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1. Single-ion effects

1.1 Ubiquity of oxides. Oxide structures. Octahedral and tetrahedral
sites. Magnetic ions – 3d, 4d, 4f.

1.2. Electronic structure of free ions (summary). Hund’s rules. g-
factors. Paramagnetic susceptibility.

1.3. Ions in solids. Crystal field. Crystal field Hamiltonian. One-electron
states. 3d t2g and eg states. Notation. 2p-3d hybridization. One-
electron energy-level diagrams in different symmetry. Quenching of
orbital moment. Many-electron states. Orgel and Tanabe-Sugano
diagrams.

1.4. Crystal field and anisotropy. Single-ion anisotropy. Determination
of Bn

m.
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1.1 Ubiquity of Oxides

Earth’s crust is composed almost entirely of oxides — rocks, economic minerals, water.

O
Si
Al
Fe
Mg
Ca
K
Na
H
Others

Composition in atomic %

Oxygen (O2-) is most abundant
followed by silicon (Si4+) and
aluminium (Al3+).

Crust is mostly composed of
aluminosilicates.

Iron (Fe2+/Fe3+) is most
abundant magnetic element. It is
40 times as abundant as all
other magnetic elements
together.

Si4+
O2-

Al3+

Fe
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Electronic configuration of 92% of the ions in the crust is the same 2p6 !

The 2p6  closed shell is very stable.

1s0  2.1H+

2p620.6Si4+

3p6  1.5K+

2p6  1.8Mg2+

3p6  1.9Ca2+

3d6/5  2.1Fe2+/3+

2p6  2.6Na+

2p6  6.1Al3+

2p660.7O2-

ConfigurationAbundance (at%)Ion
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Abundances of magnetic ions

Price scales roughly inversely with abundance.



                     Boulder July 2003 7



                     Boulder July 2003 8

 

Roct = (21/2 -1)rO = 58 pm Rtet = ((3/2)1/2 - 1)rO   = 0.32 pm

Ionic structures
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122Gd3+60Ni3+  3d769Ni2+  3d8

136La3+61 (56)Co3+ 3d675 (65)Co2+ 3d7

119Y3+64Fe3+  3d578 (61)Fe2+   3d6

149Pb2+65Mn3+ 3d483Mn2+ 3d552Fe3+  3d5

161Ba2+62Cr3+ 3d342Al3+

144Sr2+64V3+  3d253Mn4+ 3d360Zn2+

134Ca2+67Ti3+ 3d155Cr4+  3d253Mg2+

pm12-fold
substitutional

pm6-fold
octahedral

pm6-fold
octahedral

pm4-fold

tetrahedral

Cation radii in oxides: low spin values are in parentheses.

The radius of the O2- anion is 140 pm
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Co2+

      Co0      Gd       

Gd                               Co Gd                               Co

As metallic atoms, the
transition metals occupy one
third of the volume of the
rare earths. As ions they
occupy less than one tenth.
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1.2 Electronic structure of free ions
Consider a single electron in a central potential. A hydrogenic atom is composed of a nucleus of charge
Ze at the origin and an  electron at r,q,f. First, consider a single electron in a central potential fe =
Ze/4πe0r

H = - (¨2/2m)—2 - Ze2/4πe0r
In polar coordinates:

     —2 = ∂2/∂r2 +(2/r)∂/∂r + 1/r2{∂2/∂q2 + cotq∂/∂q + (1/sin2q)∂2/∂2f}

The term in parentheses is -l2.     Schrödinger’s equation is  H y = Ey
The wave function y means that the probability of finding the electron in a small volume dV ar r
is y*(r)y(r)dV. (y* is the complex conjugate of y).
Eigenfunctions of the Schrödinger equation are of the form    y(r,q,f) = R(r)Q(q)F(f).

® The angular part Q(q)F(f) is written as Yl
ml(q,f).

The spherical harmonics Yl
ml(q,f) depend on two integers l, ml, where l is ≥ 0 and |ml| ≤ l.

F(f) = exp(imlf)    where ml = 0, ±1, ±2 .......
The z-component of orbital angular momentum, represented by the operator l z = -i¨∂/∂f,
has eigenvalues <F| lz |F> = ml¨.

Q(q) = Pl
ml(cosq), are the associated Legendre polynomials with  l ≥ |ml|,

so ml = 0, ±1, ±2,....±l.

l

z

q

l
r

fZe

-e
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The square of the orbital angular momentum l2 has eigenvalues l(l+1)¨.
The orbital angular momentum has magnitude ÷[l(l+1)]¨ and its projection
along z can have any value from -l¨ to +l¨. The quantities lz and l2 can be
measured simultaneously (the operators commute). In the vector model,
The total angular momentum is a vector which precesses around z.

Spherical harmonics.    s            Y0
0 = ÷(1/4π)

p        Y1
0 = ÷(3/4p) cos q   Y1

±1 = ±÷(3/8p) sin q e±if

 d          Y2
0 = ÷(5/16p)(3cos2q - 1) Y2

±1 = ±÷(15/8p) sinq cosq e±if

                                                    Y2
±2 = ÷(15/32p) sin2q e±2if  

f        Y3
0 = ÷(7/16p)(5cos3q - 3cosq) Y3

±1 = ±÷(21/64p)(5cos2q - 1)sinq e±if

Y3
±2 = ÷(105/32p) sin2qcosq e±2if           Y3

±3 = ±÷(35/64p) sin3q e±3if

•The radial part R(r) depends on l and also on n, the total quantum number; n > l; hence l = 0, 1, ......(n-1).
R(r) = Vn

l(Zr/na0)exp[-(Zr/na0)]
V1

0 = 1. Here a0 = 4πe0¨2/me2 = 52.9 pm is the first Bohr radius, the basic length scale in atomic physics.
The energy levels of the 1-electron atom are

E = -Zme4/8h2e0
2n2 =  -ZR/n2 

The quantity R = me4/8h2e0 = 13.6 eV is the Rydberg, the basic energy in atomic physics. For the central
Coulomb potential fe, the potential energy V(r) depends only on r, not on q or f. E depends only on n.

z

÷[l(l+1)]¨
ml¨
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The three quantum numbers n, l, ml denote an orbital, a spatial distribution of electronic charge.
Orbitals are denoted nx, x = s, p, d, f for l = 0, 1, 2, 3. Each orbital can accommodate
 up to two electrons with spin ms = ±1/2. No two electrons can be in a state with the same four quantum
numbers (Pauli exclusion principle). The hydrogenic orbitals are listed in the table

14±1/20,±1,±2,±3344f
10±1/20,±1,±2244d
6±1/20,±1144p
2±1/20044s
10±1/20,±1,±2233d
6±1/20,±1133p
2±1/20033s
6±1/20,±1122p
2±1/20022s
2±1/20011s
No of statesmsmlln

•The Pauli principle states that no two electrons can have the same four quantum numbers. Each
orbital can be occupied by at most two electrons with opposite spin.
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,,X Y Z

,,X Y Z

,,X Y Z

,,X Y Z

,,X Y Z ,,X Y Z

n =1
l = 0

n =2
l = 1

n =3
l = 2

s

p

d

ml =0     ml =±1

ml =0     ml =±1          ml =±2
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n =1
l = 0

n =2
l = 1

n =3
l = 2

ml = 0        ml = ±1 
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The many-electron atom.

In the many-electron atom, terms like e2/4πe0rij, must be added to the Hamiltonian. One way of dealing
with the extra Coulomb interactions is to suppose that each electron sees a different spherical charge
distribution, which produces a different central potential for each one. The potential with many electrons
is not a simple Coulomb potential well; the degeneracy of electrons with different l is raised. The 4s shell,
for example, is then lower in energy than the 3d shell, which defines the shape of the periodic table. The
quantities VI(r) must be determined self-consistently  (the Hartree-Foch approximation)

When several electrons are present on the same atom, at most two of them having opposite spin can
occupy the same orbital (Pauli principle). Their spin and orbital angular momenta add to give resultants
 S = Ssi, MS = Smsi, L = Sli, ML = Smli. 1s 2s         2p                 ML    MS

↑ ↑ 2 1
↑ Ø 1 0
Ø ↑ 1 0
Ø Ø 1 -1
↑ ↑ 1 1
↑ Ø 0 0

↑Ø 0 0
Ø ↑ 0 0
Ø Ø 0 -1

Ø Ø 0 -1
↑ Ø -1 0
Ø ↑ -1 0
↑ ↑ -1 1

↑Ø -1 0

↑Ø      +       ↑Ø           +             ↑Ø                                           2        0Consider the six-electron carbon atom;
1s22s22p2. The 15 states fall into three
groups, or terms.

The notation for terms is to denote L = 1.
2. 3. ….by S, P, D, …. and to include the
spin multiplicity 2S + 1 as a superscript.
The energy splitting of the terms is of
order 1 eV.
 2S+1L

       ↑Ø                                                  2         0

In spectroscopy, the energy unit cm-1 is used. Handy conversions are:1 eV  ≡ 11605 K and 1 cm-1 ≡ 1.44 K
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Term L S (ML, MS)
1S 0 0 (0,0)
3P 1 1 (1,1)(1,0)(1,-1)(0,1)(0,0)(0.-1)(-1,1)(-1,0)(-1,-1)
1D 2 0 (2,1)(2,0)(0,0)(-1,0)(-2,0)

Finally we need to couple the spin and orbital angular momentum
to form a resultant J.    J  = L + S
Hund’s rules; A prescription for the lowest-energy state.
1) First maximize S for the configuration
2) Then maximize L consistent with that S
3) Finally couple L and S; J = L - S if shell is <  half-full; J = L + S if shell is > half-full.

In the example, S = 1, L = 1, J = 0. The ground state of carbon is 3P0, which is nonmagnetic (J = 0).
General notation for multiplets  is   2S+1XJ   where X = S, P, D ...... for L = 0, 1, 2 .....

Fe3+ 3d5 ↑↑↑↑↑| - - - - -
S = 5/2 L = 0 J = 5/2 6S5/2

Ni2+ 3d8 ↑↑↑↑↑|ØØØ--   
S = 1 L = 3 J = 4 3F4

Nd3+ 4f3 ↑↑↑- - - - |- - - - - - - 
S = 3/2 L = 6 J = 9/2 4I9/2

Dy3+ 4f9 ↑↑↑↑↑↑↑|ØØ- - - - -
S = 5/2 L = 5 J = 15/2 6H15/2

Some examples:

L

SJ

Addition of L and S in the vector model

(2,0)(1,0)
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Variation of L, S, and J for the 3d and 4f series of atoms

SL

3

2

1

0

0                                 5                               10

n

3d series

4f series

L

S

0                                    7                                   14

n

S

D

F

S

F

˙H

I
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Spin-orbit coupling

This relatively-weak relativistic interaction is responsible for Hund's third rule. In the multi-electron
atom, the spin-orbit term in the Hamiltonian can be written as

 H so = LL.S
L is > 0  for the first half of the 3d or 4f series and  < 0 for the second half. It becomes large in heavy
elements. L is related to the one-electron spin-orbit coupling constant l by  L = ±l/2S for the first
and second halves of the series. The resultant angular momentum (see above) is

        J  = L + S
The identity J2 = L2 + S2 + 2 L.S is used to evaluate Hso.The eigenvalues of J2 are J(J + 1) ¨2  etc,
hence L.S  can be calculated.

Spin-orbit coupling constants in the
3d and 4f series

-493Ni2+3d8

-272Co2+3d7

-164Fe2+3d6

   85Cr2+3d4

   82V2+3d3

   88Ti2+3d2

 124Ti3+3d1

Lion

-4140Yb3+4f13

-1900Tm3+4f12

-1170Er3+4f11

 -780Ho3+4f10

 -550Dy3+4f9
 -410Tb3+4f8
  350Sm3+4f5
  430Nd3+4f3
  540Pr3+4f2
  920Ce3+4f1 Exercise: Calculate the multiplet

splitting  in terms of L, the spin-
orbit interaction for an ion with L =
3, S = 1/2.
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Zeeman Interaction

The magnetic moment of an ion is represented by the term m  = (L + 2S)µB/ ¨ 
The Zeeman Hamiltonian for the magnetic moment in a field B applied along z is –m.B

 H Z = (µB/¨)B.(L + 2S) 

L

SJ

m

z

S
The vector model of the atom, including
magnetic moments. First project m onto J. J
then precesses around z.

We define the g-factor for the atom or ion as the
ratio of the component of magnetic moment
along J in units of µB to the magnitude of the
angular momentum in units of ¨.
g = -(m.J/µB)/(J2/¨)  = m.J/J(J + 1)¨µB.e

                      J2 = J(J + 1)¨2;    Jz = MJ¨
but      m.J = (µB/¨){(L + 2S).(L + S)}

(µB/¨){(L2 + 3L.S + 2S2)}
(µB/¨){(L2 + 2S2 + (3/2)(J2 - L2 - S2)}
(µB/¨){((3/2)J2 – (1/2)L2 + (1/2)S2)}
(µB /¨){((3/2)J(J + 1) – (1/2)L(L + 1) + (1/2)S(S + 1)}

hence
g = 3/2 + {S(S+1) - L(L+1)}/2J(J+1)
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Also, from the vector diagram it follows that  mz/Jz = m.J/J2 = gµB/¨.
The magnetic Zeeman energy is EZ = –mz B. This is –(mZ Jz)./(Jz B) = (gµB%/¨)JzB

Hence EZ = -gµBMJB
J = 5/2

MJ
-5/2
-3/2
-1/2
  1/2
  3/2
  5/2The effect of applying a magnetic field on an ion with J = 5/2.

Note the magnitudes of the energies involved: If g = 2. µB = 9.27 10-24 J T-1. The splitting of two
adjacent energy levels is gµBB. For B = 1 T, this is only ≈ 2 10-23 J, equivalent to 1.4 K.  [kB = 1.38 10-23

J K-1]

The basis of electron spin resonance is to apply a magnetic field to split the energy levels, and then
apply radiation of frequency n so that E = hn is sufficient to induce transitions between the Zeeman
levels. Since h = 6.63 10-34 J s-1, n ≈ 28 GHz for resonance in 1 T. This is in the microwave range.

It is possible to deduce the total moment from the susceptibility, which should give  meff = g÷[J(J+1)]µB.
for free ions.  The maximum value of mz is deduced from the saturation magnetization. Generally meff >
mz

For 4f ions in so;ids J is the good quantum number, but for 3d ions S is the good quantum number
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Energy levels of Co2+ ion, 3d7. Note that the
Zeeman splitting is not to scale.
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Paramagnetic Susceptibility
The general quantum case was treated by Brillouin; m is gµBJ, and x is defined as x  =  µ0mH/kBT. There
are 2J+1 energy levels Ei = -µ0gµBMJH, with moment mi =gµBMJ where MJ = J. J-1, J-2, … -J.  The sums
over the energy levels have 2J+1 terms. Their populations are proportional to exp(-Ei/kT)

a) Susceptibility  To calculate the susceptibility, we can take x << 1, because the susceptibility is defined
as the initial slope of the magnetization curve. We expand the exponential as exp(x) = 1 + x + ..,

<m> = S-J
JgµBMJ(1 + µ0gµBMJH/kBT)/S-J

J(1 + µ0gµBMJH/kBT)
Recall S-J

J1 = 2J + 1
S-J

JMJ = 0
S-J

JMJ
2 = J(J + 1)(2J + 1)/3

Hence <m> = µ0g2µB
2HJ(J + 1)(2J + 1)/3(2J + 1)kBT

The relative susceptibility is N<m>/H, where N is the
number of atoms/m3.

cr = µ0Ng2µB
2J(J + 1)/3kBT

This is the general form of the Curie law. Again it can be
written cr = C/T where the Curie constant
C = µ0Ng2µB

2J(J+1)/3kB or C = µ0Nmeff
2/3kB where

meff = gµB÷[J(J+1)]. A typical value of C for J = 1, N = 8.1028 m-3 is 3.5 K.
Note that results for the classical limit and S = 1/2 are obtained when J Æ • (m = gµBJ) and J = 1/2, g =
2. (m = µB) .

J=5/2

-5/2

3/2

MJ

-3/2
-1/2
1/2

5/2

-3/2

-1/2

1/2

5/2

-5/2

3/2

H
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4.54.534.008/77/21/23 2F7/2Yb3+  (4f13)

7.67.567.007/66153H6Tm3+ (4f12)

9.59.589.006/515/23/264I15/2Er3+  (4f11)

10.410.6110.005/48265I8Ho3+  (4f10)

10.610.6510.004/315/25/256H15/2Dy3+  (4f9)

9.89.729.003/26337F6Tb3+  (4f8)

8.97.947.0027/27/208S7/2Gd3+ (4f7)

3.40.000.00-0337F0Eu3+ (4f6)

1.70.850.712/75/25/256H5/2Sm3+(4f5)

-2.682.403/54265I4Pm3+(4f4)

3.43.623.278/119/23/264I9/2Nd3+ (4f3)

3.53.583.204/54153H4P3+    (4f2)

2.52.542.146/75/21/232F5/2Ce3+ (4f1)

 meff

 (µB) 

meff=g√(J(J+1)

       (µB)

m0=gJ

 (µB)

gJSL2S+1LJ  Ion 4f

Ion 3d 2S+1LJ L S J g
)1J(Jgmeff +=

)( Bm  

)1S(S2ms +=
)( Bm  

*
effm

)( Bm  

Ti2+, V4+     (3d1) 2D3/2 2 1/2 3/2 4/5 1.549 1.73 1.7

Ti2+, V3+     (3d2) 3F2 3 1 2 2/3 1.633 2.83 2.8
V2+, Cr3+    (3d3) 4F3/2 3 3/2 3/2 2/5 0.775 3.87 3.8

Cr2+, Mn3+ (3d4) 5D0 2 2 0 - - 4.90 4.9

Mn2+, Fe3+(3d5) 6S5/2 0 5/2 5/2 2 5.916 5.92 5.9

Fe2+, Co3+ (3d6) 5D4 2 2 4 3/2 6.708 4.90 5.4
Co2+, Ni3+  (3d7) 4F9/2 3 3/2 9/2 4/3 6.633 3.87 4.8

     Ni2+        (3d8) 3F4 3 1 4 5/4 5.590 2.83 3.2

     Cu2+      (3d9) 2D5/2 2 1/2 5/2 6/5 3.550 1.73 1.9
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Magnetization Curve
To calculate the complete magnetization curve, set y = µ0gµBH/kBT,
then <m> = gµB∂/∂y[lnS-J

J exp{MJy}] [d(ln z)/dy = (1/z) dz/dy]
The sum over the energy levels must be evaluated; it can be written as

exp(Jy) {1 + r + r2 + .........r2J} where r = exp{-y}
The sum of a geometric progression (1 + r + r2+ .... + rn) = (rn+1 - 1)/(r - 1)
 \  S-J

J exp{MJy} = (exp{-(2J+1)y} - 1)exp{Jy}/(exp{-y}-1)
multiply top and bottom by exp{y/2}

             = [sinh(2J+1)y/2]/[sinh y/2]
   <m>  =  gµB(∂/∂y)ln{[sinh(2J+1)y/2]/[sinh y/2]}
            =  gµB/2 {(2J+1)coth(2J+1)y/2 - coth y/2}

setting x = Jy, we obtain  <m> = mBJ(x)
where the Brillouin function BJ(x) =
{(2J+1)/2J}coth(2J+1)x/2J - (1/2J)coth(x/2J).
Again, this reduces to the previous equations
in the limits J Æ • (m = gµBJ) and J = 1/2, g = 2.

0 2 4 6 80

0.2

0.4

0.6                       •

0.8         1/2

 1.0

2 

,

x
Comparison of the Langevin function and the
Brillouin functions for J = 1/2 and J = 2.
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Reduced magnetization curves for three paramagnetic salts, with Brillouin-theory predictions

The theory of localized magnetism gives a good account of magnetically-dilute 3d and 4f salts where the
magnetic moments do not interact with each other. Except in large fields or very low temperatures, the
M(H) response is linear. Fields > 100 T would be needed to approach saturation at room temperature.

The excellence of the theory is illustrated by the fact that data for quite different temperatures superpose
on a single Brillouin curve plotted as a function of x ≈ H/T
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1.3 Ions in Solids
Summarizing, for free ions;
® Filled electronic shells are not magnetic (the spins are paired; ms = ±1/2)
® Only unfilled shells may possess a magnetic moment
®The magnetic moment is given by m  = gµBJ, where ¨J represents the total angular momentum. For a
given configuration the values of g and J in the ground state are given by Hund’s rules

When the ion is embedded in a solid, the crystal field interaction is important, and the third point is
modified
® Orbital angular momentum for 3d ions is quenched. The spin only moment is m  ≈ gµBS, with g = 2.
® Magnetocrystalline anisotropy appears, making certain crystallographic axes easy directions of
magnetization.

The Hamiltonian is now
 H = H 0 + H so+ H cf+ H Z

 Typical magnitudes of energy terms (in K)

1≈3 1021 - 5 1031 - 6 1054f
11 - 104102 -1031 - 5 1043d
H Z  in 1 TH cfH soH 0

H so must be considered before H cf for 4f ions, and the converse for 3d ions. Hence J is a good quantum
number for 4f ions, but S is a good quantum number for 3d ions. The 4f electrons are generally localized,
and 3d electrons are localized in oxides and other ionic compounds.
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The most common coordination for 3d ions is 6-fold (octahedral) or 4-fold (tetrahedral). Both have cubic
symmetry, if undistorted. The crystal field can be estimated from a point-charge sum.

Octahedral and tetrahedral sites.

To demonstrate quenching of orbital angular momentum, we consider the l = 1 states y0, y1, y-1

corresponding to ml = 0, ±1.
y0 = R(r) cos q
y±1 = R(r) sin q exp {±if}

The functions are eigenstates in the central potential V (r) but they are not eigenstates of H cf. Suppose
the oxygens can be represented by point charges q at their centres, then for the octahedron,

 H cf = eVcf = Dq(x4 +y4 +z4 - 3y2z2 -3z2x2 -3x2y2)
where D ≈ e/4peoa6. But y±1  are not eigenfunctions of Vcf,  e.g. ∫yi

*VcfyjdV≠ dij, where i,j = -1, 0, 1.
We seek linear combinations that are eigenfunctions, namely

y0        = R(r) cos q = zR(r) = pz
(1/√2)(y1 + y-1)= R’(r)sinqcosf = xR(r) = px
(1/√2)(y1  - y-1)= R’(r)sinqsinf = yR(r) = py

q
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Note that the z-component of angular momentum; lz¨ = i¨∂/∂f is zero for these wavefunctions. Hence
the orbital angular momentum is quenched.

The same applies to 3d orbitals; the eigenfunctions there are

dxy = (1/√2)(y2 - y-2) = R’(r)sin2qsin2f ≈  xyR(r)
dyz = (1/√2)(y1 - y-1) = R’(r)sinqcosqsinf ≈  yzR(r)                  t2g orbitals
dzx = (1/√2)(y1 + y-1) = R’(r)sinqcosqcosf ≈  zxR(r)
dx

2
-y

2 = (1/√2)(y2 + y-2) = R’(r)sin2qcos2f ≈  (x2-y2)R(r) eg orbitals
d3z

2
-r

2 = y0 = R’(r)(3cos2q - 1) ≈  (3z2-r2)R(r)

,px, py, pz

t2g

egdx2-y2, dz2,
dxy,dyz, dzx

t2

e
dx2-y2, dz2,

The three p-orbitals are degenerate in a 
cubic crystal field, whether octahedral
or tetrahedral, whereas the five d-orbitals 
split into a group of three t2g and a group
of two eg orbitals

Notation; a or b denote a nondegenerate single-electron orbital, e a twofold degenerate orbital and t a
threefold degenerate orbital. Capital letters refer to multi-electron states. a, A are nondegenerate and
symmetric with respect to the principal axis of symmetry (the sign of the wavefunction is unchanged), b.
B are antisymmetric with respect to the principal axis (the sign of the wavefunction changes). Subscripts g
and u indicate whether the wavefunction is symmetric or antisymmetric under inversion. 1 refers to
mirror planes parallel to a symmetry axis, 2 refers to diagonal mirror planes.

oct / tet
dxy,dyz, dzx

oct tet
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Orbitals in the crystal field
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a1

e

ed
h

g

2/3geg

b2g

a

1/3a

2/5D0

D0

3/5D0

1/2b

b

a1g

b1g

e
l

1/2l

field-free                    octahedral                    tetragonal                         trigonal                         monoclinic
     ion                               Oh                                D4h                                 C3v                                    C2

One-electron energy diagrams
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As the site symmetry is reduced, the degeneracy of the one-electron
energy levels is raised. For example, a tetragonal extension of the
octahedron along the z-axis will lower pz and raise px and py. The effect
on the d-states is shown below. The degeneracy of the d-levels in
different symmetry is shown in the table.

The effect of a tetragonal distortion of octahedral symmetry on the
one-electron energy levels.

The splitting of the 1-electron levels
in different symmetry

1,1,1,1,1,1,11,1,1,2,21,1,1,2,21,3,34f
1,1,1,1,11,2,21,1,1,22,33d

1,1,11,21,232p
11111s

RhombohedralTrigonalTetragonalCubicl

.

Px,py

pz
px, py,
pz
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z z z

x x x

y y

z z

x x x

E D0

aa

d
d

Jahn Teller Effect

•A system with a single electron
(or hole) in a degenerate level
will tend to distort
spontaneously. The effect is
particularly strong for d4 and d9

ions in octahedral symmetry
(Mn3+, Cu2+) which can lower
their energy by distorting the
crystal environment. This is the
Jahn-Teller effect. If the local
strain is e, the energy change DE
= -Ae +Be2, where the first term
is the crystal-field stabilization
energy Dcfse and the second term
is the increased elastic energy.

The J-T distorsion may be static
or dynamic.

Dcfse
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E

eg

t2g

t2

e
t2g

eg

cubic                            tetrahedral                       spherical                    octahedral

dx2-y2, dz2

dx2-y2, dz2

dx2-y2, dz2

dxy, dyz, dxz

dxy, dyz, dxz

dxy, dyz, dxz

Dc

2/5Dc

3/5Dc

Dt

2/5Dt

3/5Dt

Do

3/5Do

2/5Do
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1.5.2  Multi-electron states

Orgel Diagrams

These diagrams show the effect of a cubic crystal field
on the Hund’s rule ground state term. Since a half-filled
shell has spherical symmetry, the cases dn and d5+n are
equivalent. Also, since a hole is the absence of an
electron, the cases dn and d10-n are related.

In insulators, the electrons in an unfilled shell interact
strongly with each other giving rise to a series of sharp
energy levels which are determined by the action of the
crystal field on the orbital terms of the free atom. The
spacing of theses levels may be determined by
spectroscopy, and the crystal-field determined.

D

Eg

T2g

0

Eg

T2g

D0D0

E

d4, d9 octahedral
(d1, d6 tetrahedral)

d1, d6 octahedral
(d4, d9 tetrahedral)

P T1g

T1g

0

A2g

T1g

D0D0

E

d3, d8 octahedral
(d2, d7 tetrahedral)

d2, d7 octahedral
(d3, d8 tetrahedral)

F

T1g

T2g

T2g

A2g

S
A1

 ¨ Do     0 Dt Æ

d5 octahedral or tetrahedral

A1
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High-spin and low-spin states

An ion is in a high-spin state or a low spin state, depending on whether the Coulomb interaction U leading to
Hund’s first rule (maximize S) is greater or less than the the crystal-field splitting D.

Consider a 3d6 ion such as Fe3+.

eg

t2g

eg

t2g

eg

t2g

UD

eg

t2g

U
D

U > D, gives a  high-spin state, S = 2 e.g. FeCl2       U < D, gives a  low-spin state, S = 0 e.g. Pyrite FeS2 
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E

crystal field splitting

G3

I1

F3

P3

H3

D5

6
21

1 )( gg tA
2

22
5 ))((; ggg etT

gT1
3

gT2
3

gT1
3

gT2
3

gE3

gT1
3

gA1
3

gT2
3

33
2

3 )()(; ggg etE

d6

Tanabe-Sugano diagrams

These show the splitting of the ground state and higher terms by the crystal field. The high-spin Æ low-
spin crossover is seen. Diagrams shown are for d-ions octahedral environments.
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Matching the optical absorption spectrum of Fe3+ - doped Al2O3 with the calculated Tanabe-Sugano energy-level diagram
to determine the cubic crystal field splitting at octahedral sites.

d5
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d2 d7

Note the similarities between the Tanabe-Sugano diagrams for d2 and d7. The differences are associated with the
possible low-spin states for d7 (e.g. Co2+)
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d3

For Cr3+ in Al2O3, the cf parameter Dq/B is 2.8
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1.4 Crystal field and anisotropy

 The electrostatic interaction of the ionic charge distribution r(r) with the potential Vcf created by the rest of the crystal
gives rise to the crystal field splittings. It is also the source, via spin-orbit coupling, of magnetocrystalline anisotropy.

E = Ú Vcf r(r)dr

where Vcf(r) = -(e/4pe0) Ú {r(R) / |R - r|} dR

The anisotropy energy is therefore

Ea(r) = -(e/4pe0) Ú {r(r,qf) r(R ) / |R - r|}dr dR

Both the charge distribution r(r) and the potential Vcf(r) can be expanded in spherical harmonics.

Using the Wigner Eckart theorem, it is possible to write the corresponding crystal-field Hamiltonian in terms of angular
momentum operators Jx, Jxy Jz J2 which is a particularly useful way to find the energy-levels (eigenvalues). The Hamiltonian
matrix is written in an ML or MJ basis for the 3d transition elements or 4f rare earths respectively. In concise form

 H cf = Sn=2,4,6Sm=-n
n  Bn

m Òn
m

               Crystal field parameters qn·rnÒAn
m    Stevens operators

Stevens coefficients        Crystal field coefficients

In a site with uniaxial anisotropy, the leading term is H cf = B2
0 Ò2

0 The Stevens operator Ò2
0 is {3Jz2 - J(J+1)}

 H cf = B2
0 {3Jz2 - J(J+1)}
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Charge distributions of the rare-earth ions. Those with a positive quadrupole moment (q2 > 0), italic type are
distinguished from those with a negative quadrupole moment (q2 < 0) bold type.  Note the quarter-shell changes,

e.g. Nd3+   J = 9/2
±1/2
±3/2
±5/2

±7/2

±9/2

     B2
0 < 0   B2

0 > 0 

9/2

±9/2

±1/2


