70	Mn – 2.3%	25	Matsukura et al, JAP, 87, 6442 (2000).
GaN	3.50	Mn - 9%	940	S. Sonoda et al, J. Crys. Growth, 237 1358 (2002).
GaP	2.26	Mn - 3%	270	N. Theodoropoulou et al, PRL, 89, 107203 (2002)
InAs	0.36	Mn – 5%	30	Ohno et al, PRL, 68, 2664 (1992).
InSb	0.18	Mn – 2.8%	8.5	T. Wojtowicz, cond-mat/0303212 (2003).
TiO ₂	3.20	Co – 1-2%	650-700	Shinde et al, PRB, 67, 115211 (2003).
SnO ₂	3.50	Co – 5%	650	Ogale et al,cond-mat/0301456 (2003)
ZnO	3.30	Co – 5-15%	280-300	Ueda et al APL, 79, 988 (2001).
EuO	1.10	_	69.5	Nolting et al, Physica B, 321, 189 (2002)
Cu ₂ O	2.0	Co – 5%	> 300	Kale et al, APL, 82, 2100 (2003).
		Al - 0.5%		

(GaMn)As

Ordered diamond structure

 $Mn^{2+} d^5 e^2 t^3$

 T_C for 5% Mn is 160 K

Moment is $4\mu_{\rm B}/{\rm Mn}$

 $3d^5\uparrow + 4p \text{ hole }\downarrow$

 $J_{sd} = 0.2 \text{ eV}$

 $J_{pd} = 2.0 \text{ eV}$

Antisite defects pin E_F

Zinc blende; a = 0. xxx nm

Zincite, ZnO wurstite; a = 0.335 nm, c = 0.523 nm SG P6₃mc O (1/3,2/3,3/8); Zn (1/3,2/3,0)

A structure of corner-sharing tetrahedra; 4 - 4 coordination.. Zn- O, 4 bonds, 0.204 nm Zn-O-Zn 6 bonds 109°, 6 bonds 110° Band gap 3.3 eV

Impurity configurations.

Mn²⁺ d⁵ e²t³ Fe²⁺ d⁶ e³t³ (J-T); Co²⁺ d⁷ e⁴t³

Figure 2: Calculated densities of states in ferromagnetic (Zn,Co)O with cobalt dopant concentrations of (a) 6.25 % and (b) 12.5 %. The thin solid lines show the (Zn,Co)O total densities of states and the thick solid lines with the gray shading indicate the contribution from the Co 3d orbitals. Majority spin states are plotted along the positive y axis, and minority spin along -y.

LSDA calculation for (ZnCo)O Nicola Spaldin Hole-doping is necessary for ferromagnetism

Anatase, TiO_2 tetragonal; a = 0.379 nm, c = 0.951 nm

SG: 4₁/amd O (0, 0, 0.2066); Ti (0, 0, 0)

A structure of edge-sharing octahedra;

6 - 5 coordination.

Ti - O, 4 bonds, 0.194 nm, 2 bonds 0.197 nm Zn-O-Zn8 bonds 102°, 4 bonds 155°

Band gap 3.2 eV

Impurity configurations.

Mn⁴⁺ d³ t_{2g}³ Fe³⁺ d⁵ t_{2g}³ e_g²; Co³⁺ d⁶ t_{2g}³ e_g³

$$e_{g}$$
 J-T

 l_{2g}

Cassiterite, SnO₂

rutile; a = 0.474 nm, c = 0.319 nm

SG: P4₂/mnm O (0.307, 0.307, 0); Sn (0, 0, 0)

A structure of edge and corner-sharing

octahedra; 6 - 3 coordination.

Sn - O, 4 bonds, 0.205 nm, 2 bonds 0.206 nm Zn-O-Zn, 8 bonds 129°.

Band gap 3.6 eV

Impurity configurations.

Mn⁴⁺ d³t_{2g}³ Fe³⁺ d⁵ t_{2g}³e_g²; Co³⁺ d⁶ t_{2g}³e_g³ e_{g} J-T

 t_{2g}

Cuprite, Cu₂O

cubic; *a* = 0. 427 nm

SG: Pn3m O (1/4, 1/4, 1/4); Cu (0, 0, 0) A structure with 2 - 4 coordination. Cu - O, 2 bonds, 0.185 nm, Cu-O-Cu, 6 bonds 109°.

Band gap 2.8 eV

Impurity configurations.

 $Mn^{2+} d^5 Fe^{2+} d^6 Co^{2+} d^7$

