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I. Single-ion effects

|.1 Ubiquity of oxides. Oxide structures. Octahedral and tetrahedral
sites. Magnetic ions — 3d, 4d, 4f.

|.2. Electronic structure of free ions (summary). Hund’s rules. g-
factors. Paramagnetic susceptibility.

|.3. lons in solids. Crystal field. Crystal field Hamiltonian. One-electron
states. 3d t,, and e, states. Notation. 2p-3d hybridization. One-
electron energy-level diagrams in different symmetry. Quenching of
orbital moment. Many-electron states. Orgel and Tanabe-Sugano
diagrams.

|.4. Crystal field and anisotropy. Single-ion anisotropy. Determination
of B ™.
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|.1 Ubiquity of Oxides

Farth's crust is composed almost entirely of oxides — rocks, economic minerals, water.

Composition in atomic %

Oxygen (O%) is most abundant
followed by silicon (Si**) and
aluminium (AR).

Crust is mostly composed of
aluminosilicates.

lron  (Fe?*/Fe3*) is  most
abundant magnetic element. It is
40 times as abundant as all
other magnetic elements
together.
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lon Abundance (at%) | Configuration
o? 60.7 2p®

Si#* 20.6 2p°®

Al3* 6.1 2p°

Na* 2.6 2p®

Fe2+/3* 2.1 3d°>

H* 2.1 | s°

Ca? 1.9 3p®

Mg?* 1.8 2p°®

K* 1.5 3p®

Electronic configuration of 92% of the ions in the crust is the same 2p°®!

The 2p® closed shell is very stable.
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Abundances of magnetic ions

log (A %)

Fe Co Ni
3d

Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb

4f

Price scales roughly inversely with abundance.
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lonic structures

R = ((312)2 - 1)y =032 pm
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Cation radii in oxides: low spin values are in parentheses.

4-fold pm | 6-fold pm 6-fold pm |2-fold pm

tetrahedral octahedral octahedral substitutional

Mg2* 53 |Cr* 3d? 55 Ti%* 3d' 67 Ca* | 34

Zn?* 60 | Mn* 3d’ 53 V3*+ 3d? 64 Sr2* | 44

Al 42 Cr3* 3d° 62 Ba%* 161

Fe3* 3d° 52 | Mn%*3d° 83 Mn3*3d* |65 Pb?* 149
Fe?* 3d° 78 (61) |Fe3* 3d° 64 Y3* 119
Co?* 3d’ 75 (65) |[Co3*3d® |61 (56) |La’* 136
Ni?* 3d® 69 Ni3* 3d” | 60 Gd3* 122

The radius of the O% anion is 140 pm
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As metallic atoms, the
transition metals occupy one
third of the volume of the
rare earths. As ions they
occupy less than one tenth.
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| .2 Electronic structure of free ions

Consider a single electron in a central potential. A hydrogenic atom is composed of a nucleus of charge
Ze at the origin and an electron at 1,0,¢. First, consider a single electron in a central potential ¢, =

Zel4ger
V4

H=- ("2)2m)V?2 - Ze2/de v -e

In polar coordinates:

V2= 02%/0r% +(2/r)0/0r + 1/r2{d%/002* cotB9/00 + (1/sin%0)0%/d%¢p} |
/e K

The term in parentheses is -¢> Schrodinger’s equationis 4 = Ey
The wave function 1 means that the probability of finding the electron in a small volume dV ar r
is Y*(rnp(r)dV. (Y* is the complex conjugate of ).
Eigenfunctions of the Schrodinger equation are of the form [ (r,0,9) = R(r)®(0)P(¢)

The angular part ©@(0)P(¢) is written as Y,™(0,p).
The spherical harmonics Y,™(0,¢) depend on two integers 1, m;, where 1 is = 0 and Im| < 1.
d(¢p) = exp(im;p) where m, =0, =1, £2 .......
The z-component of orbital angular momentum, represented by the operator ¢, = -1 9/9¢,

has eigenvalues <®| ¢ |®>=m,".
©(0) = P/™(cos0), are the associated Legendre polynomials with 1= Im|l,

som; =0, 1, £2,....+].
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V4

The square of the orbital angular momentum ¢> has eigenvalues 1(1+1)". — A
The orbital angular momentum has magnitude [l(1+1)]" and its projection m,”
along z can have any value from -1" to +1". The quantities ¢, and ¢> can be .
measured simultaneously (the operators commute). In the vector model, [1A+D)]

The total angular momentum is a vector which precesses around z.

Spherical harmonics. S Y 0= (1/4m)

p Y= (3/4m)cos B Y #l =+ (3/8m) sin O e*io

¢ Yy'= (5/16m)(3cos®0 - 1) Y,*! ==+ (15/8m) sinO cosO e*®
Y,*2 = (15/32m) sin0 e*?¢

f Y%= (7/16m)(5cos’0 - 3cosB) Y, == (21/64m)(5c0s%0 - 1)sin6 e*¢
Y *2 = (105/32m) sin’Ocos0 e*?¢ Yt ==+ (35/64m) sin’0 e*®

*The radial part R(r) depends on 1 and also on n, the total quantum number; n > 1; hence 1 =0, 1, ...... (n-1).
R(r) = V, (Zr/na,)exp[-(Zr/na,)]

V%= 1. Here a, = 4me,, 2/me? = 52.9 pm is the first Bohr radius, the basic length scale in atomic physics.

The energy levels of the 1-electron atom are

E = -Zme*/8h%¢,’n? = -ZR/n?
The quantity R = me*#/8h?%¢, = 13.6 eV is the Rydberg, the basic energy in atomic physics. For the central
Coulomb potential ¢_ the potential energy V(r) depends only on r, not on 6 or ¢. E depends only on n.

Boulder July 2003 12



The three quantum numbers n, 1, m; denote an orbital, a spatial distribution of electronic charge.
Orbitals are denoted nx, x =, p,d, f for1 =0, 1, 2, 3. Each orbital can accommodate

up to two electrons with spin m, = =1/2. No two electrons can be in a state with the same four quantum
numbers (Pauli exclusion principle). The hydrogenic orbitals are listed in the table

n ] m, m, No of states

1s 1 0 0 +1/2 2
2s 2 0 +1/2 2
2p 2 1 0,+1 +1/2 6
3s 3 0 0 +1/2 2
3p 3 1 0,+1 +1/2 6
3d 3 2 0,+1,+2 +1/2 10
4s 4 0 0 +1/2

4p 4 1 0,+1 +1/2 6
4d 4 2 0,£1,+2 +1/2 10
4f 4 3 0,+1,+2,+3 | £1/2 14

*The Pauli principle states that no two electrons can have the same four quantum numbers. Each
orbital can be occupied by at most two electrons with opposite spin.

Boulder July 2003 13
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The many-electron atom.

In the many-electron atom, terms like 62/43'5801‘ij, must be added to the Hamiltonian. One way of dealing
with the extra Coulomb interactions is to suppose that each electron sees a different spherical charge
distribution, which produces a different central potential for each one. The potential with many electrons
is not a simple Coulomb potential well; the degeneracy of electrons with different 1 is raised. The 4s shell,
for example, is then lower in energy than the 3d shell, which defines the shape of the periodic table. The
quantities V (r) must be determined self-consistently (the Hartree-Foch approximation)

When several electrons are present on the same atom, at most two of them having opposite spin can
occupy the same orbital (Pauli principle). Their spin and orbital angular momenta add to give resultants

Consider the six-electron carbon atom; 1 T ' 20
1s22s22p?. The 15 states fall into three - y
groups, or ferms. ! y 1 0
| 1 1 0
. : | y 1 -1
The notation for terms is to denote L = 1. t t 11
2.3....by S, P, D, ....and to include the o 0 o
spin multiplicity 2S + 1 as a superscript. t I 8 01
The energy splitting of the terms is of L 0 -1
order 1 eV. I * ‘1 8
2S+1] rot 11
t -1 0

In spectroscopy, the energy unit cm! is used. Handy conversions are:1 eV =11605K and 1 cm!'=1.44 K
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Term L S (M],, Ms)
Ig 0 0 (0,0)
3p 1 1 (1,1)(1,0)(1,-1)(0,1)(0,0)(0.-1)(-1,1)(-1,0)(-1,-1) S
Ip 2 0 (2,0)(1,0) (0,0)(-1,0)(-2,0) )
Finally we need to couple the spin and orbital angular momentum L
to form aresultantJ. |J =L+ S
Hund'’s rules; A prescription for the lowest-energy state.
1) First maximize S for the configuration Addition of L and S in the vector model
2) Then maximize L consistent with that S
3) Finally couple L and S; J =L - S if shell is < half-full; J = L + S if shell is > half-full.

In the example, S = 1, L = 1, J = 0. The ground state of carbon is *P,, which is nonmagnetic (J =0).
General notation for multiplets is 251X, where X =S,P,D ...... forL=0,1,2.....

Some examples: Fe’* 3d° P -----
S=52 L=0 J=5/2 6S. 5
Ni** 3d? R
Nd** 4f3 (Y
S =3/2 L=6 J=9/2 419/2
Dy 4> ppppppphbd--- - -
S=52 L=5 J=15/2 °H,s,,

Boulder July 2003 17



Variation of L, S, and J for the 3d and 4f series of atoms

4f series

3d series

Boulder July 2003
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Spin-orbit coupling

This relatively-weak relativistic interaction is responsible for Hund's third rule. In the multi-electron
atom, the spin-orbit term in the Hamiltonian can be written as

H = AL.S

A 1s >0 for the first half of the 3d or 4f series and < O for the second half. It becomes large in heavy
elements. A is related to the one-electron spin-orbit coupling constant A by A = +A/2S for the first

and second halves of the series. The resultant angular momentum (see above) is

J=L+8S
The identity J?> = L? + S + 2 L.S is used to evaluate H_.The eigenvalues of J? are J(J + 1) ™ etc,
hence L.S can be calculated.

41 | Ce¥t 920 Exercise: Calculate the multiplet

Spin-orbit coupling constants in the 42 | 3t 540 splitting in terms of A, the spin-
3d and 4f series ion | A 48 | Nd* | 430 orbit interaction for an ion with L =
3,S=1/2.
3d' | T3t 124 4> | Sm3* 350

3d? | Ti?* 88 4f8 | Tb3* -410
3d3 | v?* 82 4 | Dy3* | -550
3d* | Cr?* 85 4f10 | Ho3* | -780

3d® | Fe2* | -164 4f11 | Ep3t -1170
3d’ | Co?* | -272 412 | Tm3* | -1900
3d® | Ni?* | -493 413 | Yb3* | 4140
Boulder July 2003 19



Zeeman Interaction

The magnetic moment of an ion is represented by the term m = (L + 2S)ug/
The Zeeman Hamiltonian for the magnetic moment in a field B applied along z is —-m.B

H ., = (u/)B.(L + 2S) ,

The vector model of the atom, including <

magnetic moments. First project m onto J. J
then precesses around z.

We define the g-factor for the atom or ion as the
ratio of the component of magnetic moment
along J in units of pug to the magnitude of the
angular momentum in units of ".

g =-(mJu)/J) =mIIJ + 1) pge

but m.J = (ug/){(L +28).(L + S)}
(1 H{(L? +3L.S + 28%)} P=I0+12 J, =M,
(gl L2 + 282 + (3/2)(J? - L2 - §2)}
(ug/H{L((312)J* — (112)L2 + (1/2)S?)}
(g AUGI2)IA + 1) = (/LML + 1) + (1/2)S(S + 1)}

hence

g=3/2 + {S(S+1) - L(L+1)}/2JJ+1)

Boulder July 2003 20



Also, from the vector diagram it follows that m /], = m.J/J? = guy/".
The magnetic Zeeman energy is E, = -m_B. This is —(m,J)./(J, B) = (gug4 )I, B
M

Hence E, = -guzM,B ~3/2
7 = ~8UgMy 3/

J=15/2 “1/2

1/2

3/2

The effect of applying a magnetic field on an ion with | = 5/2. 5/2

Note the magnitudes of the energies involved: If g = 2. ug = 9.27 102* J T-.. The splitting of two
adjacent energy levels is guyB. For B =1 T, this is only = 2 1023 J, equivalent to 1.4 K. [kg = 1.38 10-?}
J K-1]

The basis of electron spin resonance is to apply a magnetic field to split the energy levels, and then
apply radiation of frequency v so that E = hv is sufficient to induce transitions between the Zeeman
levels. Since h = 6.63 1034 J s-!, v = 28 GHz for resonance in 1 T. This is in the microwave range.

It is possible to deduce the total moment from the susceptibility, which should give m =g [J(J+1)]ug.
for free ions. The maximum value of m, is deduced from the saturation magnetization. Generally m, >
m

z

For 4f ions in so;ids J is the good quantum number, but for 3d ions S is the good quantum number

Boulder July 2003 21



Energy levels of Co?* ion, 3d’. Note that the
Zeeman splitting is not to scale.

L=1 5=3/2

104
J=L-5=3/2

1870

5i2
1450

L=3 5=3/2

e
840

J=L+5=8/2

0cm’

spin-orbil
coupling

- 372

a2

5/2

5f2

72

72

- 972

magnatic fisld

1em

&2

-1
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Paramagnetic Susceptibility

The general quantum case was treated by Brillouin; m is gugJ, and X is defined as x = pymH/kgT. There
are 2J+1 energy levels E, = -p,gusMH, with moment m, =gu M, where M, =1J. J-1,J-2, ... -J. The sums
over the energy levels have 2J+1 terms. Their populations are proportional to exp(-E/kT)

a) Susceptibility To calculate the susceptibility, we can take x << 1, because the susceptibility is defined

as the initial slope of the magnetization curve. We expand the exponential as exp(x) =1+ x + ..,
<m>=2Jgu M1 + ugugMH/k;T)/Z (1 + poguMH/k;T)

Recall X /1=2J+1 ﬁz
Z_JJMJ =0 -3/2
S M2 =1 + 1)(Q2] + 1)/3 =S 10
Hence  <m>= p @upHIJT + 1)(2J + 1)/3(2T + Dk, T 112
The relative susceptibility is N<m>/H, where N is the o
number of atoms/m3. -5/2
-3/2
% = uoNg2ug2J(J + 1)/3k, T H

? -12
1/2

372

This is the general form of the Curie law. Again it can be
written y, = C/T where the Curie constant

C = u Ng’ugz2J(J+1)/3kg or C = u,Nm_.*/3k; where

m. = gug [JJ+1)]. A typical value of C for J =1, N=8.102%m is 3.5 K. 32
Note that results for the classical limit and S = 1/2 are obtained when ] — (m=gugJ)andJ =1/2, g =

2. (m=pg) .
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Mepr = g/J(T+1) mg =24S(S+1)

%
Megf

lon 3d ST, L S J g
(up) (wp) (uB)
T, V" (3d")  “Dap 2 112 32 4/5 1.549 1.73 1.7
T, V¥ 3d) R, 3 1 2 2/3 1.633 2.83 2.8
Vv et (3dY) “Fap 3 32 32 25 0.775 3.87 3.8
cr’', Mn* (3dY)  °D, 2 2 0 - - 4.90 4.9
Mn?*, Fe**(3d°)  °Sg)p 0 5/2 5/2 2 5.916 5.92 5.9
Fe?*, Co® (3d°) °D. 2 2 4 3/2 6.708 4.90 5.4
Co®*, Ni** (3d")  “Fap 3 32 92 43 6.633 3.87 4.8
Ni*"  (3d°)  °F. 3 1 4 5/4 5.590 2.83 3.2
cu®* (3d%) “Dsp 2 12 52  6/5 3.550 1.73 1.9
lon 4f 25+ L S J g m,=gJ | m_=gV(J(J+1) | m
(Mg) (M) (Mg)
Ce’* (4f) 2F,, 3 112 5/2 6/7 2.14 2.54 2.5
P3* (42 3H, 5 1 4 4/5 3.20 3.58 3.5
Nd3* (4f%) Yo 6 3/2 9/2 8/11 3.27 3.62 3.4
Pm3*(44) 5, 6 2 4 3/5 2.40 2.68 -
Sm3*(4£%) ®H,,, 5 5/2 5/2 2/7 0.71 0.85 1.7
Eu3* (4f°) F, 3 3 0 - 0.00 0.00 3.4
Gd3 (4f) 8S. 0 712 712 2 7.00 7.94 8.9
Th3* (4f8) F 3 3 6 3/2 9.00 9.72 9.8
Dy3* (4f°) H,,, 5 5/2 15/2 4/3 10.00 10.65 10.6
Ho3* (4f1°) Sl 6 2 8 5/4 10.00 10.61 10.4
Er3* (4f1) N5 6 3/2 15/2 6/5 9.00 9.58 9.5
Tm?3* (4f12) 3H, 5 1 6 716 7.00 7.56 7.6
Yb3* (4f13) 2F,, 3 112 712 8/7 4.00 4.53 4.5
Boulder July 2003 24



Magnetization Curve
To calculate the complete magnetization curve, set'y = p,gu H/KgT,

then <m> = gu,0/dy[InZ ' exp{M,y}] [d(In z)/dy = (1/z) dz/dy]
The sum over the energy levels must be evaluated; it can be written as
expJy) {1 +r+r2+ ... 2} where r = exp{-y}

The sum of a geometric progression (1 +r + r?+ ... + ™) = (™! - 1)/(r - 1)
oo 2 exp{Myy} = (exp{-(2J+1)y} - Dexp{Jy}/(exp{-y}-1)
multiply top and bottom by exp{y/2}
= [sinh(2J+1)y/2]/[sinh y/2]
<m> = gug(0/dy)In{[sinh(2J+1)y/2]/[sinh y/2]}
= gug/2 {(2J+1)coth(2J+1)y/2 - coth y/2}
setting X = Jy, we obtain <m> = mB (X)

T T _gusiyrruns b ™ ____-hi-rmﬂ'-'—'—'-‘
where the Brillouin function B,(x) = 1.0 . ’,——"'
{(2J+1)/2] }coth(2J+1)x/2] - (1/2])coth(x/2]). I R |
Again, this reduces to the previous equations 0.8 J12 7

in the limits ] = (m=guyJ)andJ =1/2,g=2. ;
0.6

Comparison of the Langevin function and the

Brillouin functions for J = 1/2 and J = 2. 0

Boulder July 2003
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0—0 B7,2(x) (Gd**)

04,21 K

i o0 Bs/a(x) (Fe3t) X 3,00 K
i T et ZL(x) A 2,00 K
= 0130K
£ 3 0 B3/2(x) (Cr3+)

Rt

!

0

I H/T, 106 Am~! K-!
25 3

0 0,5 1 1,3 2

Reduced magnetization curves for three paramagnetic salts, with Brillouin-theory predictions

The theory of localized magnetism gives a good account of magnetically-dilute 3d and 4f salts where the
magnetic moments do not interact with each other. Except in large fields or very low temperatures, the
M(H) response is linear. Fields > 100 T would be needed to approach saturation at room temperature.

The excellence of the theory is illustrated by the fact that data for quite different temperatures superpose
on a single Brillouin curve plotted as a function of x = H/T
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|.3 lons in Solids

Summarizing, for free ions;

Filled electronic shells are not magnetic (the spins are paired; m = +1/2)

Only unfilled shells may possess a magnetic moment

The magnetic moment is given by m = gugJ, where "J represents the total angular momentum. For a
given configuration the values of g and J in the ground state are given by Hund’s rules

When the ion is embedded in a solid, the crystal field interaction is important, and the third point is
modified
Orbital angular momentum for 3d 1ons is quenched. The spin only moment is m = gu,S, with g =2.
Magnetocrystalline anisotropy appears, making certain crystallographic axes easy directions of
magnetization.
The Hamiltonian is now

H=Hy+ H g+ Ht H,
Typical magnitudes of energy terms (in K)
Hy |4, H o

SO

H,inl1T
3d [1-5104[102-103 |1-104 |1
4 [1-6105 [1-510% |[=3102 |1

H . must be considered before # , for 4f ions, and the converse for 3d ions. Hence J is a good quantum

number for 4f ions, but S is a good quantum number for 3d ions. The 4f electrons are generally localized,
and 3d electrons are localized in oxides and other ionic compounds.
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The most common coordination for 3d ions is 6-fold (octahedral) or 4-fold (tetrahedral). Both have cubic
symmetry, if undistorted. The crystal field can be estimated from a point-charge sum.

Octahedral and tetrahedral sites.

To demonstrate quenching of orbital angular momentum, we consider the 1 = 1 states Y%l !
corresponding to m, =0, +1.

PO = R(r) cos 6

P! = R(r) sin 6 exp {1}
The functions are eigenstates in the central potential V (r) but they are not eigenstates of # « Suppose
the oxygens can be represented by point charges q at their centres, then for the octahedron,

}[Cf= eV, = Dq(x* +y* +z* - 3y?z? -3z°x? -3x2%y?)

where D = e/4me a. But ! are not eigenfunctions of V; e.g [;"V apidV# §;;, where i,j = -1, 0, 1.
We seek linear combinations that are eigenfunctions, namely

Yo = R(r)cosH =zR(r) =p,
(ANV2)' + yH= R’(r)sinBcosd =xR(r) = p,
(AINV2)! -y )= R’(r)sinOsing = yR(r) = p,
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Note that the z-component of angular momentum; 1, =170/d¢ is zero for these wavefunctions. Hence
the orbital angular momentum is quenched.

The same applies to 3d orbitals; the eigenfunctions there are

d,, = (IV2)(? - y?) = R’(r)sin20sin2¢p = xyR(r)

d,, = (1/\/2)(1])1 -y = R’(r)sinBcosBsing = yzR(r) t,, orbitals
d = (N2 +y!) = R’(r)sinfcosBcosp = zxR(r)

22 = (IV2)? +1p 2)=  R’(r)sin®6cos2d = (x2-y?)R(r) e, orbitals
d3Z2 2=° = R’(r)(3cos?0 - 1) = (3z2-r)R(r)

The three p-orbitals are degenerate in a — .
d2p2dz2 "¢

cubic crystal field, whether octahedral t,
or tetrahedral, whereas the five d-orbitals ———— dxy,dyz’ d,
split into a group of three t,, and a group  Px,:Py, P,
of two e, orbitals ! mz e
dxdeZ’ d,, T
oct / tet oct tet

Notation; a or b denote a nondegenerate single-electron orbital, e a twofold degenerate orbital and 7 a
threefold degenerate orbital. Capital letters refer to multi-electron states. a, A are nondegenerate and
symmetric with respect to the principal axis of symmetry (the sign of the wavefunction is unchanged), b.
B are antisymmetric with respect to the principal axis (the sign of the wavefunction changes). Subscripts g
and u indicate whether the wavefunction is symmetric or antisymmetric under inversion. [/ refers to

mirror planes parallel to a symmetry axis, 2 refers to diagonal mirror planes.
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Orbitals in the crystal field

o AN 5
SRR

AN \\\\ \\\
N

dn
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One-electron energy diagrams

A
y Y b
A
€
3 F
1728 1/2h
by, |
3/5A, Y
AO
A\ 4
A
b,
2/5A, ‘ . 4

<
<
R
—>»
=
o —P

(@)

1/3a L
Y e, 2/3y l
a, $

<4
<

field-free octahedral tetragonal trigonal monoclinic
ion o, D, Cs, C,
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As the site symmetry is reduced, the degeneracy of the one-electron
energy levels is raised. For example, a tetragonal extension of the
octahedron along the z-axis will lower p, and raise p, and p,. The effect
on the d-states is shown below. The degeneracy of the d-levels in
different symmetry is shown in the table.

I PX’F
S —

P,

The effect of a tetragonal distortion of octahedral symmetry on the
one-electron energy levels.

The splitting of the 1-electron levels

i 1 | Cubic | Tetragonal | Trigonal | Rhombohedral
in different symmetry ] ] ] ] ]
S
p |2 3 1,2 1,2 1,1,1
d |3 2,3 1,1,1,2 1,2,2 1,1,1,1,1
f (4 1,33 | 1,1,1,2,2 | 1,1,1,2,2 | 1,1,1,1,1,1,1
Boulder July 2003 32



.

cfse

Jahn Teller Effect

*A system with a single electron
(or hole) in a degenerate level
will tend to distort
spontaneously. The effect is
particularly strong for d* and d°
ions in octahedral symmetry
(Mn3+, Cu?*) which can lower
their energy by distorting the
crystal environment. This is the
Jahn-Teller effect. If the local
strain is €, the energy change AE
= -A¢ +B¢2, where the first term
is the crystal-field stabilization
energy A . and the second term
is the increased elastic energy.

The J-T distorsion may be static
or dynamic.
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x2-y2° dz2

— A A Cq
dxy’ dyz’ dxz
=2 A t2g
d,,-d,,. d,, 3/5A,
2 /5 AC = tz
2/5At Ao
)4 —————— \ 4
A ———————— A
At
A
c 3/5At ’/5 AO
3/5A
c \ 4 e
\ 4 \ 4
dx2-y2’ dz2 t2g
dxy’ dyz’ dxz
A 4 \ 4
Ce
dx2-y2’ dz2
cubic tetrahedral spherical octahedral
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1.5.2 Multi-electron states

In insulators, the electrons in an unfilled shell interact
strongly with each other giving rise to a series of sharp
energy levels which are determined by the action of the
crystal field on the orbital terms of the free atom. The
spacing of theses levels may be determined by
spectroscopy, and the crystal-field determined.

Orgel Diagrams

These diagrams show the effect of a cubic crystal field
on the Hund's rule ground state term. Since a half-filled
shell has spherical symmetry, the cases d" and d>*" are
equivalent. Also, since a hole is the absence of an
electron, the cases d” and d'%" are related.

f

<A, 0 A, —

r|5 octahaedeal or tetrahaedeal

F
E
<« A Ay —>
d’, d® octahedral d*, d’ octahedral
(d*, d’ tetrahedral) (&, d&® tetrahedral)
E
D

<« A

d*, & octahedral
(d', d° tetrahedral)

A,
d', d° octahedral

(d*, & tetrahedral)
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High-spin and low-spin states

An ion is in a high-spin state or a low spin state, depending on whether the Coulomb interaction U leading to
Hund’s first rule (maximize S) is greater or less than the the crystal-field splitting A.

Consider a 3d® ion such as Fe3",

g 2g
A\ f f
A eg A
U U
A
tZg M t | A\
2g

U > A, gives a high-spin state, S = 2 e.g. FeCl, U <A, gives a low-spin state, S = 0 e.g. Pyrite FeS,
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Tanabe-Sugano diagrams

These show the splitting of the ground state and higher terms by the crystal field. The high-spin — low-
spin crossover is seen. Diagrams shown are for d-ions octahedral environments.

E/B
d 6

70

1 3
1 ng
G A, e 50
3
g
5 s ‘V &
P 3. 3 3 30 b
o E;(t,)(e,) -
y 'G
3 -
\ > T, D
X s !
Tig 1(;7
.‘.’.'_‘ e —————
3 0F
T 2e
SD X
3 >
Tlg :
s SEH .
E "4 le
Tt e, )’ S & ',
]Alg(t2g)6 2¢°\"2¢g g 2 ?‘j_,\, i v
5] 1 1 |
&
0 10 20 () 40
crystal field splitting A/B
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absorption
coefficient (cm-!)
dé S 40 30 20 10
S =

wavenumber, (cm!)
20,000

10,000

4F ‘A, )

(1) (e)!

t
l L 164, (t24)(eg)?
crystal field splitting

Matching the optical absorption spectrum of Fe3* - doped Al,O with the calculated Tanabe-Sugano energy-level diagram
to determine the cubic crystal field splitting at octahedral sites.
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E/B ‘A, (e?)

o /
.'IS

1E(e2) 3A2(ez}

T, (t,e)
'T,(t,e)
50 3T, (te)
_ 3T, (t,e)
A, (12)
30 /,,
.
ap TE(12)
ID ‘Tz(tg))
10
3 2
3f ] I ] J T, (13)
0 1 2 3 4
H

dZ

Note the similarities between the Tanabe-Sugano diagrams for d? and d’. The

possible low-spin states for d’ (e.g. Co?*)

E/B A, A, "

1

4T2

?F ;!TZ

1 T,
|
30 - i
|
|
|
|

B 1 } aT

2G =~ | 1
ap !I
aT |
10 | : :
2E 1
|
AT‘ :

af | \ L 1 2E

0 1 2 3 4

Dgq|B

d7

differences are associated with the
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d3

E/B

2F

2G
ap

“F

2A, (12e)

4T, (t3e)

2T .5(13)

2T, (13)

2E(13)

10

1 l

AL (1)

0 1 2 3 4
Dqg/B

For Cr3* in Al,O,, the cf parameter Dg/B is 2.8
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|.4 Crystal field and anisotropy

The electrostatic interaction of the ionic charge distribution p(r) with the potential V  created by the rest of the crystal
gives rise to the crystal field splittings. It is also the source, via spin-orbit coupling, of magnetocrystalline anisotropy.

E=[V p(dr
where V(r) = -(el4me) [{p(R) / |R - r|} dR
The anisotropy energy is therefore
E.(r) = ~(e/4meg) [ {p(r.09) p(R) / |R - rl}dr dR
Both the charge distribution p(r) and the potential V_(r) can be expanded in spherical harmonics.

Using the Wigner Eckart theorem, it is possible to write the corresponding crystal-field Hamiltonian in terms of angular
momentum operators J,, nyJzJ2 which is a particularly useful way to find the energy-levels (eigenvalues). The Hamiltonian
matrix is written in an M or M| basis for the 3d transition elements or 4f rare earths respectively. In concise form

f— n m ~ m
H = Zn=2,4,62m=}75n O,

Crystal field parameters /yan<rﬂ>Anm Stevens operators

Stevens coefficients Crystal field coefficients

In a site with uniaxial anisotropy, the leading term is }[;f: B,% O,0 The Stevens operator O, is {3),2 - |+ 1)}

H =8, (3),2 - J(+1)}
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e~

,...-
11T
T

Sm

Gd

Charge distributions of the rare-earth ions. Those with a positive quadrupole moment (0, > 0), italic type are
distinguished from those with a negative quadrupole moment (0, < 0) bold type. Note the quarter-shell changes,

+1/2
eg Nd** | =972 +3/2

+5/2
+7/2

+9/2

B,<0

+9/2

+1/2
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