BUILDING A SUCCESSFUL BUSINESS IN SUPERCONDUCTIVITY $\ensuremath{7/24/00}$

I.

TITLE SLIDE – NTRODUCTION

A. Trepidation

		1.	Trepidation - talking to an academic audience			
		2.	Will talk about QD's products and experiences			
		3.	Not a technical talk - sit back and enjoy			
	В.	Ta	lk Will Address More Of Business Issues			
		1.	How we started – an early project			
		2.	How to decide what makes good products			
		3.	What they don't teach you in graduate school			
[.		INTRODUCTION TO QUANTUM DESIGN				
	A.		e Quantum Way – Our Bias	VG – 2		
		1.				
		2.	Worked in large organizations – I didn't like it Against Venture Capital & Public Offerings			
			Bridle and saddle			
		3.	Quarterly board meetings to explain missing your targets There are other ways to be successful			
			I only know how we have done it			
			18 years in business - made a profit 17 of those years			
	В.	Fo	unders of Quantum Design	VG – 3		
		1.	Mike Simmonds – Ph.D., Research & Product Development			
		2.	Ron Sager – Ph.D., Research & Product Development			
			a. UC San Diego, Prof. John Wheatley			
			b. SQUID development, Superfluid He-3			
		3.	Barry Lindgren – B.S., Sales, management, admin.			
		4.	Dave Cox – B.S. Cryogenic(Video) Engineer			
I.		WHY WE STARTED QUANTUM DESIGN				
	A.	A. Founders were all employees of SHE Corporation				
			Life was not "fun" at SHE			
		2.	<i>y</i>			
		3.	Small companies losing money aren't much fun			

VG - 1

	2. $2-3$ month cash/credit reserve (based on revenues)	
	3. Debt-to-Equity Ration (< 1)	
	4. Prompt Payment of Payables	
C	. SHE Corporation circa 1982	
	1. Overstaffed (\$3.5M Revenue/105 Employees)	
	2. Payables > 90 Days	
	3. Generally – Bad Management Decisions	
	UANTUM DESIGN – DAY 1	VG – 5
	Assets: 1 Bay, 4 Keys, \$8,000 & 4 Warm Bodies	
	Liabilities: One \$15,000 3-year lease	~
C	First Bay For Quantum Design	Slides
N	OW WHAT WE DO?	
A	Announce that you are in business	
В	Quantum Design – Our First Communication	VG – 7
C	Quantum Design – How We Felt	VG - 6
Н	UNTER GEOPHYSICS – FIRST MAJOR PROJECT	
A	"FRACING" A Gas Well – Mapping the Fracture	VG – 8
	1. Hunter Geophysics – small company in San Jose	
	2. Funding from the Gas Research Institute	
	3. Well is small round hole with gas in rock pores	
	4. Tight gas sands – low permeability rock formations	
	5. Increase surface area for gas diffusion to well head	
	6. Rock fractures along the grain of the rock	
	7. Pump hydraulic fluid with propant into the well & crack	
	8. Kilometers long, several kilometers deep, few mm wide	
	9. Volumetrically – 60,000 gallons at 50,000 psi	
	10. Use SQUID sensors to map the direction and extent	
	11. Drill additional wells according to fractures	
	-	
	12 Normal method – tiltmeters	
	12. Normal method – tiltmeters13. Hunter Project – Map the fracture with tiltmeters	

B. General "Rules of Thumb" for small companies

1. \$100K - \$140K per man-year

В.	Geography of Experiment					
	1.	Society of Petroleum Engineers – (Mar 14-16, 1983)	VG – 9			
	2.	Geographical - Wellhead, Pumping Trucks, Sensors	VG - 10			
	3.	SQUID Sensors				
		a. 3-Axis Geophysical Magnetometers				
		b. 2-Axis cryogenic Tiltmeters				
C.	Ra	VG – 11				
	1.	Background magnetic field from the earth				
	2.	Tilt in earth's magentic field during the fracture				
	3.	Subtract background to get residual magnetic signal				
D.	Data From The Fracture VC					
	1.	Theoretical tilt vector map: vertical & horizontal fracture				
	2.	Actual tilt vector map: two phases of fracture				
	3.	Magnetic profiles for a horizontal fracture				
	4.	Three stages fracture formation				
Ε.	Ex	Experimental Results				
	1.	Formation of the Fracture – 2 Stages	VG – 13			
	2.	Magnetic signals from the fracture event	VG – 14			
F.	Ca	toosa II Site Photos				
	1.	Magnetometer installation site	VG – 15			
		Imagine using SQUIDs in a cow pasture				
		Cows dragging your cables				
		Other things best left undescribed				
	2.	Magnetometer installation hole – steel balls	VG – 16			
		Rock at Catoosa – used steel balls to drill holes				
		Freezing rain falling on your electronics 1)				
	3.	Well head site – overflow pit	VG – 17			
		Environmentally insensitive				
		60,000 gallons of hydraulic fluid				
G.	Re	ferences to "Losing a Crew"				
	1.	Possibility of a rupture at the well head				
	2.	Crack collapses ejecting 60,000 gal of hydraulic fluid				
	3.	Fracture acts as an atomizer				

4. If one spark occurs, you "Lose a crew"

VII.	\mathbf{W}	HAT SHOULD WE DO NOW?	Slides			
	A. Magnetometers For Oil Exploration – Not a Product					
		1. This is the kind of project in which one can get involved				
	2. Even successful measurements don't make a product					
	3. Could detect the fractures near the surface (but not at 1 km depth)					
		4. Disadvantages of using cryogenic equipment (cost to benefit ratio)				
	 B. Room Temperature Magnetic Measurements C. Ronald Reagan & Star Wars – Particle Beam Accelerators D. Some Of Us Were Getting A Bit Weird 					
VIII.	MPMS – THE FIRST MAJOR PRODUCT A. Research Company? or Product Company?					
		Are Geophysical Magnetometers A Product?				
		What Makes A Good Product?	VG -1 8			
IX.	DEFINING A "GOOD" PRODUCT (FOR A COMPANY)					
	A.	What Makes A Good Product?	VG – 19			
		1. Many people want to buy it				
		2. You can sell it for more than it costs				
	В.	Why Do People Want To Buy It?	VG – 20			
		1. Cost is Commensurate With Benefit				
		2. Helps Make or Save Money (medical equipment)				
		3. Solves a Problem (MRI, Microwave oven, MPMS)				
		4. Provides Convenience (dishwasher)				
		5. Personal Enjoyment (television)				
		6. Good Economics				
	C.	What Makes A Good Instrument?	VG – 21			
		1. Performs A Needed Measurement				
		2. Easy To Use				
		3. Reliable				
		4. Well-Supported By Manufacturer				

D.	Co	ommercial Encounters Of The	VG-22
	1.	First Kind – Build One For the Government	
	2.	Second Kind – Sell a couple to your friends	
	3.	Third Kind - Manufacture Dozens With Documentation	
	4.	Mark I – Was of the Second Kind	
	5.	Serial #1 – Eventually became of the Third Kind	
E.	E. For A Commercial Product		VG – 23
	1.	Engineered For Manufacturing and Testing	
	2.	Manufacturing Process is Documented	
	3.	Intuitive and Forgiving For Wide Range of Users	
	4.	Professional Service and Support	
	5.	Useful enough to buy with your own money	
W	WHAT QUANTUM DESIGN IS ALL ABOUT		
A.	Qı	ıantum Design's Goals	
	1.	Keep Your Customers Happy	
	2.	Make A Profit	
	3.	Create An Enjoyable Place To Work	
В.	Fa	ctors That Have Contributed To Our Success	VG – 25
	1.	Good Products	
		Good Service	
	3.	Good Financial Management	
	4.	Good Personnel Management	
	THERMAL MANAGEMENT WORKSHOP		VG – 26
А.		imarily Focused On Semiconductor Industry University of Minnesota – October 1995	
	_		
	2.		
		a. Technology needs through 2007b. Thermal management is big problem	
	3.	1 1	
	4.		
	5.	Cryogenics can solve the thermal problem	

	B.	Why Use Cryogenic Systems	VG - 27
		1. Large magnetic fields	
		2. High sensitivity detectors	
		3. High speed electronics	
		4. Scientific Investigations	
	C.	Typical Refrigeration Systems	VG – 28
	D.	Josephson Junction Computers	
		1. Josephson Junction Computers - Good News	VG – 29
		2. JJ Computers – Bad News	VG - 30
		3. JJ Computers – More Bad News	VG - 31
		4. Hasuo's Conclusions	VG - 32
	E.	Reaction Of Semiconductor Industry	
		1. Using water is a joke	
		2. Cryocoolers? They laughed me out the room	
XII.	A '	VG - 33	
	Α.	Cryocooler Workshops Attendees	VG - 34
		1. Government funding agents	
		2. Government scientists	
		3. Academic Community	
		4. Small cryogenic research companies	
		5. Cryocooler Manufacturers	
	В.	Cryocooler Conference – 1981	VG - 35
		1. Cryocoolers will expand Superconductivity Markets	
		2. Present cryocoolers are too expensive	
		3. Large demand will lead to high volume	
		4. High volume will lead to lower cost	
		5. Lower cost will promote superconductivity	
	C. Cryocooler Conference – 1995		VG – 36
		1. Cryocoolers will expand Superconductivity Markets	
		2. Present cryocoolers are too expensive	
		3. Large demand will lead to high volume	
		4. High volume will lead to lower cost	
		5. Lower cost will promote superconductivity	

D. 1995 - Technology Push Versus Technology Pull

VG - 37

- 1. Most significant slide presented at Cryocooler Conference
- 2. Presented by an Army Captain Army not funding High-T_c
- 3. No matter how hard 2-6 years to products
- 4. No matter how easy 10 years to products