
These notes include: a) an elementary introduction to formalism describ-
ing the evolution of density matrix coupled to a thermal bath of harmonic
oscillators under conditions typical for quantum optics (i.e. assuming negli-
gible correlation time for the bath); b) an introduction to stochastic wave-
function description of the open systems. These notes are from the Atomic
Physics class taught at Harvard in the fall of 2003. The notes were taken
by Lily Childress. (The rest of the notes can be found at
http://www.courses.fas.harvard.edu/ phys285b/lectures/. Note that some
of those have not been carefully proofed and may contain misprints.We
would welcome your comments or corrections. Email them to lukin@physics.harvard.edu
or to childres@fas.harvard.edu)
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Chapter 3

Mathematical methods for

open systems in quantum

optics

Our primary goal thus far has been to describe the interactions between light
and matter. In previous lectures we have developed two different formalisms
for atoms interacting with classical and quantum mechanical radiation fields.
Even though the latter allowed us to solve the problem of spontaneous emis-
sion, the full quantum mechanical treatment is cumbersome at best, and in
many cases unnecessary. We would like to describe both coherent phenom-
ena (such as classical field Rabi oscillations) and incoherent processes (such
as spontaneous emission) in a more efficient manner. By truncating our de-
scription to include only the few modes or atomic levels of interest, we can
treat much more complicated systems.

In more formal language, we seek a quantum mechanical treatment of
open systems. The ”system” interacts not only with controllable classical
signals, but also with a large number of degrees of freedom we call the
”environment” or ”reservoir”, and over which we have no control. If we do
not care about the reservoir state, we would like to be able to describe the
system without also calculating the reservoir dynamics. For instance, the
system might be an atom interacting with both a controllable laser field and
an environment composed of the vacuum modes of the electromagnetic field;
by properly eliminating the radiation field degrees of freedom while retaining
their effect on the atom, we can obtain a simpler but equally accurate picture
of the atomic evolution.
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3.1 The density operator

Although the state of a quantum mechanical system is represented by |ψ〉, a
vector in Hilbert space, this description does not provide a useful picture for
many practical situations, and certainly cannot treat macroscopic objects.
Any quantum mechanical state can also be represented as a density operator;
moreover, the density operator can describe classical ensembles as well.

Suppose our system can be in one of a number of quantum states |ψα〉
and it occupies each state with some probability pα. The density operator
for the system is

ρ̂ =
∑

α

pα|ψα〉〈ψα|. (3.1)

If there exists a basis in which ρ̂ = |φ〉〈φ| for some state |φ〉, the system is
said to be in a ”pure state”. If such a basis cannot be found, the system
is in a ”mixed state”, and has lost some of its purely quantum mechanical
character. Finally, if a basis can be found in which the off-diagonal elements
of the density operator vanish, the system can be described by a classical
ensemble, and is called a ”statistical mixture”.

From this definition, one can immediately derive several important prop-
erties which any density operator must satisfy:

(1) ρ̂ = ρ̂†

(2) Tr[ρ̂] =
∑

n〈n|ρ̂|n〉 = 1 where {|n〉} form an orthonormal basis
(3) 〈n|ρ̂2|m〉 ≤ 〈n|ρ̂|m〉 where |m〉 and |n〉 are any pure states

The first is self evident, the second follows from conservation of probability,
and the third is an equality only when the density operator describes a pure
state.

Operator expectation values may be calculated directly from the den-
sity operator. If Ŝ is a system observable, its expectation value should be
calculated in all possible quantum states weighted by their probability of
occupation:

〈Ŝ〉 =
∑

α

pα〈ψα|Ŝ|ψα〉 (3.2)

=
∑

α,n

pα〈ψα|Ŝ|n〉〈n|ψα〉 (3.3)

=
∑

n

〈n|
(
∑

α

pα|ψα〉〈ψα|
)

︸ ︷︷ ︸

ρ̂

Ŝ|n〉 (3.4)

= Tr[ρ̂Ŝ]. (3.5)
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By inserting a completeness relation
∑

n |n〉〈n| = 1 and rearranging terms,
a considerable simplification is obtained.

In this context, the mathematical meaning of the trace may be unclear.
However, given a basis {|n〉}, we may write the operators Ŝ and ρ̂ as matri-
ces, whereby their trace is the usual sum of diagonal elements. The so-called
density matrix has elements ρn,n′ such that

ρ̂ =
∑

n,n′

|n〉 〈n|ρ̂|n′〉
︸ ︷︷ ︸

ρn,n′

〈n′|. (3.6)

These elements have a physical meaning, and there are two cases worth
distinguishing:

(1) Diagonal elements ρnn = 〈(|n〉〈n|)〉 correspond to the probability of
occupying state |n〉.

(2) Off-diagonal elements ρnm = 〈(|n〉〈m|)〉 correspond to the expectation
value of the coherence between level |n〉 and |m〉, e.g. the atomic dipole
operator.
For example, the density operator for a two-level atom may be written as a
2x2 matrix,

ρ̂ = ρ11|1〉〈1| + ρ12|1〉〈2| + ρ21|2〉〈1| + ρ22|2〉〈2|. (3.7)

A pure state |ψ〉 = c1|ψ〉 + c2|ψ〉 then has a density matrix with ρij = cic
∗
j .

One example of a mixed state is the two-level atom with transition frequency
ω in thermal equilibrium. In the basis {|1〉, |2〉} its density operator takes
the form

ρ̂ =
e−Ĥ/kBT

Tr[e−Ĥ/kBT ]
(3.8)

=
1

1 + e−~ω/kBT

(
1 0

0 e−~ω/kBT

)

(3.9)

=
1

2 cosh ~ω/2kBT

(
e~ω/2kBT 0

0 e−~ω/2kBT

)

. (3.10)

Clearly, the equilibrium population depends on the relative scale of the
atomic transition frequency and the temperature. For instance, at room
temperature T = 300K, kBT/(2π~) ≈ 6 · 1012 Hz, which corresponds to
a frequency between microwave and near-infrared. If the atomic transition
frequency is well above this scale, the atom will be in its ground state in
equilibrium; otherwise, it will be in a statistical mixture of ground and
excited states.
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The density matrix for a thermal radiation field illustrates how the den-
sity operator formalism connects up with statistical mechanics. A single
mode with frequency νj has a density operator

ρ̂(j) =
e−~νj â

†
j âj/kBT

Tr[e−~νj â
†
j âj/kBT )

(3.11)

with matrix elements between Fock states |n〉, |m〉

ρ̂(j)
nm = δnme

−~νjn/kBT
(

1 − e−~νj/kBT )
)

. (3.12)

Note that only the diagonal elements are nonzero since the field is a statis-
tical mixture of photon number states. Consequently, the expectation value
for the annihilation operator vanishes,

〈âj〉 =
∑

n

〈n|âj ρ̂|n〉 =
∑

n

ρn,n−1

√
n = 0, (3.13)

but the average photon number obeys the Bose-Einstein distribution,

n̄j = 〈â†j âj〉 =
∑

n

ρnn =
1

e−(~νj/kBT ) − 1
. (3.14)

3.2 System and environment

The density operator formalism is well suited for treating a system composed
of two parts when only one subsystem is relevant. For clarity, we will call the
total system the universe, and its component parts are the system and the
environment. The universe can be described by a quantum state |ψ〉, with
the corresponding density operator ρ̂ = |ψ〉〈ψ|, and in principle we can solve
for the dynamics of the system by first finding how the universe evolves.
Since we are really only interested in the system, we would like to find a
more efficient description which does not require us to calculate precisely
what happens to the environment degrees of freedom.

We proceed by first expanding the total state vector in terms of a basis
{|n〉|e〉} where |n〉 is a state of the system and |e〉 is a state of the environ-
ment, so that

|ψ〉 =
∑

{n,e}

|n〉|e〉〈n, e|ψ〉. (3.15)
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Consider the expectation value in this state of an operator Ŝ which acts only
on the system degrees of freedom,

〈Ŝ〉 =
∑

n,e,n′,e′

〈n, e|Ŝ|n′, e′〉〈n′, e′|ψ〉〈ψ|n, e〉 (3.16)

=
∑

n

〈n|Ŝ (
∑

e

〈e|ψ〉〈ψ|e〉)
︸ ︷︷ ︸

ρ̂S

|n〉 (3.17)

= TrS[Ŝρ̂S]. (3.18)

The subscript S (R) on the trace indicates that only the system (reservoir)
states are included in the sum. The expectation value of a system operator
can always be found in terms of a reduced density operator

ρ̂S = TrR[ρ̂]. (3.19)

Note that ρ̂S has all the properties of a density operator, and can be ex-
pressed as a probabilistic mixture of system states, ρ̂S =

∑

α pα|ψSα〉〈ψSα |. In
general, however, ρ̂S does not have to describe a pure state, and this reflects
the fact that the system under consideration interacts with the environment,
i.e. it is an open system.

3.3 The dynamics of an open system

We will use the density operator as a tool to aid derivation of an efficient
description for an open system interacting with its environment. To under-
stand how the reduced density operator evolves in time, consider first its
evolution with a Hamiltonian ĤS acting only on the system:

i~ ˙̂ρS =
∑

α

pα( i~|ψ̇Sα〉
︸ ︷︷ ︸

ĤS |ψS
α〉

〈ψSα | + |ψSα〉 i~〈ψ̇Sα |
︸ ︷︷ ︸

−〈ψS
α |ĤS

) (3.20)

=
1

i~
[ĤS , ρ̂S ]. (3.21)

Suppose now that there is some coupling between the system and the envi-
ronment described by an interaction Hamiltonian ĤSR. The dynamics will
become quite a bit more involved, since even if the system and environment
start out independent of one another, the initial product state |ψS〉 ⊗ |ψR〉
will evolve under the influence of ĤSR into a state which cannot in general
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be factored into independent system and environment states. The system
and environment are then said to be entangled.

As an illustration we return to the example of an atom spontaneously
emitting a photon into the vacuum. If the atom starts out in a superposition
state, |ψ0〉 = (c1|1〉 + c2|2〉) ⊗ |0〉, at time t it will be in a state |ψ(t)〉 =
c1|1〉⊗ |0〉+ c2(t)|2〉⊗ |0〉+∑k ck(t)|1〉⊗ |1l〉 which can no longer be written
as a direct product of atomic and electromagnetic states. The elements of
the atomic reduced density matrix can then be calculated n terms of the
decay rate γ:

ρ̂ = Tr[|ψ(t)〉〈ψ(t)|] =

(
1 − ρ22(0)e

−γt ρ12(0)e
−γt/2

ρ21(0)e
−γt/2 ρ22(0)e

−γt

)

(3.22)

Note that the off-diagonal elements decay at half the rate of the excited state
population. This is characteristic of interactions which conserve energy.

3.3.1 General formalism

The total Hamiltonian may be represented as a sum of three terms,

Ĥ = ĤS + ĤR + ĤSR. (3.23)

The first term only affects system degrees of freedom and the second only
affects the reservoir while the third contains cross products of system oper-
ators with reservoir operators. The total density matrix obeys the equation
of motion

˙̂ρ =
1

i~
[Ĥ, ρ̂] (3.24)

=
1

i~
[ĤS + ĤR + ĤSR, ρ̂], (3.25)

and we may trace over the reservoir degrees of freedom on both sides of the
equation to obtain the evolution for the system reduced density operator:

˙̂ρS = Tr[ ˙̂ρ] (3.26)

=
1

i~
[ĤS, ρ̂S ] +

1

i~
Tr[[ĤR, ρ̂]]
︸ ︷︷ ︸

=0

+
1

i~
Tr[[ĤSR, ρ̂]]. (3.27)

Each of the three terms contributes differently. The system Hamiltonian
has the same effect it would have in the absence of the reservoir. The
reservoir Hamiltonian has no net effect on ρ̂S because the trace is invariant
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under cyclic permutations of the reservoir operators, so the commutator
must vanish. The interaction Hamiltonian, however, involves both system
and reservoir operators and requires special treatment. Although we have
obtained the equation of motion as a general result, no further progress can
be made without specifying at least some of the properties of the interaction
Hamiltonian and the reservoir itself.

3.3.2 Density operator method for a Markovian reservoir

By limiting the system and reservoir to certain kinds of interactions relevant
to atomic physics and quantum optics, we can develop a framework for
analyzing open systems. In particular, we will consider environments which
have a very short correlation time, so that the system is only influenced by
the instantaneous state of the reservoir.

Again, we will assume Ĥ = ĤS + ĤR + ĤSR, and we will work in the
interaction picture, where the relevant operators are

ρ̃ = ei(ĤR+ĤS)t/~ρ̂e−i(ĤR+ĤS)t/~ (3.28)

H̃SR = ei(ĤR+ĤS)t/~ĤSRe
−i(ĤR+ĤS)t/~. (3.29)

The unitary transformation automatically accounts for the free evolution of
the system and reservoir, so that the only remaining dynamics are due to
the interactions, i.e.

d

dt
ρ̃ =

1

i~
[H̃SR, ρ̃]. (3.30)

Our analysis requires a specific form for the interaction,

ĤSR = ŜR̂† + R̂Ŝ†, (3.31)

where Ŝ (R̂) is a general system (reservoir) operator. In practice, the inter-
action Hamiltonian may have a sum over such terms: the analysis proceeds
in exactly the same manner, and the effects may be accounted for by con-
sidering each term of the sum separately and summing at the end. In the
interaction picture, we will represent the Hamiltonian by

H̃SR = ŜF̂R(t)† + F̂R(t)Ŝ†, (3.32)

where all the time dependence is explicitly included in the reservoir operator
F̂R(t).
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For example, consider the Hamiltonian for a single atom interacting with
the radiation field in the Schrodinger picture,

ĤSR = −
∑

j

~gj âj

︸ ︷︷ ︸

R̂

|2〉〈1|
︸ ︷︷ ︸

Ŝ†

−
∑

j

~g∗j â
†
j |1〉〈2|, (3.33)

where we can identify the system and reservoir operators appropriate to our
more general form of the interaction. Likewise, in the interaction picture
the Hamiltonian includes the phase factors associated with free evolution of
the system and reservoir:

H̃SR = −
∑

j

~gj âje
−i(νj−ω)t

︸ ︷︷ ︸

F̂R(t)

|2〉〈1|
︸ ︷︷ ︸

Ŝ†

−
∑

j

~g∗j â
†
je
i(νj−ω)t|1〉〈2|, (3.34)

and we incorporate these phase factors into the new reservoir operator F̂R(t).
In addition to the specified form for the interaction given by Eq. (3.32),

our analysis requires two assumptions regarding the nature of the reservoir
itself, namely

(1) The reservoir is large
(2) The reservoir has a broad bandwidth.

The first assumption indicates that the reservoir state is not significantly af-
fected by its interaction with the system. Consequently for our analysis we
may take the reservoir to be in a stationary (time-independent) state, for ex-
ample a statistical mixture at some temperature T. The second assumption
implies that the correlation time τcfor the reservoir is short; in particular, we
require that τc be much smaller than the typical timescale τS on which the
system evolves. These assumptions together constitute the ”Born-Markov
Approximation”, and a reservoir which satisfies them is called Markovian.

The effect of the reservoir on the system can be simplified by averaging
over a timescale ∆t which is in between the correlation time and charac-
teristic system evolution time, τc ≪ ∆t ≪ τS. This approach is akin to
perturbation theory in τc/τS , and will provide equations of motion for the
system reduced density operator which are valid for times greater than ∆t.

Starting from Eq. (3.30), we can formally integrate to obtain the density
operator at a later time,

ρ̃(t+ ∆t) − ρ̃(t)
︸ ︷︷ ︸

∆ρ̃

=
1

i~

∫ t+∆t

t
dt′[H̃SR(t′), ρ̃(t′)]. (3.35)
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Expanding ρ̃(t′) in the same manner (which is valid since t′ − t < ∆t), we

obtain

∆ρ̃ = 1
i~

∫ t+∆t

t
dt′[H̃SR(t′), ρ̃(t′)]

+ 1
(i~)2

∫ t+∆t

t
dt′
∫ t′

t
dt′′[H̃SR(t′), [H̃SR(t′′), ρ̃(t′′)].

(3.36)

Now we trace over the reservoir degrees of freedom to find the change in

the system reduced density operator over time ∆t,

∆ρ̃S = 1
i~

∫ t+∆t

t
dt′ TrR[H̃SR(t′), ρ̃(t′)]

+ 1
(i~)2

∫ t+∆t

t
dt′
∫ t′

t
dt′′ TrR[H̃SR(t′), [H̃SR(t′′), ρ̃(t′′)].

(3.37)

To proceed we must now make yet another assumption: the initial state
is factorizable,

ρ̃(t) = ρ̃S(t) ⊗ ρ̃R(t). (3.38)

For times shortly thereafter, t < t′ < t + ∆t, the total density operator is
approximately factorizable with some small correction,

ρ̃(t′) ≈ ρ̃S(t′) ⊗ ρ̃R(t′) + ρ̃corr(t
′). (3.39)

Provided that ∆t ≪ τS, we can neglect ρ̃corr in the RHS of Eq. (3.37)
to leading order, replacing the total density operator by the product of a
system and reservoir density operator.

Using the explicit forms for H̃SR(t) and ρ̃(t), we will now examine the

two terms in Eq. (3.37). The first term, ∆ρ̃
(1)
S , has a straightforward effect

on the system,

∆ρ̃
(1)
S =

1

i~

∫ t+∆t

t
dt′ TrR[ŜF̂R(t′)† + F̂R(t′)Ŝ†, ρ̃S(t′) ⊗ ρ̃R(t′)](3.40)

=
1

i~

∫ t+∆t

t
dt′ [Ŝ, ρ̃S(t′)] ⊗ TrR{F̂R(t′)†, ρ̃R(t′)} + h.c. (3.41)

=
1

i~

∫ t+∆t

t
dt′ [Ŝ, ρ̃S(t′)] ⊗ 2〈F̂R(t′)†〉 + h.c. (3.42)

=
1

i~

∫ t+∆t

t
dt′ [2Ŝ〈F̂R(t′)†〉 + 2Ŝ†〈F̂R(t′)〉

︸ ︷︷ ︸

Ĥ′
S

, ρ̃S(t′)]. (3.43)

Since the reservoir is large and does not change much under the influence
of the system, 〈F̂R(t′)†〉 is essentially a constant. The effect of the first
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term may thereby be interpreted an addition to the system Hamiltonian,
ĤS + Ĥ ′

S. In many cases including the atom-field interaction, 〈F̂R(t′)†〉 = 0,
and the first term vanishes altogether.

The second term, ∆ρ̃
(2)
S , is responsible for the nontrivial effects of the

reservoir. We will evaluate it in terms of two-time correlation functions of
the reservoir operators, defined by

g−−(t′, t′′) = Tr[F̂R(t′)F̂R(t′′)ρ̃R] (3.44)

g+−(t′, t′′) = Tr[F̂R(t′)†F̂R(t′′)ρ̃R] (3.45)

g−+(t′, t′′) = Tr[F̂R(t′)F̂R(t′′)†ρ̃R] (3.46)

g++(t′, t′′) = Tr[F̂R(t′)†F̂R(t′′)†ρ̃R]. (3.47)

For example, we can explicitly evaluate one of these correlators for an envi-
ronment formed by the radiation field, where

g+−(t′, t′′) = ~
2
∑

j,k

g∗j gk〈â†j âk〉ei(νj−ω)t′−i(νk−ω)t′′ . (3.48)

If the radiation field is in a thermal state,〈â†j âk〉 = δjkn̄j, so the correlator
becomes

g+−(t′, t′′) = ~
2
∑

j

|gj |2n̄jei(νj−ω)(t′−t′′). (3.49)

The two time correlation function now depends only on the difference in
time, t′′ − t′ = τ , and it is a sharply peaked function of τ whose width cor-
responds to the reservoir correlation time τc. In the limit that the radiation
field volume V → ∞, τc → 0, we recover the Wigner-Weisskopf approxima-
tion for which the correlator is a delta function in time. Note that for the
radiation field, g−− = g++ = 0, and g−+ is the same as g+− with 〈â†j âj〉
replaced by 〈âj â†j〉 = 〈â†j âj〉+1. Expressed in terms of correlation functions,
the second term becomes

∆ρ̃
(2)
S = 1

(i~)2

∫ t+∆t
t dt′

∫ t′

t dt
′′
{

g+−(t′, t′′)
(

ŜŜ†ρ̃S − Ŝ†ρ̃SŜ
)

+g−+(t′, t′′)
(

Ŝ†Ŝρ̃S − Ŝρ̃SŜ
†
)}

+ h.c.,
(3.50)

where we have neglected contributions from g−− and g++. The only signif-
icant time dependence enters through the sharply-peaked correlation func-
tions. In the case of the radiation field we may evaluate the inner integral
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using the same procedure performed in the Wigner Weisskopf approxima-
tion, obtaining

− 1

~2

∫ t′

t
dt′′g+−(t′, t′′) =

∑

j

∫ t′

t
|gj |2n̄jei(ω−νj)(t

′′−t′) (3.51)

= −π
∑

j

|gj |2n̄jδ(νj − ω) (3.52)

= −γ/2n̄(ω). (3.53)

Here we have neglected the energy shift arising from the principal part of the
integral, because that can be incorporated into the bare system Hamiltonian.
As mentioned above, the calculation for g−+ proceeds in the same manner,
yielding

− 1

~2

∫ t′

t
dt′′g−+(t′, t′′) = −γ/2(n̄(ω) + 1). (3.54)

The remaining integral may be approximated by ∆t· integrand because ∆t
is now small compared to the time variation of the integrand. Dividing
through by ∆t, we obtain a time-averaged differential equation for ρ̃S:

∆ρ̃S
∆t

= −γ
2
n̄(ω)

(

ŜŜ†ρ̃S − Ŝ†ρ̃SŜ
)

− γ

2
(n̄(ω) + 1)

(

Ŝ†Ŝρ̃S − Ŝρ̃SŜ
†
)

+ h.c.

(3.55)
This result is known as the ”master equation”, and it provides an essen-
tial tool for studying the evolution of open systems coupled to Markovian
reservoirs.

3.3.3 Remarks on the generalized master equation

In the previous lecture we derived the equation governing the evolution of an
open system coupled to a Markovian reservoir. In the Schrodinger picture,
this so-called master equation takes the form

∆ρ̂S

∆t = −∑p
γp

2 n̄
(

ŜpŜp
†
ρ̂S − Ŝp

†
ρ̂SŜp

)

+ h.c.

−∑p
γp

2 (n̄+ 1)
(

Ŝp
†
Ŝpρ̂S − Ŝpρ̂SŜp

†
)

+ h.c.

+ 1
i~[ĤS , ρ̂S ].

(3.56)

The system time dependence is built into the last term, and we have included
a sum over different interactions with the reservoir. Explicitly, the system-
reservoir interaction takes the form ĤSR =

∑

p ŜpR̂
†
p + h.c., and each term

has its associated rate γp. In order to incorporate multiple system-reservoir
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interaction terms, we implicitly make an assumption that the different terms
are incoherent, so that the interference between them vanishes. While this
requirement is satisfied most of the time, one should bear in mind that there
exist cases where such interference is important.

Although Eq. (3.56) allows us to efficiently account for the effects of
the reservoir, this added information has a price. When only an isolated
n-level system need be considered, its evolution is governed by n differential
equations for the amplitude of each basis vector. When the effect of the
environment is included, the system must be described by O(n2) differential
equations. The large number of equations can complicate the mathematics,
and we will frequently need more sophisticated tools to extract a solution.

One more caveat deserves attention: In our previous derivation, we as-
sumed that the state of the universe was factorizable, i.e.

ρ̃(t′) ≈ ρ̃S(t) ⊗ ρ̃R(t), (3.57)

where t′ − t ≤ ∆t. We made this statement with little justification, but we
will now show that our assumption is valid for a reservoir with no memory,
τc = 0.

Suppose that the system and reservoir do not interact until a time t = ti,
so that for all times prior to ti the universe density operator is factorizable.
At some time t > ti, we may certainly write

ρ̃(t) = ρ̃S(ti) ⊗ ρ̃R(ti) + ρ̃corr(ti, t) (3.58)

where ρ̃corr(ti, t) depends on the correlations built up between the system
and the reservoir prior to the time interval t → t + ∆t for which we cal-
culated the correlations. We will use perturbation theory to estimate the
contributions to ∆ρ̃S = ρ̃S(t + ∆t) − ρ̃S(t) which we neglected by setting
ρ̃corr(ti, t) = 0. To leading order,

ρ̃corr(ti, t) ≈
1

i~

∫ t

ti

[H̃SR(t′), ρ̃S(ti) ⊗ ρ̃R(ti)], (3.59)

so that the neglected change in the system density operator is

∆ρ̃S ∝
∫ t

ti

dt′
∫ t+∆t

t
dt′′ 〈H̃SR(t′′)H̃SR(t′)〉
︸ ︷︷ ︸

∝ δ(t′′−t′)

. (3.60)

Recall that the time correlation function for a reservoir with no memory
is a delta function; since the time intervals for integration do not overlap,
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the delta function is zero everywhere within the region of integration. The
contributions to ∆ρ̂S due to ρ̃corr(ti, t) thus vanish to leading order (and all
higher orders) for τc = 0. In fact, a more rigorous analysis shows that the
corrections scale as τ2

c .
We have now shown that a reservoir with no memory has a local inter-

action with the system; that is, it immediately forgets about all previous
correlations and depends only on the current state. This amnesia implies
irreversibility since information is lost (so entropy must increase). For prac-
tical purposes, irreversible vs reversible dynamics will provide our boundary
between system and environment. Any part of the environment which ex-
hibits time reversibility we will include in the system even if we are not
explicitly interested in its evolution.

We have highlighted two situations where the master equation may not
suffice: (1) when there is interference between different interaction terms and
(2) when the reservoir interaction is reversible. A more thorough discussion
of the assumptions and approximations implicit in the master equation may
be found in e.g. Cohen-Tannoudji et al., ”Atom-Photon Interactions”.

3.3.4 Example: The two-level atom

The master equation is frequently used to describe the evolution of a driven
two-level system coupled to a dissipative environment. The coherent inter-
action with the driving field takes the form

ĤS = −~δ|2〉〈2| − ~Ω|1〉〈2| − ~Ω∗|2〉〈1|, (3.61)

while the reservoir effects enter the density matrix equation:

∆ρ̂S

∆t = −γ
2 (n̄+ 1) (σ22ρ̂S − σ12ρ̂Sσ21) + h.c.

−γ
2 n̄ (σ11ρ̂S − σ21ρ̂Sσ12) + h.c.

+ 1
i~[ĤS , ρ̂S ],

(3.62)

where Ŝ = |1〉〈2| = σ12. Taking the matrix elements yields four differential
equations for the components of the density matrix,

ρ̇22 = −γ(n̄+ 1)ρ22 + γn̄ρ11 + iΩρ21 − iΩ∗ρ12 (3.63)

ρ̇11 = γ(n̄+ 1)ρ22 − γn̄ρ11 − iΩρ21 + iΩ∗ρ12 (3.64)

ρ̇12 = −γ
2
(2n̄+ 1)ρ12 + iδρ12 − iΩ(ρ22 − ρ11) (3.65)

ρ̇21 = −γ
2
(2n̄+ 1)ρ21 − iδρ21 + iΩ∗(ρ22 − ρ11). (3.66)
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Note that only two of these equations are independent, since the evolution
equations must preserve probability, ρ11 +ρ22 = Tr[ρ̂S ] = 1, and hermiticity,
ρ12 = ρ∗21.

Three types of processes contribute to the system evolution described by
Eq. (3.66):

(1) coherent driving ∝ Ω,
(2) thermal photons ∝ γn̄, and
(3) spontaneous emission ∝ γ.

Coherent interactions are characteristic of the ideal two-level system intro-
duced in previous lectures, and come from the system Hamiltonian terms.
Thermal photons lead to incoherent transitions in both directions, whereas
spontaneous emission only allows population in ρ22 to leak into ρ11:

ρ̇22 = γn̄(ρ11 − ρ22) − γρ22 + . . . (3.67)

ρ̇11 = γn̄(ρ22 − ρ11) + γρ22 + . . . (3.68)

Although incoherent processes can increase and decrease the populations
ρ11 and ρ22, they only decrease the off-diagonal terms. The decay rate of
the coherences, γ12 is related to the rate of population decay out of state
|1〉, γ1 = γn̄, and |2〉, γ2 = γ(n̄+ 1), with

γ12 =
γ1 + γ2

2
. (3.69)

This relation holds for any two states and their associated coherence, and
only depends on the rates out of the states, not into them.

In general, however, there exist processes which decrease the coherences
without affecting the populations. These are typically incorporated phe-
nomenologically into the master equation by setting

γ12 =
γ1 + γ2

2
+ γd. (3.70)

where γd is the so-called decoherence rate. Such decoherence can result from
a variety of sources including, for example, finite linewidth of an applied laser
field or atom-atom interactions.

3.3.5 Atomic response to a resonant field

We will consider two special cases to gain physical insight into the dynamics
of an atom as it undergoes simultaneousmaster coherent and incoherent
pumping.
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Weak applied field

For sufficiently small applied fields Ω, the master equation can be treated
perturbatively. Since the populations change by terms ∝ Ω2, to lowest

order we may set ρ11 ≈ ρ
(0)
11 , ρ22 ≈ ρ

(0)
22 , and consider only the evolution of

the coherences,

ρ̇12 ≈ −(γ12 − iδ)ρ12 + iΩ(ρ
(0)
11 − ρ

(0)
22 ). (3.71)

Since this equation is now linear in Ω, we may solve it by taking the Fourier
transform of ρ12 and Ω,

ρ12(t) =

∫

d(δν)e−iδνtρ12(δν) (3.72)

Ω(t) =

∫

d(δν)e−iδνtΩ(δν). (3.73)

With this substitution, we find that in the weak field limit the coherence at
frequency δν is a Lorentzian with effective detuning δ + δν:

ρ12(δν) = Ω(δν)
i(ρ

(0)
11 − ρ

(0)
22 )

γ12 + i(δ + δν)
. (3.74)

This approach may be generalized to multilevel atoms, so that

ρij(δν) = Ωij(δν)
i(ρ

(0)
ii − ρ

(0)
jj )

γij + i(δij + δν)
. (3.75)

whenever the populations ρii and ρjj are essentially frozen in time.

Continuous-wave fields of arbitrary strength

When the applied field is constant in time, we expect that the system will
undergo Rabi oscillations which are damped by the reservoir interaction.
The decay terms drive the system into an equilibrium state after a time
∝ 1/γ12, and a steady-state description of the system is easily found by
setting the time derivative of its density matrix elements to zero. Solving
for the coherence,

ρ̇12 = 0 ⇒ ρ12 =
iΩ(ρ11 − ρ22)

γ12 − iδ
(3.76)

we then find the steady state population

ρ22 =
Ropt

γ + 2Ropt
(3.77)
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where Ropt = 2|Ω/Γ12|2 and Γ12 = γ12 − iδ. Ropt acts like an incoherent
pumping rate associated with the applied (coherent) field.

The pumping rate Ropt determines two important limits:

Ropt ≪ γ ⇒ ρ22 → 0 (3.78)

Ropt ≫ γ ⇒ ρ22 → 1

2
. (3.79)

In the first case, the coherent field is weak, so that the atom ends up in the
ground state with unit probability; in this limit, the perturbative weak-field
approach is valid. In the second case the applied field leaves the atom in a
statistical mixture of the ground and excited states with equal weight.

Note that the weak-field limit is sufficient but not necessary to disregard
evolution of the coherences, ρ̇12 = 0; we only require that |Ω|2 ≪ γ2

12 +
δ2. Solving for ρ12 in this fashion is analogous to making an adiabatic
approximation that the coherences follow the applied field. The resulting
equations for the populations,

ρ̇22 = −γρ22 +Ropt(ρ11 − ρ22) with ρ̇11 = −ρ̇22, (3.80)

are known as the ”rate equations.” They apply in situations when a co-
herence ρ12 is present, but its dynamics are unimportant. For example,
the rate equations are used to describe an atom interacting with incoherent
radiation, since γ12 is very large in this case.
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Chapter 4

Stochastic Wavefunctions

This was a guest lecture given by Anders Sørensen on Oct 15, 2003

The master equation is an essential tool for studying the dynamics of a
system interacting with its surroundings. In some situations, however, the
complexity of the system or the subtlety of interpretation has spurred de-
velopment of more sophisticated techniques for solving the master equation.
One such method makes use of random processes to simulate the system
state. We will derive the equations governing the evolution of these stochas-
tic or Monte Carlo wavefunctions, and discuss appropriate applications for
this technique.

The Monte Carlo wavefunction was derived simultaneously in the 1990s
by two groups interested in very different questions. A group of scientists in
France, Dalibard, Castin, and Mølmer, wanted to simulate laser cooling of
atoms quantum mechanically in three dimensions. Their numerical solution
required discretizing space into a grid of 40x40x40 positions; to implement
the master equation on such a space would have required a density matrix
with O(406) 109 entries – such calculations are beyond the scope of even
modern computers. However, simulating a wavefunction with O(403) en-
tries is quite feasible. Consequently the group sought to convert the master
equation to something more like the Schrodinger equation.

At the same time, Carmichael was interested the effect that continuous
monitoring would have on a system. For example, a two-level atom prepared
in an equal superposition of states can decay by emitting a photon; if that
photon is detected, the experimenter knows with certainty that the atom
is in its ground state. But what happens 50% of the time when a photon
is not detected? Certainly, after a long time has passed, the atom must
be in its ground state, but how does that happen? To study these and
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similar questions, Carmichael wanted to incorporate the effects of continous
monitoring, and understand how a measurement can cause the system state
to suddenly jump into a different state.

The description on which both groups converged begins with the most
general form of the master equation,

dρ̂S
dt

=
1

i~
[ĤS, ρ̂S ] + L(ρ̂S), (4.1)

where the Liouvillian operator can be expressed as

L(ρ̂S) = −
∑

k

γk
2

(

ĉ†k ĉkρ̂S + ρ̂S ĉ
†
k ĉk − 2ĉkρ̂S ĉ

†
k

)

. (4.2)

It can be shown that Eq. (4.1) is the most general form for a master equation
allowed by physics, and it has the added advantage that it is notationally
compact. Since it is the most general form, it must contain the master
equation we derived by assuming a certain kind of environment. To see this,
identify the (in principle arbitrary) operators ĉk with

ĉ2k =
√
n̄+ 1Ŝk (4.3)

ĉ2k+1 =
√
n̄Ŝ†

k, (4.4)

in which case both the decay and absorption terms are included in Eq. (4.1).
Combining Eq. (4.1) with the definition for L(ρ̂S), and expanding ρ̂S =

∑

α pα|ψα〉〈ψα|, we can rewrite the master equation in a suggestive form:

dρ̂S

dt = 1
i~[ĤS, ρ̂S ] −∑k

γk

2

(

ĉ†k ĉkρ̂S + ρ̂S ĉ
†
k ĉk − 2ĉk ρ̂S ĉ

†
k

)

=
∑

α

(
1
i~

(

ĤS − i~
∑

k
γk

2 ĉ
†
k ĉk

)

pα|ψα〉〈ψα|
− 1
i~pα|ψα〉〈ψα|

(

ĤS + i~
∑

k
γk

2 ĉ
†
k ĉk

)

+
∑

k pαγk ĉk|ψα〉〈ψα|ĉ
†
k

)

.

(4.5)

The first two terms rewritten in terms of effective Hamiltonian,

Ĥeff = ĤS − i~
∑

k

γk
2
ĉ†k ĉk, (4.6)

so that the master equation now reads

dρ̂S

dt =
∑

α pα

(
1
i~

(

Ĥeff |ψα〉〈ψα| − |ψα〉〈ψα|Ĥ†
eff

)

+
∑

k γk ĉk|ψα〉〈ψα|ĉ
†
k

)

.

(4.7)
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The first two terms now begin to resemble the master equation for a pure
state evolving according to Ĥeff ; the final term we will interpret as a ”quan-
tum jump” operator which changes |ψα〉 into another state |φ̃k,α〉 = ĉk|ψα〉
with some probability.

The Schrodinger equation corresponding to the first two terms of Eq. (4.7)
is

i~
d

dt
|ψα〉 = Ĥeff |ψα〉, (4.8)

and since we are interested in using Eq. (4.7) to describe a stochastic evo-
lution, we will write it in discrete time,

|ψ̃α(t+ δt)〉 = (1 +
Ĥeffδt

i~
|ψα(t)〉. (4.9)

Note that |ψ̃α(t + δt)〉 is not normalized because the effective Hamiltonian
is not Hermitian. To lowest order in the small time δt, this state has length

〈ψ̃α(t+ δt)|ψ̃α(t+ δt)〉 = 〈ψα|(1 − Ĥ†
effδt

i~
)(1 +

Ĥeffδt

i~
)|ψα〉 (4.10)

= 〈ψα|
(

1 − δt

i~
(Ĥ†

eff − Ĥeff

)

|ψα〉 (4.11)

= 〈ψα|
(

1 − δt
∑

k

γkĉ
†
k ĉk

)

|ψα〉. (4.12)

To simplify notation, we define

δpk,α = δtγk〈ψα|ĉ†k ĉk|ψα〉 (4.13)

δpα = δt
∑

k

γk〈ψα|ĉ†k ĉk|ψα〉, (4.14)

so that the length of the unnormalized state becomes

〈ψ̃α(t+ δt)|ψ̃α(t+ δt)〉 = 1 −
∑

k

δpk,α = 1 − δpα. (4.15)

We now know the proper normalization for the state at time t+ δt:

|ψα(t+ δt)〉 =
1 + Ĥeffδt/i~√

1 − δpα
|ψα(t)〉. (4.16)

This normalized state corresponds the state of a system evolving solely under
the influence of the first two terms in the master equation, i.e. a system
which has never jumped into one of the |φ̃k,α〉.
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As we found for |ψ̃α〉, the ”quantum jump” states |φ̃k,α〉 are not normal-
ized, since

〈φ̃k,α|φ̃k,α〉 = 〈ψα|ĉ†k ĉk|ψα〉 =
δpk,α
γkδt

. (4.17)

Again, we will define a normalized state

|φk,α〉 =

√

γkδt

δpk,α
|φ̃k,α〉 (4.18)

to explicitly keep track of probability conservation.
Like the Schrodinger equation, the master equation may be written for

discrete times δt,

ρ̂S(t+ δt) =
∑

α

pα

(

|ψ̃α(t+ δt)〉〈ψ̃α(t+ δt)| + δt
∑

k

γk|φ̃k,α〉〈φ̃k,α|
)

, (4.19)

and expressed in terms of the normalized states |ψα(t+ δt)〉 and |φk,α〉,

ρ̂S(t+ δt) =
∑

α pα

(

(1 − δpα)|ψα(t+ δt)〉〈ψα(t+ δt)|
+
∑

k δpk,α|φk,α〉〈φk,α|
)

.
(4.20)

By rewriting the master equation in this form, we can use a probability
interpretation to gain intuition – and develop numerics – for the resulting
system dynamics. Eq. (4.20) has two terms, which lead to two possible out-
comes after a time δt :

(1) with probability (1− δpα), the system evolves according to Ĥeff , and
remains in state |ψα〉

(2) with probability δpα, the system jumps into another state; in partic-
ular it jumps into state |φk,α〉 with probability δpk,α.
This statistical picture of a state vector evolution provides a clear procedure
for simulation which only requires computation of the state vector (rather
than density matrix) elements. A sample algorithm is summarized in Ta-
ble (4.1).

As an example of the Monte Carlo Wavefunction method, consider a
two level system which starts out in a pure state |ψ(0)〉 = a1|1〉+ a2|2〉, and
decays at a rate γ so that ĉ = |1〉〈2|. In a time δt, the probability that the
system jumps out of the superposition state is

δp = δtγ〈ψ|ĉ† ĉ|ψ〉 (4.21)

= δtγ|a2
2|. (4.22)
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Table 4.1: Monte Carlo Procedure

(1) Pick initial state |ψα〉
(2) Pick a random number r
(3) For an appropriate time interval δt, calculate δpα. If δpα < r, replace
|ψα〉 by (1 − iδtĤeff/~)|ψα〉/

√
1 − δpα.

If
∑K

k=1 δpk,α ≤ r <
∑K+1

k=1 δpk,α, replace |ψα〉 by |φk,α〉
(4) Repeat steps (2) and (3) for the desired length of time.
(5) Repeat steps (1) through (4) N times, i.e. until sufficient statistics have
been gathered.
(6) If necessary, repeat steps (1) through (5) for all possible initial states
|ψα〉.
(7) Density matrix evolution: ρ̂S(t) =

∑

α pα|ψα(t)〉〈ψα(t)|/N .

Since δp is just the probability to emit a photon while decaying from |2〉 to
|1〉, it makes sense that it is equal to the probability to be in the excited
state multiplied by the probability for that excited state to decay. If the
state does not decay, it evolves according to the effective Hamiltonian

Ĥeff = ∆|2〉〈2| + iγ

2
ĉ†ĉ. (4.23)

Solving the Schrodinger equation,

d

dt
|ψ〉 = −

(γ

2
+ i∆

)

|2〉 (4.24)

we may easily find the time-dependent state,

|ψ(t)〉 =
1

√

|a2
1| + |a2|2e−γt

(

a1|1〉 + a2e
−(γ/2+i∆)t|2〉

)

. (4.25)

Due to the normalization terms in the denominator, the probability to be in
state |2〉 decays more slowly than e−γt; however, at each step along the way,
there is a finite probability to emit a photon and collapse definitely into the
ground state. If one averages over all such trajectories, following the Monte
Carlo algorithm, one can show that the average population in the excited
state does indeed decay as e−γt.

However, this picture has physical meaning beyond the statistical aver-
age, because it provides an answer to Carmichael’s original question: What
happens if the atom does not emit a photon? The above analysis shows
that not detecting a photon is also a measurement on the system, because
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it causes the state to evolve in a certain way. Due to the normalization
condition, at long times the system will always end up in |1〉 even if it never
emits a photon.

Although the statistical wavefunction approach can provide some intu-
ition and computational power, it is only useful in a small subset of calcula-
tions. In particular, it is advantageous to use the Monte Carlo method for
simulations when

(1) The Hilbert space is so large that density matrix calculations are
impossible

(2) One wishes to incorporate measurement-dependent feedback into the
system.
Feedback terms are difficult to incorporate into the master equation, but
trivial to implement in the Monte Carlo Wavefunction algorithm.

4.1 Non-Hermitian Hamiltonian evolution: sum-

mary

The stochastic wavefunction method has two fundamental parts: (1) evolu-
tion via the effective, non-Hermitian Hamiltonian, and (2) quantum jumps
which occur randomly in time. Although the two parts are easily combined
in numerical algorithms, only the first can be simply solved by hand. Nev-
ertheless, in the limit that quantum jumps are very improbable, one might
hope to accurately model a system using only the non-Hermitian Hamilto-
nian evolution. We will often treat a system by solving a non-Hermitian
Schrodinger equation and subsequently showing that the integrated proba-
bility for a quantum jump is negligible during the time interval under con-
sideration.

For example, consider a two-level system initially in the ground state
and illuminated by a weak field Ω. The probability of a quantum jump in
this system is

∫
dtγρ22 ∝ |Ω|2, so to lowest order in the applied field we can

neglect quantum jumps and treat the system using the Schrodinger equation
with a non-Hermitian Hamiltonian. For this two-level system, the equations
of motion obtained from the non-Hermitian Hamiltonian exactly mirror the
master equation except for one term: the increase in ρ11 due to decay from
the excited state is missing. By adding non-Hermitian terms to the Hamil-
tonian, we have effectively described loss from the system, but we cannot
account for where the lost population ends up. To fix this inconsistency
quantum jumps are required.
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