Storing and manipulating quantum information using atomic ensembles

Mikhail Lukin Physics Department, Harvard University

Introduction: Rev. Mod. Phys. 75, 457 (2003)

Plan:

- Basic concepts and ideas
 - ✓ Application of quantum optics techniques
 - ✓ Some mathematics
 - ✓ Relation of cavity QED & collective enhancement
- Examples of current research:
- Quantum state manipulation of atoms and photons
 via Raman scattering & photo-detection
- Towards enhanced nonlinear optics with stationary pulses of light in atomic medium
- ✓ Application in condensed matter:

nuclear spin ensembles in quantum dots

Quantum coherence: linear vs nonlinear systems

- Most non-trivial task in quantum information processing:
 Coherent manipulation of coupled, interacting, nonlinear (unharmonic) systems, e.g. qubits
- Harmonic (linear) systems are often used:

 \checkmark to mediate interactions between qubits

 \checkmark to store quantum states of qubits

- Examples: cavity QED (two level atom + one mode of radiation) ion trap (ion spin + mode of center of mass motion) superconductors (Cooper pair box + mode of voltage)
- Note:

(large) nonlinearity or quantum measurement is required to make the system behave quantum mechanically

This talk

 new tools for coherent localization, storage and processing of light signals

• Specifically quantum networks & quantum communication ...

... need new tools:

✓ photons for communication, matter for storage

✓ interface for reversible quantum state exchange between light and matter

✓ compatible methods to produce, manipulate …non-classical states

Ongoing efforts

• Use single atoms for memory and absorb or emit a photon in a controlled way

Cirac, Zoller, Mabuchi, Kimble, PRL 78, 3221 (1997)

- ✓ Problem: single atom absorption cross-section is tiny (~ λ^2)
- ✓ Cavity QED: fascinating (but also very difficult) experiments
 - S.Haroche (ENS) H.Walther (MPQ) J.Kimble (Caltech) G.Rempe (MPQ) Y.Yamamoto (Stanford)

+ new ideas: cavity QED on a chip

• Photons interact strongly with large ensembles of atoms

- ... but usual absorption does not preserve coherence
- ✓ Main challenge: coherent control of resonant optical properties
 - "force" the atoms behave the way we want!

Electromagnetically Induced Transparency

• coherently controlled, optically dense medium

vetwessnelliger the group velocity ^vg
 Boller, Imamoglu, Harri
 Early work: Alzetta, Arimondo, Eberly, Bergman, Harris, Kocharovskaya, Mandel, Scully, Imamoglu
 "slow light" experiments: L.Hau et al (1999)

Essence of EIT: strong, coherent coupling of photons and atoms

Coupled propagation of photonic and spin wave: "dark state polaritons"

$$\hat{\Psi} = \cos\theta \,\hat{a} - \sin\theta \,\hat{S}_{-} \qquad \cos^2\theta = \frac{v_g}{c} = \frac{\Omega^2}{\Omega^2 + g^2 N}$$

✓ Strongly coupled excitations of light and spin wave slowly propagate together ... and can be manipulated

Dark states for quantum fields: a toy model

 \checkmark One atom interacting with one mode of quantum field + one classical field

$$H = ga|\downarrow\rangle\langle e|+|\uparrow\rangle\langle e|\Omega+h.c.$$

$$\checkmark|\mathbf{g}\rangle = |\downarrow\rangle|n = 0\rangle \text{ not affected: } H|\downarrow\rangle|0\rangle = 0$$

$$\checkmark\text{Consider } \Psi = \cos\theta \ a - \sin\theta|\downarrow\rangle\langle\uparrow|$$

$$[H, \Psi] = 0, \text{ if } \tan\theta = \frac{\Omega}{g}$$

 $\checkmark \Psi^+ \text{creates dark state} : H\Psi^+ |\mathbf{g}\rangle = 0$

 \checkmark The idea: adiabatic change of Ω allows to reversibly convert photon state into atomic spin state, i.e. map photonic into atomic qubits

(early work P. Zoller et al 93-97)

Conditions for coherent dynamics

 \checkmark Implementation of one atom + one mode system: cavity QED

✓ Two decay channels:

$$H_{eff} = ga|\downarrow\rangle\langle e|+|\uparrow\rangle\langle e|\Omega+h.c.$$
$$+ i\frac{\gamma}{2}|e\rangle\langle e|+i\frac{\kappa}{2}a^{+}a$$

✓ Jump probability:

$$p \sim \int_0^T [\gamma \rho_{ee}(\tau) + \kappa \rho_{11}(\tau)] d\tau$$

✓ Depend on passage time T: $p \sim \frac{1}{g^2 T} + \kappa T \rightarrow \sqrt{1}$ $\frac{1}{g^2}$

Physics (Purcell condition):

beam area

Dark states for quantum fields: system of N atoms

 \checkmark N atoms interacting with one mode of quantum field + one classical field

$$\begin{split} H &= ga \sum_{i=1}^{N} |\downarrow\rangle_i \langle e| + \sum_{i=1}^{N} |\uparrow\rangle_i \langle e|\Omega + h.c. \\ |\mathbf{g}\rangle &= |\downarrow_1 \ldots \downarrow_N \rangle |n = 0 \rangle \\ \Psi &= \cos\theta \; a - \sin\theta \; S, \text{ where } S = \frac{1}{\sqrt{N}} \sum |\downarrow\rangle_i \langle\uparrow| \\ [H, \Psi] &= 0, \text{ if } \tan\theta = \frac{\Omega}{g\sqrt{N}} \\ \bullet \text{ Create family of dark states } H(\Psi^+)^n |\mathbf{g}\rangle &= 0 \\ \checkmark \text{ couple to collective spin states } (S^+)^n |\mathbf{g}\rangle \\ \bullet \text{ coupling strength enhanced } g \to g\sqrt{N} \\ \checkmark \text{ for low n <$$

Bottom line: photons interacting with N-atom system

✓ Coherent rate of interactions enhanced (collective enhancement):

$$\frac{g^2 N}{\gamma \kappa} \sim L/L_{abs} \gg 1$$

✓ Light now couples to collective excitations which have harmonic spectrum

✓N.B. Extension to multimode case straightforward

$$S_{k} = \sum_{i} |\downarrow\rangle_{i} \langle\uparrow |\exp(ikz_{i}), \Psi_{k} = \cos\theta a_{k} - \sin\theta S_{k}$$
$$[\cos^{2}\theta \frac{\partial}{\partial z} + \frac{\partial}{\partial t}]\Psi = 0$$

"Photon trap": coherent quantum state transfer between light and atoms

• Adiabatic passage in coupled excitations ("dark-state polaritons")

- Light wave is coherently converted into a spin wave i.e. absorbed in a coherent way!
- Storage time is limited by spin coherence lifetime
- Retrieval by turning on control field
- Linear optical technique: no change in quantum statistics (ideally)
- No light is present after the pulse is stopped

Quantum control of light and atomic ensembles

• Need: techniques for creating & manipulating quantum states of photons or spin waves at a level of <u>single quanta</u>

Two approaches

- \checkmark Use weak nonlinearity and quantum measurement
- Atomic and photonic state preparation via Raman scattering (weak nonlinearity and quantum measurement)
- officeate despate els eseries este desta les foregres seres sorreles en els seres

Manipulating quantum states via Raman scattering & quantum measurements

Atom-photon correlations in Raman scattering

Absorption of pump photon produces a pair of flipped spin and Stokes photon

- Flipped spins and Stokes photons are strongly correlated: when *n* Stokes photons emitted *n* spins are flipped
- Spontaneous Stokes photons have arbitrary direction

• ...but each emitted photon is uniquely correlated with a well defined spin-wave mode due to momentum conservation

$$\hbar k_{Pump} = \hbar k_{Stokes} + \hbar k_{Spin}$$

Blombergen,Raymer

Raman preparation of atomic ensemble

• Raman process produces pairs of spins flips and photons:

$$H = \frac{g\sqrt{N}\Omega_w}{\Delta}a_k^+ S_k^+ + h.c.$$

- Stokes field and spin wave undergo mutual growth and become entangled: $|\text{state}\rangle \sim |g\rangle + \lambda |\uparrow^1\rangle |n_s = 1\rangle + \lambda^2 |\uparrow^2\rangle |n_s = 2\rangle + \dots$
- Quantum measurement can be used to prepares the state of atomic ensemble: detecting *n* Stokes photons in certain mode "projects" atomic state with exactly *n* excitations in a well-defined mode

Retrieving the state of spin wave

- Stored state can be converted to polariton and then to anti-Stokes photon by applying resonant retrieve control beam
- Retrieval beam prevents re-absorption due to EIT controls propagation properties of the retrieved (anti-Stokes) pulse
 - ✓ Source of quantum-mechanically Stokes and anti-Stokes photons analogous to "twin beams" in parametric downconverters

but with build-in atomic memory!

Duan et al , Nature 414, 413 (2001) Andre, Duan, MDL, PRL 88 243602 (2002) early work: MDL, Matsko, Fleischhauer, Scully PRL (1999)

Single atoms vs atomic ensembles

• Single atom case

- In atomic ensemble:
- ✓ we don't know which particular spin flips: <u>collective states</u> are excited
- ✓ collective states store all quantum correlations, allow for readout via polaritons, directionality, pulse shaping as long as spin coherence is preserved!

Applications of Raman quantum state manipulation

 Shaped single photon and number-squeezed light source: detecting *n* photons in a certain mode of Stokes light selects a spin-wave mode and "projects" its state to a Fock state.

✓ Stored state can be converted to anti-Stokes photons with defined timing, direction first experimental results: see L.Childress poster

• Instead of detection Stokes photon can be converted into flipped spins:

controlled atom interactions Andre, Duan, Lukin, PRL 88 243602 (2002)

Sorensen & Molmer, Phys.Rev.A (2003)

• Long distance quantum communication in lossy channels: "quantum repeater" techniques Duan, Lukin, Cirac and Zoller, Nature 414, 413 (2001)

Entanglement generation between atomic ensembles via Raman scattering and photodetection

• Simultanoues Raman scattering from two ensembles

• After interference at BS it is impossible to determine where Stokes photon came from: results in an entangled state of two ensembles

$$|\Psi\rangle_{LR} \sim e^{-L/L_{abs}} |g\rangle_L |1_+\rangle_R + e^{-L/L_{abs}} |1_+\rangle_L |g\rangle_R$$

(an example of "probabilistic" entanglement)

• Remarkably the same state will be created even in the presence of photon losses, provided those are equal in different arms

Application: quantum communication over long distances

• Technique can be cascaded over multiple nodes to correct common errors with only Raman scattering, storage & retrieval and linear optics

• Bottom line: "quantum repeater" for long-distance entanglement generation

* efficiency of storage + detection ~ 50 % is assumed
 Duan, Lukin, Cirac and Zoller, Nature 414, 413 (2001)

 Can allow quantum cryptography, teleportation ... over long distances See also B.Blinov et al, Nature, in press

Experimental progress: shaping quantum pulses of light via atomic memory

✓ Goal: generate (anti-Stokes) pulses of light with well-defined number of photons, timing, shapes, direction

✓ medium: N~10¹⁰ Rb atoms + buffer gas, hyperfine states for storage, Raman frequency difference 6.8 GHz

✓ implementation: long-lived memory allows to make pulses long compared to time resolution of single photon counters

Early work: C.van der Wal et al., Science, 301, 196 (2003) A.Kuzmich et al., Nature, 423, 731 (2003)

Non-classical correlations in preparation and retrieval

✓ Nonclassical correlations exist within spin coherence time

0.96

0

2

4

10

8

6

Delay Time (µs)

Example of quantum control: shaping few-photon pulses

✓ Duration, shape of retrieved pulses controllable

Conditional preparation of non-classical pulses

✓Conditional generation of few-photon light pulses with suppressed intensity fluctuations; current limitations: losses and background

M.Eisaman, L.Childress, F.Massou, A.Andre, A.Zibrov, MDL

Summary of Raman state manipulation

Probabilistic technique to prepare quantum states of matter & light
 First experimental results

✓ Can be used for long-distance quantum communication

Quantum control of light and atomic ensembles

• Need: techniques for creating & manipulating quantum states of photons or spin waves at a level of <u>single quanta</u>

Two approaches

- Methodological and the second sec second sec
- - ✓ Create large nonlinearity at a level of single atoms or photons
 - Objecte blockadie, surving dipele-shgede americation of (Rydinesg) assume • Stationary pulses of light in atomic medium:
 - towards enhanced nonlinear optics with stored states

Stationary light pulses in an atomic medium: toward enhanced nonlinear optics

- ✓ Key idea: controlled conversion of the propagating pulse into the excitation with localized, stationary electromagnetic energy
- Mechanism: Bragg reflections from controlled, spatial modulation of the atomic absorption
- ✓ New possibilities for enhanced nonlinear optical processes, analogous to cavity QED

EIT in a standing wave control light

✓ Optical properties of EIT medium ...

EIT spectra: running vs. standing wave control

Idea of this work

 Releasing stored spin wave into modulated EIT medium creates light pulse that can not propagate

Propagation dynamics: storage in spin states

Propagation dynamics: release in standing wave

signal light

Stationary pulses of light bound to atomic coherence

Physics:

analogous to "defect" in periodic (photonic) crystal:

finess (\mathcal{F}) of localized mode determined by optical depth

Localization, holding, release completely controlled
In optimal case, no losses, no added noise, linear optical technique

Theory: A.Andre & MDL Phys.Rev.Lett. 89 143602 (2002)

Observing stationary pulses of light

Proof of stationary pulses

Outlook: novel techniques for nonlinear optics

✓ Efficient nonlinear optics as a sequence of 3 linear operations

✓ Nonlinear shift results from interaction of photonic components of stationary pulse with stored spin wave density-length $\phi_{NLN} \sim \frac{\lambda^2}{\Delta} n_{photon} \times \mathcal{F}$ = effective \mathcal{F}

✓ Nonlinear processes at a few-photon level are realistic

Example from condensed matter: controlling mesoscopic environment in solid state

- Short coherence time: limiting factor for solid-state quantum control e.g. for electron spins in GaAs dots \sim fraction of μ s
- ✓ Reasons: ... interaction with surrounding ensemble of nuclear spins
- ✓ Idea: use long nuclear memory to suppress decoherence and store the states of qubits

Idea of quantum memory: storing electron spin in collective nuclear spin states

- Controlled coupling of electronic and nuclear spins
 - contact hyperfine interaction, spin-polarized nuclei
 - control tool: effective magnetic field
 - allows for resonant spin-exchange and quantum state transfer

- Inverting the procedure maps the state back into the electron qubit
- \checkmark In many way analogous to single atom + radiation field

Spin qubit storage in collective nuclear states

$$\begin{pmatrix} \alpha | \uparrow \rangle + \beta | \downarrow \rangle \end{pmatrix} \otimes |\uparrow ...\uparrow \rangle_N \xrightarrow{\Omega} |\uparrow \rangle \otimes \left(\alpha |\uparrow ...\uparrow \rangle + \beta \sum_i A_i |\uparrow ...\downarrow_i ...\uparrow \rangle / \Omega_R \right)_N$$
spin qubit nuclei nuclear collective qubit

- Time scale for collective state transfer (GaAs, ~10⁵ nuclei)
 - hyperfine coupling per nuclear spin ~ 0.1 GHz : fast!
- Dephasing mechanisms during storage
 - Inhomogeneous hyperfine coupling \sim fraction of MHz
 - Can be canceled by ESR of NMR pulse sequences
 - Nuclear dipole-dipole diffusion & dephasing ~4 KHz
 - Standard NMR pulse trains to cancel leading order
 - ✓ Coherent storage times ~ seconds possible

Taylor, Marcus & Lukin Phys.Rev.Lett., **90**, 206803 (2003)

✓ Can be accomplished with low nuclear polarization

Taylor, Imamoglu & MDL, PRL (2004)

Quantum manipulation of nuclear ensembles

Based on spin degrees of freedom ONLY

- Single electron spin used to carry quantum information
- Local interactions between nuclear ensembles and electron spin (unharmonic system) are sufficient for entanglement

electron spin: transport

nuclei: memory

✓ New techniques for quantum computation and quantum communication in solid state

J.Taylor, A.Imamoglu, P.Zoller & MDL

Summary

- Quantum memory for light (photon state trapping) via EIT
- Raman scattering for preparation of non-classical states of atoms and light

shaping quantum pulses via Raman scattering & EIT new techniques for long distance quantum communication

- Stationary pulses of light in atomic medium proof of principle experiments new nonlinear optical techniques
- Quantum state manipulation in solid state long-lived memory for spins in q.dots

Harvard Quantum Optics group

<u>Matt Eisaman</u>	Axel Andre
Lily Childress	Jake Taylor
Darrick Chang	Michal Bajsci
Dmitry Petrov	Anders Sorensen
Alexander Zibrov	Ehud Altman
	Caspar van der Wal> Delft

Collaboration with

Ron Walsworth's group (CFA) Ignacio Cirac (MPQ), Luming Duan (Michigan), & Peter Zoller (Innsbruck)

Eugene Demler (Harvard), Charlie Marcus (Harvard), Yoshi Yamamoto (Stanford)

\$\$\$ NSF-CAREER, NSF-ITR, Packard & Sloan Foundations, DARPA, ONR-DURIP, ARO, ARO-MURI

http://qoptics.physics.harvard.edu