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and other primates, where postures or trajectories of limbs, hands
or eyes are confined to spaces of low dimensionality despite the
potential for more complex motions [24–27]. For C. elegans itself,
recent quantitative work has focused on simplifying behavior by
matching to a discrete set of template behaviors, such as forward
and backward motion of the center of mass [5], sinusoidal
undulations of the body [6], or V bends [7]. Our results combine
and generalize these ideas. Motor behaviors are described by
projection of the body shape onto a small set of templates (the
eigenworms), but the strengths of these projections vary contin-
uously. The templates are sinuous, but not sinusoidal, because the
fluctuations in posture are not homogeneous along the length of
the worm. Our description of shape is intrinsic to the worm and
invariant to the center of mass position, but motion in shape space
predicts the center of mass motion. There are discrete behavioral
states, but these emerge as attractors of the underlying dynamics.
Most importantly, our choice of four eigenworms is driven not by
hypotheses about the relevant components of behavior, but by the
data itself.

The construction of the eigenworms guarantees that the
instantaneous amplitudes along the different dimensions of shape
space are not correlated linearly, but the dynamics of the different
amplitudes are nonlinear and coupled; what we think of as a single
motor action always involves coordinating multiple degrees of
freedom. Thus, forward and backward motion correspond to

positive and negative phase velocity in Figure 3, but transitions
between these behavioral states occur preferentially at particular
phases. Similarly, turns involve large amplitude excursions along
a3, but motion along this mode is correlated with phase in the ({a1,
a2}) plane, and this correlation itself has structure in time
(Figure 6B). The problems of C. elegans motor control are simpler
than for higher animals, but these nonlinear, coupled dynamics
give a glimpse of the more general case.

Perhaps because of the strong coupling between the turning
mode a3 and the wriggling modes a1, a2, we have not found an
equation of motion for a3 alone which would be analogous to
Equation 4 for the phase. Further work is required to construct a
fully three dimensional dynamics which could predict the more
complex correlations such as those in Figure 6B. Turning should
emerge from these equations not as another attractor, but as an
‘excitable’ orbit analogous to the action potential in the Hodgkin–
Huxley equations or to recent ideas about transient differentiation
in genetic circuits [28]. A major challenge would be to show that
the stochastic dynamics of these equations can generate longer
sequences of stereotyped events, such as pirouettes [29].

We have shown that a meaningful set of behavioral coordinates
can uncover deterministic responses. A response might seem
stochastic or noisy because it depends on one or more behavioral
variables that are not being considered. In our experiments,
nonlinear correlations among the behavioral variables suggest that

Figure 5. Reconstructing the phase dynamics. (A) The mean acceleration of the phase F(v ,w) in Equation 4. (B) The correlation function of the
noise Æg (t)g(t+t)æ. The noise correlations are confined to short times relative to the phase velocity itself. (C) Trajectories in the deterministic dynamics.
A selection of early-time trajectories is shown in black. At late times these same trajectories collapse to one of four attractors (red): forward and
backward crawling and two pause states. (D) Joint density r(v ,w) for worms sampled at 32 Hz. A sample trajectory of a single worm moving forwards,
backwards, and pausing, is denoted by black arrows.
doi:10.1371/journal.pcbi.1000028.g005
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flies using a custom-built tracking setup, producing more than 21
million images (18).
These data were used to generate a 2D map of fly behavior based

on an unsupervised approach that automatically identifies stereo-
typed actions (Fig. 1A; for full details, see ref. 18). Briefly, this
approach takes a set of translationally and rotationally aligned im-
ages of the flies and decomposes the dynamics of the observed pixel
values into a low-dimensional basis set describing the flies’ posture.
Time series are produced by projecting the original pixel values onto
this basis set, and the local spectrogram of these trajectories is then
embedded into two dimensions (19). Each position in the behav-
ioral map corresponds to a unique set of postural dynamics, with
nearby points representing similar motions, i.e., those involving re-
lated body parts executing similar temporal patterns.
In the resulting behavioral space, z, we estimate the probability

distribution function PðzÞ and find that it contains a set of peaks
corresponding to short segments of movement that are revisited
multiple times by multiple individuals (Fig. 1A). Pauses in the
trajectories through this space, zðtÞ, are interspersed with quick
movements between the peaks. These pauses in zðtÞ at a partic-
ular peak correspond to the fly performing one of a large set of
distinct, stereotyped behaviors such as right wing grooming,
proboscis extension, or alternating tripod locomotion (18). In all,
we identify 117 unique stereotyped actions, with similar behaviors,
i.e., those that use similar body parts at similar frequencies, lo-
cated near each other in the behavioral map. A watershed algo-
rithm, combined with a threshold on dzðtÞ=dt, is used to separate
the peaks and to segment each movie into a sequence of discrete,
stereotyped behaviors.
In this paper, we treat pauses at these peaks to be our states, the

lowest level of description of behavioral organization, and investigate
the pattern of behavioral transitions among these states over time.
We count time in units of the transitions between states, so we have
a description of behavior as a discrete variable SðnÞ that can take on
N = 117 different values at each discrete time n. Note that because
we count time in units of transitions, we always have Sðn+ 1Þ≠ SðnÞ.

Combining data from all 59 flies, we observe a mean residency time
in a behavioral state of 0.21 s and an average transition time be-
tween pauses at behavioral space peaks of 0.13 s. In total, we ob-
serve ≈ 6.4× 105 behavioral transitions, or about 104 per experiment.

Transition Matrices and Non-Markovian Time Scales
To investigate the temporal pattern of behaviors, we first calculated
the behavioral transition matrix over different time scales

½TðτÞ$i,j ≡ pðSðn+ τÞ= ijSðnÞ= jÞ, [1]

which describes the probability that the animal will go from state
j to state i after τ transition steps. We expect that this distribution
becomes less and less structured as τ increases because we lose
the ability to make predictions of the future state as the horizon
of our predictions extends further. In addition, it will be useful to
think about these matrices in terms of their eigendecompositions

½TðτÞ$i,j =
X

μ

λμðτÞuμi ðτÞv
μ
j ðτÞ, [2]

where uμ ≡ fuμi g and vμ ≡ fvμi g are the left and right eigenvectors,
respectively, and λμðτÞ is the eigenvalue with the μth largest
modulus. Because probability is conserved in the transitions,
the largest eigenvalue λ1ðτÞ= 1, and v1ðτÞ is proportional to the
stationary distribution over states at long times. All of the other
eigenvalues have magnitudes less than 1, jλk≠1ðτÞj< 1, and de-
scribe the loss of predictability over time, as shown in more
detail below.
The matrix Tðτ= 1Þ describes the probability of transitions from

one state to the next, the most elementary steps of behavior (Fig.
1B). To the eye, this transition matrix appears modular, with most
transitions out of any given state only going to one of a handful of
other states. By appropriately organizing the states in Fig. 1B,
Tðτ= 1Þ takes on a nearly block-diagonal structure, which can be
broken up into modular clusters using the information bottleneck
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Fig. 1. Transition probabilities and behavioral
modularity. (A) Behavioral space probability density
function (PDF). Here, each peak in the distribution
corresponds to a distinct stereotyped movement.
(B) One-step Markov transition probability matrix
Tðτ= 1Þ. The 117 behavioral states are grouped by
applying the predictive information bottleneck cal-
culation and allowing six clusters (Eq. 4). Black lines
denote the cluster boundaries. (C) Transitions rates
plotted on the behavioral map. Each red point rep-
resents the maximum of the local PDF, and the black
lines represent the transition probabilities between
the regions. Line thicknesses are proportional to the
corresponding value of Tðτ=1Þij, and right-handed
curvature implies the direction of transmission. For
clarity, all lines representing transition probabilities
of less than 0.05 are omitted. (D) The clusters found
using the information bottleneck approach (colored
regions) are contiguous in the behavioral space.
Behavioral labels associated with each partitioned
graph cluster from B are shown. Black line thick-
nesses represent the conditional transition proba-
bilities between clusters. All transition probabilities
less than 0.05 are omitted.
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lective motion. One approach has been to
model grouping individuals as self-
propelled particles (SPPs), with each
Bparticle[ adjusting its speed and/or di-
rection in response to near neighbors (1–6 ).
A recent model by Vicsek and collabo-
rators (1) stands out because of its small
number of underlying assumptions and the
strength of the universal features that it
predicts. A central prediction of this
model is that as the density of animals in
the group increases, a rapid transition oc-
curs from disordered movement of indi-
viduals within the group to highly aligned
collective motion (Fig. 1). Because SPP
models underlie many theoretical predic-
tions about how groups form complex
patterns (7–10), avoid predators (11, 12),
forage (8 , 13 ), and make decisions (14 ),
confirming the existence of such a transi-
tion in real animals has fundamental im-
plications for understanding all aspects of
collective motion.

The desert locust, Schistocerca gregar-
ia, has a devastating social and economic
impact on humans. Before taking flight as
adults, wingless juveniles (also called
nymphs or hoppers) form coordinated
Bmarching bands[ that can extend over
many kilometers (15 ). The key to effec-
tive management of locust outbreaks is

early control and detection of bands, be-
cause the control of flying adult swarms is
costly and ineffective (16 ). The first stage
in band formation is a change among res-
ident locusts from the harmless, non–
band-forming Bsolitarious[ phase to the
ac t ive ly aggrega t ing , band-forming
Bgregarious[ phase (17–19 ).

Previous work has investigated which
combinations of locust population densi-
ty, vegetation abundance, and vegetation
distribution will trigger such gregariza-
tion (20–23 ). Locust aggregations will
build into major outbreaks only if locally
gregarized populations remain together
and move collectively into neighboring
areas of habitat, where they can recruit
further locusts to the growing band. Un-
less such cohesive movement occurs,
local aggregations will disband and indi-
viduals will return to the solitarious
phase. Hence, it is vital to predict the on-
set of collective motion. Within bands,
individuals align their directions of travel
with those of near neighbors (15 , 24 ). Al-
though it has been shown in the labora-
tory that marching begins only at high
locust density (25 , 26 ), these experiments
did not measure how alignment increases
with density. A detailed quantitative un-
derstanding of the onset of collective
motion is therefore essential if we are to
understand how, when, and where co-
ordinated bands will form, resulting in im-
proved control measures (27).

The average density of marching bands
in the field is 50 locusts/m2, with a
typical range of 20 to 120 locusts/m2

(28 ), equivalent to 20 locusts in our ex-
periments. We performed experiments on
different numbers of third-instar locusts,

ranging from 5 to 120 insects (densities of
12.3 to 295 locusts/m2), in a ring-shaped
arena (29 ). We recorded the locusts_
motion for 8 hours with a digital camera
placed above the setup and connected to
a computer that captured five images/s
(see movie S1 for an example). Movies
were processed with tracking software
that computed the position and orienta-
tion of each locust. For each locust, we
calculated its angular coordinates rela-
tive to the center of the arena on two
consecutive camera images. The orien-
tation c of a locust was defined as the
smallest angle between one line drawn
between the locust_s two consecutive
positions and a second line drawn from
the center of the arena to the locust_s first
pos i t ion . Th i s re la t ionsh ip can be
described as c 0 arcsinEsin(q – a)^, where
a is the angle of the direction of move-
ment and q is the angle with the center of
the arena. For each camera image, or time
step t, we calculated the instantaneous
alignment Ft as the average of the orienta-
tion for all moving locusts, normalized as
follows

Ft 0
2

mp

Xm

i01

ct
i

where m is the total number of moving
locusts, and i is the ith locust. Thus,
values of the alignment close to the ex-
treme values of 1 and –1 indicate the
alignment of all locusts in the same di-
rection, whereas values close to zero in-
dicate an absence of any collective
alignment. Because locust direction was
not influenced by immobile individuals,
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Fig. 1. Characteristic output of
the model for the dynamics of Ft

over time and with 3 (A), 11 (B),
and 47 (C) individuals. The Vicsek
et al. SPP model (1) consists of a
set of pointwise particles mov-
ing synchronously and interact-
ing locally by trying to align with
their neighbors (1, 4). We used a
variant of the one-dimensional
version of their SPP model (30),
where N particles move along a
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line of length L at a discrete time step Dt 0 1. Each particle is characterized
by its position xi and a dimensionless velocity ui and is updated as follows:
xi(t þ 1) 0 xi(t) þ v0ui(t), ui(t þ 1) 0 aui(t) þ (1 – a)G

!
bu(t)Ài

"
þ xi, where

buÀi denotes the average velocity of all other particles, excluding particle i,
within an interaction range [xi – D, xi þ D]. The term a determines the
relative weight that the particle assigns to its own velocity and to that of its
neighbors in deciding its velocity. For locusts, a corresponds to a directional
inertia when walking in the absence of conspecifics. xi is a noise term,
randomly chosen with a uniform probability from the interval [–h/2, h/2].
The function G represents the adjustment of a particle velocity to the
velocity of its neighbors, implemented as follows

G(u) 0
(u þ 1)/2 for u 9 0

(u j 1)/2 for u G 0

8
<

:

Simulations were run by applying random initial conditions and periodic
boundaries. The parameters were set to mimic the walking speed and
interaction range of locusts in an arena (see SOM). T 0 8000 time steps
(8 hours), L 0 36 (251.3 cm), v0 0 1 (1.9 cm/s), D 0 2 (13.9 cm), a 0 0.66.
The noise term h 0 0.8 was set by trial and error. We used the average
velocity Ft 0 bu(t)À as the measure of the order in the system to compare the
simulations to the alignment measured experimentally.
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line of length L at a discrete time step Dt 0 1. Each particle is characterized
by its position xi and a dimensionless velocity ui and is updated as follows:
xi(t þ 1) 0 xi(t) þ v0ui(t), ui(t þ 1) 0 aui(t) þ (1 – a)G

!
bu(t)Ài

"
þ xi, where

buÀi denotes the average velocity of all other particles, excluding particle i,
within an interaction range [xi – D, xi þ D]. The term a determines the
relative weight that the particle assigns to its own velocity and to that of its
neighbors in deciding its velocity. For locusts, a corresponds to a directional
inertia when walking in the absence of conspecifics. xi is a noise term,
randomly chosen with a uniform probability from the interval [–h/2, h/2].
The function G represents the adjustment of a particle velocity to the
velocity of its neighbors, implemented as follows

G(u) 0
(u þ 1)/2 for u 9 0

(u j 1)/2 for u G 0

8
<

:

Simulations were run by applying random initial conditions and periodic
boundaries. The parameters were set to mimic the walking speed and
interaction range of locusts in an arena (see SOM). T 0 8000 time steps
(8 hours), L 0 36 (251.3 cm), v0 0 1 (1.9 cm/s), D 0 2 (13.9 cm), a 0 0.66.
The noise term h 0 0.8 was set by trial and error. We used the average
velocity Ft 0 bu(t)À as the measure of the order in the system to compare the
simulations to the alignment measured experimentally.
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lective motion. One approach has been to
model grouping individuals as self-
propelled particles (SPPs), with each
Bparticle[ adjusting its speed and/or di-
rection in response to near neighbors (1–6 ).
A recent model by Vicsek and collabo-
rators (1) stands out because of its small
number of underlying assumptions and the
strength of the universal features that it
predicts. A central prediction of this
model is that as the density of animals in
the group increases, a rapid transition oc-
curs from disordered movement of indi-
viduals within the group to highly aligned
collective motion (Fig. 1). Because SPP
models underlie many theoretical predic-
tions about how groups form complex
patterns (7–10), avoid predators (11, 12),
forage (8 , 13 ), and make decisions (14 ),
confirming the existence of such a transi-
tion in real animals has fundamental im-
plications for understanding all aspects of
collective motion.

The desert locust, Schistocerca gregar-
ia, has a devastating social and economic
impact on humans. Before taking flight as
adults, wingless juveniles (also called
nymphs or hoppers) form coordinated
Bmarching bands[ that can extend over
many kilometers (15 ). The key to effec-
tive management of locust outbreaks is

early control and detection of bands, be-
cause the control of flying adult swarms is
costly and ineffective (16 ). The first stage
in band formation is a change among res-
ident locusts from the harmless, non–
band-forming Bsolitarious[ phase to the
ac t ive ly aggrega t ing , band-forming
Bgregarious[ phase (17–19 ).

Previous work has investigated which
combinations of locust population densi-
ty, vegetation abundance, and vegetation
distribution will trigger such gregariza-
tion (20–23 ). Locust aggregations will
build into major outbreaks only if locally
gregarized populations remain together
and move collectively into neighboring
areas of habitat, where they can recruit
further locusts to the growing band. Un-
less such cohesive movement occurs,
local aggregations will disband and indi-
viduals will return to the solitarious
phase. Hence, it is vital to predict the on-
set of collective motion. Within bands,
individuals align their directions of travel
with those of near neighbors (15 , 24 ). Al-
though it has been shown in the labora-
tory that marching begins only at high
locust density (25 , 26 ), these experiments
did not measure how alignment increases
with density. A detailed quantitative un-
derstanding of the onset of collective
motion is therefore essential if we are to
understand how, when, and where co-
ordinated bands will form, resulting in im-
proved control measures (27).

The average density of marching bands
in the field is 50 locusts/m2, with a
typical range of 20 to 120 locusts/m2

(28 ), equivalent to 20 locusts in our ex-
periments. We performed experiments on
different numbers of third-instar locusts,

ranging from 5 to 120 insects (densities of
12.3 to 295 locusts/m2), in a ring-shaped
arena (29 ). We recorded the locusts_
motion for 8 hours with a digital camera
placed above the setup and connected to
a computer that captured five images/s
(see movie S1 for an example). Movies
were processed with tracking software
that computed the position and orienta-
tion of each locust. For each locust, we
calculated its angular coordinates rela-
tive to the center of the arena on two
consecutive camera images. The orien-
tation c of a locust was defined as the
smallest angle between one line drawn
between the locust_s two consecutive
positions and a second line drawn from
the center of the arena to the locust_s first
pos i t ion . Th i s re la t ionsh ip can be
described as c 0 arcsinEsin(q – a)^, where
a is the angle of the direction of move-
ment and q is the angle with the center of
the arena. For each camera image, or time
step t, we calculated the instantaneous
alignment Ft as the average of the orienta-
tion for all moving locusts, normalized as
follows

Ft 0
2

mp

Xm

i01

ct
i

where m is the total number of moving
locusts, and i is the ith locust. Thus,
values of the alignment close to the ex-
treme values of 1 and –1 indicate the
alignment of all locusts in the same di-
rection, whereas values close to zero in-
dicate an absence of any collective
alignment. Because locust direction was
not influenced by immobile individuals,
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Fig. 1. Characteristic output of
the model for the dynamics of Ft

over time and with 3 (A), 11 (B),
and 47 (C) individuals. The Vicsek
et al. SPP model (1) consists of a
set of pointwise particles mov-
ing synchronously and interact-
ing locally by trying to align with
their neighbors (1, 4). We used a
variant of the one-dimensional
version of their SPP model (30),
where N particles move along a
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line of length L at a discrete time step Dt 0 1. Each particle is characterized
by its position xi and a dimensionless velocity ui and is updated as follows:
xi(t þ 1) 0 xi(t) þ v0ui(t), ui(t þ 1) 0 aui(t) þ (1 – a)G

!
bu(t)Ài

"
þ xi, where

buÀi denotes the average velocity of all other particles, excluding particle i,
within an interaction range [xi – D, xi þ D]. The term a determines the
relative weight that the particle assigns to its own velocity and to that of its
neighbors in deciding its velocity. For locusts, a corresponds to a directional
inertia when walking in the absence of conspecifics. xi is a noise term,
randomly chosen with a uniform probability from the interval [–h/2, h/2].
The function G represents the adjustment of a particle velocity to the
velocity of its neighbors, implemented as follows

G(u) 0
(u þ 1)/2 for u 9 0

(u j 1)/2 for u G 0

8
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:

Simulations were run by applying random initial conditions and periodic
boundaries. The parameters were set to mimic the walking speed and
interaction range of locusts in an arena (see SOM). T 0 8000 time steps
(8 hours), L 0 36 (251.3 cm), v0 0 1 (1.9 cm/s), D 0 2 (13.9 cm), a 0 0.66.
The noise term h 0 0.8 was set by trial and error. We used the average
velocity Ft 0 bu(t)À as the measure of the order in the system to compare the
simulations to the alignment measured experimentally.
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rection in response to near neighbors (1–6 ).
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rators (1) stands out because of its small
number of underlying assumptions and the
strength of the universal features that it
predicts. A central prediction of this
model is that as the density of animals in
the group increases, a rapid transition oc-
curs from disordered movement of indi-
viduals within the group to highly aligned
collective motion (Fig. 1). Because SPP
models underlie many theoretical predic-
tions about how groups form complex
patterns (7–10), avoid predators (11, 12),
forage (8 , 13 ), and make decisions (14 ),
confirming the existence of such a transi-
tion in real animals has fundamental im-
plications for understanding all aspects of
collective motion.

The desert locust, Schistocerca gregar-
ia, has a devastating social and economic
impact on humans. Before taking flight as
adults, wingless juveniles (also called
nymphs or hoppers) form coordinated
Bmarching bands[ that can extend over
many kilometers (15 ). The key to effec-
tive management of locust outbreaks is

early control and detection of bands, be-
cause the control of flying adult swarms is
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in band formation is a change among res-
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tory that marching begins only at high
locust density (25 , 26 ), these experiments
did not measure how alignment increases
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motion is therefore essential if we are to
understand how, when, and where co-
ordinated bands will form, resulting in im-
proved control measures (27).

The average density of marching bands
in the field is 50 locusts/m2, with a
typical range of 20 to 120 locusts/m2

(28 ), equivalent to 20 locusts in our ex-
periments. We performed experiments on
different numbers of third-instar locusts,

ranging from 5 to 120 insects (densities of
12.3 to 295 locusts/m2), in a ring-shaped
arena (29 ). We recorded the locusts_
motion for 8 hours with a digital camera
placed above the setup and connected to
a computer that captured five images/s
(see movie S1 for an example). Movies
were processed with tracking software
that computed the position and orienta-
tion of each locust. For each locust, we
calculated its angular coordinates rela-
tive to the center of the arena on two
consecutive camera images. The orien-
tation c of a locust was defined as the
smallest angle between one line drawn
between the locust_s two consecutive
positions and a second line drawn from
the center of the arena to the locust_s first
pos i t ion . Th i s re la t ionsh ip can be
described as c 0 arcsinEsin(q – a)^, where
a is the angle of the direction of move-
ment and q is the angle with the center of
the arena. For each camera image, or time
step t, we calculated the instantaneous
alignment Ft as the average of the orienta-
tion for all moving locusts, normalized as
follows
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where m is the total number of moving
locusts, and i is the ith locust. Thus,
values of the alignment close to the ex-
treme values of 1 and –1 indicate the
alignment of all locusts in the same di-
rection, whereas values close to zero in-
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alignment. Because locust direction was
not influenced by immobile individuals,
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over time and with 3 (A), 11 (B),
and 47 (C) individuals. The Vicsek
et al. SPP model (1) consists of a
set of pointwise particles mov-
ing synchronously and interact-
ing locally by trying to align with
their neighbors (1, 4). We used a
variant of the one-dimensional
version of their SPP model (30),
where N particles move along a

0 120 240 360 480

0.5

-0.5 -0.5 -0.5

-1.0 -1.0 -1.0
-1.5 -1.5 -1.5

1.0

1.5

0

0.5

1.0

1.5

0

0.5

1.0

1.5

0

A B C

In
st

an
ta

ne
ou

s 
al

ig
nm

en
t Φ

t

Time (min)
0 120 240 360 480 0 120 240 360 480

line of length L at a discrete time step Dt 0 1. Each particle is characterized
by its position xi and a dimensionless velocity ui and is updated as follows:
xi(t þ 1) 0 xi(t) þ v0ui(t), ui(t þ 1) 0 aui(t) þ (1 – a)G

!
bu(t)Ài

"
þ xi, where

buÀi denotes the average velocity of all other particles, excluding particle i,
within an interaction range [xi – D, xi þ D]. The term a determines the
relative weight that the particle assigns to its own velocity and to that of its
neighbors in deciding its velocity. For locusts, a corresponds to a directional
inertia when walking in the absence of conspecifics. xi is a noise term,
randomly chosen with a uniform probability from the interval [–h/2, h/2].
The function G represents the adjustment of a particle velocity to the
velocity of its neighbors, implemented as follows

G(u) 0
(u þ 1)/2 for u 9 0

(u j 1)/2 for u G 0

8
<

:

Simulations were run by applying random initial conditions and periodic
boundaries. The parameters were set to mimic the walking speed and
interaction range of locusts in an arena (see SOM). T 0 8000 time steps
(8 hours), L 0 36 (251.3 cm), v0 0 1 (1.9 cm/s), D 0 2 (13.9 cm), a 0 0.66.
The noise term h 0 0.8 was set by trial and error. We used the average
velocity Ft 0 bu(t)À as the measure of the order in the system to compare the
simulations to the alignment measured experimentally.
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Inactive insects did not affect the behav-
ior of moving locusts (see SOM). Al-
though there was a significant positive
correlation between the mean walking
speed of locusts and the number of
locusts in the arena (Spearman_s r 0
0.430, n 0 51, P 0 0.002), it represented
only a slight increase (5 locusts, 3.11 T
0.1 cm/s; 30 locusts, 3.46 T 0.06 cm/s; 60
to 120 locusts, 3.8 T 0.08 cm/s). It is
known that solitarious locusts (those

reared in isolation) increase their activi-
ty levels when first exposed to crowd-
ing (22). This response is part of the
process of behavioral gregarization,
which is completed in individuals with-
in a few hours of experiencing crowded
conditions (18, 19). Our experiments
showed that, within a wide range of
densities, once a locust is gregarious there
are no further marked changes in its
activity.

Both the SPP model and our ex-
periments exhibited dynamic instability,
in which changes in direction are sudden
and spontaneous, rapidly spreading
through the entire group. Such sudden
directional changes of locust hoppers and
other similar insects such as the Mormon
cricket occur in the field (32). Our ex-
periments show that these changes can
be independent of external conditions
and are likely to be an inherent property
of moving groups. These instabilities
may have important implications for
how directional information is trans-
ferred within these groups. For example,
if only a subset of a swarm becomes
aware of the direction toward a resource,
this may facilitate the change in direc-
tion over a much greater length scale
(14), allowing collective motion along
weak environmental gradients that do
not elicit responses in individuals alone
(13). We predict that at densities of 25 to
60 locusts/m2, locust bands are max-
imally sensitive to such changes in direc-
tion. It is unclear, however, whether
individual locusts regulate their local
density to this level, thereby optimizing
their collective access to information
about the environment.

We have revealed a critical density at
which marching locusts will spontane-
ously and suddenly adopt directed col-
lective motion. The lower size range of a
marching band as defined by the Food
and Agriculture Organization of the
United Nations (FAO), at 20 locusts/m2

(28), corresponds to 8 locusts in our ex-
periments. Because alignment rapidly
increases with density around this level,
the FAO_s definition corresponds to a
threshold density for cohesive marching.
In our experiments, groups of two to
seven moving locusts were only weakly
aligned, whereas slightly larger groups
changed direction rapidly and in unison.
In the field, small increases in density
beyond this threshold will cause a sudden
transition to a highly unpredictable col-
lective motion, making control measures
difficult to implement. Our data and
model also suggest that predicting the
motion of very high densities of locusts
is easier than predicting that of interme-
diate densities. The small number of
directional changes at high densities,
observed during the 8 hours of our ex-
periments, was similar to the field ob-
servation of Bgregarious inertia[ that lasts
for days (24).

We cannot assume that all of the col-
lective behavior seen in our laboratory
experiments translates directly to that
observed in the field. However, the
wealth of mathematical and simulation-

Fig. 3. Changes in alignment with density in experiments (A to C) and the model (D to F). The
relation between the number of moving locusts and the mean alignment is shown for the
experiments (A) and for simulations (D). Each point in (A) represents one experimental trial,
whereas each colored column in (D) shows the distribution of the results obtained for 1000
simulations. To analyze the changes between aligned/unaligned states over time, we
considered that locusts belonged to one of three categories: unaligned (alignment value
between –0.3 and 0.3), aligned in the counterclockwise direction (alignment value 90.3), or
aligned in the clockwise direction (alignment value G–0.3). To remove stochastic noise, the
alignment state was only considered to have changed if it persisted for 1 min (16 time steps
in the simulation) or more. The relation between the average number of moving locusts and
the mean total time spent in the aligned state [(B) and (E)] and the mean number of changes
in the alignment state [(C) and (F)] are displayed on a semi-log scale. Error bars, standard
deviation.
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whether these may be important selected characteris-
tics of courtship.

3.4. Fine scale dissection of orientation effects
We display fine behavioral resolution in another 
manner by creating probability density maps that 
describe the spatial organization of interacting flies 
during particular behaviors(figure 7). These plots 
reveal how the position of a partnered fly may selectively 
drive certain behaviors. The examples shown here are 
created by focusing on specific masked regions of the 
behavioral space, and then finding the spatial contexts 
in which those behaviors occurred. Each time an 
individual exhibits behavior in the masked region, the 
relative position of its partner is recorded.

We find that locomotion with wing movements and 
song-like wing extensions (rows 1 and 4 of figure 7) are 
much more common in males, and especially in paired 
males. In fact, these behaviors are minimal in unpaired 
males and the frequency with which they are performed 
by females is low regardless of the presence or absence 
of a male. The same tight localization pattern in which 
the female is positioned directly in front of the male 
during male song-like wing extension indicates that 

male wing motions, and wing extensions in par ticular, 
are  potentially driven not only by sex and context of 
the behaving individual (male, and courtship), but 
also by the  position of that individual’s partner, the 
female. We also find that behaviors change in the paired 
female.  Having a male present and courting induces an 
abdomen-bending behavior in the female (row 3 of 
figure figure 7). This action is also performed by the 
male, but its frequency is not dependent on the pres-
ence of a courtship partner. The relative spatial position 
of paired flies does not appear as crucial for abdomen 
related behaviors as it is for wing extensions. The paired 
females show a pronounced increase in abdomen bend-
ing over unpaired individuals, suggesting that this 
behavior is important for the communication of recep-
tivity or rejection by the female in a courtship context.

Finally, we see that even behaviors that are com-
monly displayed in both paired and unpaired con-
ditions can still give insight about the mechanics of 
courtship-context interactions. While wing grooming 
(row 2 of figure 7) occurs in all contexts for both sexes, 
paired males and females both display an increase in 
this type of grooming over their unpaired counter-
parts. Further exploration of when grooming occurs, 

Figure 6. Behavioral map densities for a variety of spatial contexts. (a) Male and female behavioral density maps plotted for three 
intervals of the distance d between paired flies (<3 mm (top), 3–6 mm (center), and 6–9 mm (bottom)). (b) A schematic of distinct 
angular quadrants shows how flies may be viewed in the female- and male-centric spaces. Each row of behavioral maps corresponds 
to the behavioral density of the given sex while the other fly’s angular position is in a given quadrant.
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ence of a courtship partner. The relative spatial position 
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related behaviors as it is for wing extensions. The paired 
females show a pronounced increase in abdomen bend-
ing over unpaired individuals, suggesting that this 
behavior is important for the communication of recep-
tivity or rejection by the female in a courtship context.

Finally, we see that even behaviors that are com-
monly displayed in both paired and unpaired con-
ditions can still give insight about the mechanics of 
courtship-context interactions. While wing grooming 
(row 2 of figure 7) occurs in all contexts for both sexes, 
paired males and females both display an increase in 
this type of grooming over their unpaired counter-
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intervals of the distance d between paired flies (<3 mm (top), 3–6 mm (center), and 6–9 mm (bottom)). (b) A schematic of distinct 
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on the behavioral map, and ethogram outputs for each 
sex (supplemental movie). Parameters for setting the 
size of behavioral regions or clusters can be altered to 
address behavioral relationships at different scales over 
time, and to potentially locate behaviors that affect the 
outcome of courtship.

The embedding algorithm we use is stochastic, 
and produces a different map each time it is run, so we 
perform a single embedding using data from all indi-
viduals. A subsampling of dimensionality-reduced data 
generated from videos of isolated males and females, as 
well as segmented males and females from the paired 
experiments was used to produce an initial behavioral 
embedding. Using many individuals guarantees that 
all behaviors present in our initial data, regardless of 
how rare, will be represented in our behavioral map. By 
subsampling the space of behaviors so that all actions 
we see from any context are represented in our original 
embedding, we can re-embed additional data onto this 
map without having to calculate a new embedding from 
the beginning. As we are interested in compariso ns 
across many different contexts, embedding all data 

into the same map allows for direct comparisons of the 
probability density, or the frequency with which flies 
perform particular actions, between subpopulations of 
the data (figure 4(c)).

We recorded the behavior of 12 isolated females, 12 
isolated males, and 15 male–female pairs. Comparing 
the behavioral distributions between contexts (isolated 
versus paired) reveals a number of features of male–
female interaction (figure 4(c)). Overall, females spend 
more time exhibiting fast locomotion while males pro-
duce many more wing-related motions regardless of 
the presence of other sex. Difference maps between the 
isolated and paired condition for each sex show how 
behavior is affected simply by the presence of the court-
ship partner. We find that females run less and display 
more wing movements when a male is present. On the 
other hand, males not only produce more wing exten-
sions when the female is present, presumably indicative 
of courtship singing, but also show subtle shifts to other 
wing- and abdomen-related motions. We use coarse 
behavioral descriptions here, but the same comparisons 
can be done at more specific regions on the map as well, 

Figure 4. Behavioral maps produced from Canton-S wild type flies in both isolated and courting contexts (male–female dyads). 
(a) A density map containing all movies in the dataset (paired male, paired female, isolated male, isolated female). (b) Coarse 
descriptions of map regions based on visual inspection of the aligned movies. (c) Behavioral density maps created by plotting only 
points produced by courting males, isolated males, courting females, isolated females, and the differences between the isolated and 
paired contexts. Difference maps indicate which behaviors are enriched during courtship (red) or when individuals are isolated 
(blue). (d) Simultaneous ethograms for a single ten-second bout of interaction with colors corresponding to the coarse labels in 
panel (b). Colored labels are assigned to each frame only if the behavior is stereotyped, as defined in Berman et al, resulting in white 
space during transitions and unstereotyped behaviors [4].
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on the behavioral map, and ethogram outputs for each 
sex (supplemental movie). Parameters for setting the 
size of behavioral regions or clusters can be altered to 
address behavioral relationships at different scales over 
time, and to potentially locate behaviors that affect the 
outcome of courtship.

The embedding algorithm we use is stochastic, 
and produces a different map each time it is run, so we 
perform a single embedding using data from all indi-
viduals. A subsampling of dimensionality-reduced data 
generated from videos of isolated males and females, as 
well as segmented males and females from the paired 
experiments was used to produce an initial behavioral 
embedding. Using many individuals guarantees that 
all behaviors present in our initial data, regardless of 
how rare, will be represented in our behavioral map. By 
subsampling the space of behaviors so that all actions 
we see from any context are represented in our original 
embedding, we can re-embed additional data onto this 
map without having to calculate a new embedding from 
the beginning. As we are interested in compariso ns 
across many different contexts, embedding all data 

into the same map allows for direct comparisons of the 
probability density, or the frequency with which flies 
perform particular actions, between subpopulations of 
the data (figure 4(c)).

We recorded the behavior of 12 isolated females, 12 
isolated males, and 15 male–female pairs. Comparing 
the behavioral distributions between contexts (isolated 
versus paired) reveals a number of features of male–
female interaction (figure 4(c)). Overall, females spend 
more time exhibiting fast locomotion while males pro-
duce many more wing-related motions regardless of 
the presence of other sex. Difference maps between the 
isolated and paired condition for each sex show how 
behavior is affected simply by the presence of the court-
ship partner. We find that females run less and display 
more wing movements when a male is present. On the 
other hand, males not only produce more wing exten-
sions when the female is present, presumably indicative 
of courtship singing, but also show subtle shifts to other 
wing- and abdomen-related motions. We use coarse 
behavioral descriptions here, but the same comparisons 
can be done at more specific regions on the map as well, 

Figure 4. Behavioral maps produced from Canton-S wild type flies in both isolated and courting contexts (male–female dyads). 
(a) A density map containing all movies in the dataset (paired male, paired female, isolated male, isolated female). (b) Coarse 
descriptions of map regions based on visual inspection of the aligned movies. (c) Behavioral density maps created by plotting only 
points produced by courting males, isolated males, courting females, isolated females, and the differences between the isolated and 
paired contexts. Difference maps indicate which behaviors are enriched during courtship (red) or when individuals are isolated 
(blue). (d) Simultaneous ethograms for a single ten-second bout of interaction with colors corresponding to the coarse labels in 
panel (b). Colored labels are assigned to each frame only if the behavior is stereotyped, as defined in Berman et al, resulting in white 
space during transitions and unstereotyped behaviors [4].
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and in what spatial context, will aid in the understand-
ing of how simple and common behaviors such as 
grooming may be employed to communicate during 
courtship. Comparisons with same-sex dyads can help 
further distinguish which male–female interactions 
are unique.

A compelling open question in behavioral science 
is one of how differences in complex traits arise from 
subtle changes in the genome. Equally compelling is the 
goal to understand how much of behavior is mediated 
by simple interactions with another individual, espe-
cially when these interactions are inevitable like in the 
case of courtship. We hope to use the method presented 
here to investigate these questions in fruit fly courtship 
by breaking down and quantifying this complex set of 
interactions. Here we have shown several ways to dis-
play behavioral differences between flies in different 
contexts. These methods are useful for interrogating 
courtship behavior in a principled manner when con-
ducting research at the interface of genes, environment, 
and behavior.

4. Experimental methods

4.1. Fly stocks and experimental conditions
Wild type D. melanogaster flies were isolated on eclosion 
and aged four to six days before imaging. Females were 
housed in batches of up to 50 virgin females while males 
were individually housed in 96 well deep well plates 
sealed with microporous tape. All flies were raised and 
imaged at 21-22C with a 12H light on/light off cycle.

4.2. Fly behavioral assays
Our behavioral data is produced by filming silhouettes 
of a single or multiple flies from above in a circular 
chamber that is approximately 25 mm across. Flies are 
prevented from crawling on the top of the chamber due 
to size restrictions and the application of a siliconizing 
reagent the day before filming in order to allow ample 
time for evaporation before performing experiments.

All behavioral experiments were filmed within 3 h 
of the incubator light coming on. Single flies and court-
ing fly pairs were filmed 12 at a time in three 4-camera 

Figure 7. A panel of sample behaviors displaying statistics on the location and orientation of each fly when the behavior is 
performed relative to its partner, as well as the total fractional occupancy in the male (red) and female (blue) during paired (P) and 
single trials (S). Each row describes the density of occupancy in space of the partnered fly while the specified individual performs 
a given behavior. The density in the center panels can be read using the color bar at the far upper right, while points in the far right 
panel correspond to density of the behavior per individual in the corresponding context. Error bars show the standard error of the 
mean for each set of points. Behaviors specified are (a) Fast locomotion with some wing involvement, (b) rear and wing grooming, 
(c) abdominal rolling or bending, and d) song-like wing extension.
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Dynamic sensory cues shape song structure
in Drosophila
Philip Coen1,2, Jan Clemens1,2, Andrew J. Weinstein1,2, Diego A. Pacheco1,2, Yi Deng3{ & Mala Murthy1,2

The generation of acoustic communication signals is widespread
across the animal kingdom1,2, and males of many species, including
Drosophilidae, produce patterned courtship songs to increase their
chance of success with a female. For some animals, song structure
can vary considerably from one rendition to the next3; neural noise
within pattern generating circuits is widely assumed to be the prim-
ary source of such variability, and statistical models that incorporate
neural noise are successful at reproducing the full variation present
in natural songs4. In direct contrast, here we demonstrate that much
of the pattern variability in Drosophila courtship song can be explained
by taking into account the dynamic sensory experience of the male.
In particular, using a quantitative behavioural assay combined with
computational modelling, we find that males use fast modulations
in visual and self-motion signals to pattern their songs, a relation-
ship that we show is evolutionarily conserved. Using neural circuit
manipulations, we also identify the pathways involved in song pat-
terning choices and show that females are sensitive to song features.
Our data not only demonstrate that Drosophila song production is
not a fixed action pattern5,6, but establish Drosophila as a valuable
new model for studies of rapid decision-making under both social
and naturalistic conditions.

Drosophila melanogaster males chase females during courtship and
produce song by wing vibration; females, meanwhile, arbitrate mating
decisions. We developed a behavioural chamber to record acoustic sig-
nals and fly movements simultaneously (Fig. 1a and Supplementary
Video 1); fly movements provide information on the sensory cues that
may influence song production. We collected a large data set (.100,000
song bouts) to model the relationship between sensory cues and song
patterning. Most experiments involve females that are pheromone-
insensitive7 and blind (termed PIBL) to facilitate auditory response mea-
surements. All fly types used are described in Extended Data Table 1.

For one wild-type strain (WT1), we show that using arista-cut (deaf)
females or wing-cut (mute) males increased the time to copulation and
decreased the percentage of mated pairs (Fig. 1c). This corroborates
prior work8,9 demonstrating the importance of song for courtship suc-
cess. Pairing WT1 males with wild-type, rather than PIBL, females did
not alter these results (Fig. 1c), nor any of the results described below
(not shown). All wild-type strains showed similar success with PIBL
females (Extended Data Fig. 1b). Courtship songs comprise two modes
(sine and pulse; Fig. 1b) and are part of a genetically hardwired mating
ritual, thought to be stereotyped6,10. However, we find frequent mode
transitions and variable mode durations individualize song bouts (Fig. 1d
and Extended Data Fig. 2).

Males spend approximately 20% of courtship time singing (Extended
Data Fig. 1c), and bouts can begin with either song mode. Using
reverse correlation, we found that all tracking parameters correlate
with bout initiations (Extended Data Fig. 3). We therefore turned to
the generalized linear model (GLM) (Fig. 2a), widely used to analyse
binary response data with several explanatory variables11–13. Unlike
reverse correlation14, the GLM we use includes a sparsity prior, which
disentangles the contributions of correlated parameters to song patterning

(see Methods)—this represents a major difference between our approach
and previous studies15.

Given similarities across fly strains (Extended Data Fig. 3), we com-
bined data from all wild-type flies (315 pairs, 84,904 song bouts) for
GLM analyses. We selected the most predictive features (# 600 ms of
tracking parameter history) for each model based on deviance reduc-
tion (Extended Data Fig. 4a, b). For pulse song starts, combining two
features: male forward velocity (mFV) and male lateral speed (mLS)
strongly improved model fit (Fig. 2b). When tested on separate data,
the fraction of correctly classified song starts (PCor) was 0.67 (Fig. 2c),
representing a 34% improvement over the null model (PCor 5 0.5). This
compares favourably with fMRI-based predictions of human behaviour16

1Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA. 2 Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA. 3 Department of
Physics, Princeton University, Princeton, New Jersey 08544, USA. {Present address: Department of Biophysics, University of Washington School of Medicine, Seattle, Washington 98195, USA.
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Figure 1 | A novel assay to study Drosophila song behaviour. a, Behavioural
chamber with tracked fly movements (see Methods). Fly movements are
divided into: male/female forward velocity (mFV/fFV), male/female lateral and
rotational speeds (mLS/fLS and mRS/fRS), the distance between fly centres
(Dis), the absolute angle from female/male heading to male/female centre
(Ang1/Ang2). b, Segmentation of song bouts into pulse (red) and sine (blue)
elements (top). Corresponding traces for mFV and fFV (bottom). c, Song is
important for mating. Time to copulation increases (black, *P , 0.001) and
fraction of copulated pairs decreases (red, *P , 0.01) when females are deaf or
males are mute. Individual points, mean, and s.d. are given for each genotype
(n 5 35–48 pairs). AC, arista cut; WC, wing cut. d, Song is variable. The
number of repeated bouts (containing pulse and sine) per fly (see Methods).
n 5 60 wild-type males.
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and with two-alternative forced choice behavioural performance in
Drosophila17. PCor values are equivalent (r2 5 0.98) to area under the
curve values, an alternative performance measure (Extended Data
Fig. 4c, d). We used a similar GLM framework to identify female for-
ward velocity (fFV) as the best predictor of changes in male motion
(male forward velocity (Extended Data Fig. 5a–c) and male lateral speed
(data not shown)): that is, when the female speeds up, the male accel-
erates to follow her. Therefore, any correlation between male motion

and song mode choice ultimately establishes a link between a sensory
cue (for example, female motion) and song patterning. We address this
point further below.

For songs that start in sine mode, the optimal model included only
the distance between fly centres (Dis) (Fig. 2b, c and Extended Data
Fig. 6a). Song start filters derived from PI (pheromone-insensitive)
or arista-cut males paired with PIBL females, or from wild-type males
paired with arista-cut or unreceptive/sex-peptide-injected18 (SP) females,
were indistinguishable from wild-type filters (Fig. 2d), even though
males take longer to copulate with arista-cut females (Fig. 1c), and never
copulate with unreceptive/sex-peptide-injected females (Extended Data
Fig. 7a). A model designed to distinguish song bouts beginning in sine
versus pulse mode retains male forward velocity and the distance be-
tween fly centres as the most predictive features, but with significantly
increased performance (Extended Data Fig. 6b, c). Therefore, we focus
hereafter on song patterning decisions, rather than the male’s decision
to sing versus perform another courtship behaviour. Here a decision
refers to a behavioural choice biased by sensory information19.

During song bouts, males typically alternate between sine and pulse
modes, with each mode lasting tens to hundreds of milliseconds. We
next investigated whether GLMs could also predict the current mode
of song within bouts. Model performance was optimal using only two
features: male forward velocity and male lateral speed (a 58% improve-
ment over the null model; Fig. 2e). The absence of the distance between
fly centres (Dis) feature in this model is probably due to its reduced
variance during song (Extended Data Fig. 6d, e). Using different, male-
centric, features only decreased model performance (Extended Data
Fig. 8). We then went on to predict all mode transitions within a bout:
increases in male forward velocity and male lateral speed predict tran-
sitions to pulse mode, whereas decreases in male forward velocity and
increases in female lateral speed predict transitions to sine mode (Fig. 2f).
Mode transitions represent a subtle change in behaviour (for example,
whether 300 ms of pulse song is followed by 30 ms of sine song or 30 ms
of continued pulse song); nonetheless, our model predictions produced
a combined PCor of 0.64 (Fig. 2g). Thus, taking into account male motion
and inter-fly distance can largely explain variability in song patterning.
Although studies in birds have shown that auditory cues, either produced
by the singer itself20 or by a duetting partner21, affect acoustic sequence
generation, to our knowledge, ours is the first demonstration of a role
for non-auditory sensory inputs in dynamically patterning the struc-
ture of individual song sequences.

Next, we considered which sensory pathways mediated the male’s
decision-making during song production. Although male motion is
the primary contributor to song patterning in our models, we observed
a strong correlation (r2 5 0.95) during song bouts between inter-fly
distance (beyond the tactile range of ,5 mm; the tail of the distribution
in Extended Data Fig. 6d) and the pulse/sine ratio (Fig. 3a; correlation
is independent of male movement). We conclude that flies use vision
to measure distance over this range, because blind males or wild-type
males placed in the dark, sing significantly more pulse song (Fig. 3b, c);
this is not true for any other sensory deficit and cannot be explained by
changes in male speed (Extended Data Fig. 5e).

Previous studies have demonstrated that separate neurons control
pulse and sine song production22,23. This indicates that song patterning
is neurally controlled, and does not arise simply from mechanical coup-
ling with male locomotion changes. In support of this, males sing both
song modes at all velocities (Fig. 3d). We further conclude that visual
measurements of optic flow are not used to convey male motion signals
to song patterning networks, because a model based on only male for-
ward velocity and male lateral speed predicts current song mode for
blind males (Fig. 3e). This left two likely possibilities (Fig. 3f): either
(mechanism 1) a cue from the female induces males to change speed
and concomitantly affects song patterning or (mechanism 2) neural
circuits that carry information about male motion (via either a copy of
the motor commands or proprioceptive feedback from the legs) modu-
late song patterning circuits. Because female forward velocity predicts
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Figure 2 | Song bout patterning is predictable and based on few features.
a, Schematic of the GLM (see Methods). Inputs—stimulus histories (features;
f (t)) for each movement parameter—are used to predict binary event
probabilities. Significant features are convolved with a linear filter h(t), and
the result, g(t), is transformed into a probability P(t), via a logistic function.
Performance plots show the predicted and actual event probability
relationships. Confusion matrices, from which we derive PCor values, quantify
model performance. b, Filters for pulse and sine song initiation GLMs. Unlike
male lateral speed (mLS) or male forward velocity (mFV), the Dis filter
indicates a time lag between distance estimation and sine song initiation.
c, GLM performance for identifying pulse song starts (PS) using male forward
velocity and male lateral speed filters (n 5 11,020 test events from 315 males)
and sine song starts (SS) using the Dis filter (n 5 2,476 test events from 315
males). N 5 no song start. d, Male forward velocity pulse song start filters and
Dis sine song start filters are similar for data from pheromone-insensitive or
arista-cut males or males paired with arista-cut or sex-peptide-injected females;
filters from wild-type males are also plotted. e, GLM performance for
classifying current song mode (PM, pulse mode; SM, sine mode) using mean
male forward velocity and male lateral speed (n 5 55,464 test events from 315
males). f, Filters for sine to pulse (S–P) transitions (top) and the pulse to sine
(P–S) transitions (bottom). g, GLM performance for identifying S–P transitions
(versus continued sine song (S–S)) using male forward velocity and male lateral
speed filters (n 5 17,118 test events from 315 males) and P–S transitions
(versus continued pulse song (P–P)) using male forward velocity and female
lateral speed filters (n 5 11,748 test events from 315 males). Error bars (most
too small to visualize) indicate 95% confidence intervals (c, e, g).

RESEARCH LETTER

2 | N A T U R E | V O L 0 0 0 | 0 0 M O N T H 2 0 1 4

Macmillan Publishers Limited. All rights reserved©2014

and with two-alternative forced choice behavioural performance in
Drosophila17. PCor values are equivalent (r2 5 0.98) to area under the
curve values, an alternative performance measure (Extended Data
Fig. 4c, d). We used a similar GLM framework to identify female for-
ward velocity (fFV) as the best predictor of changes in male motion
(male forward velocity (Extended Data Fig. 5a–c) and male lateral speed
(data not shown)): that is, when the female speeds up, the male accel-
erates to follow her. Therefore, any correlation between male motion

and song mode choice ultimately establishes a link between a sensory
cue (for example, female motion) and song patterning. We address this
point further below.

For songs that start in sine mode, the optimal model included only
the distance between fly centres (Dis) (Fig. 2b, c and Extended Data
Fig. 6a). Song start filters derived from PI (pheromone-insensitive)
or arista-cut males paired with PIBL females, or from wild-type males
paired with arista-cut or unreceptive/sex-peptide-injected18 (SP) females,
were indistinguishable from wild-type filters (Fig. 2d), even though
males take longer to copulate with arista-cut females (Fig. 1c), and never
copulate with unreceptive/sex-peptide-injected females (Extended Data
Fig. 7a). A model designed to distinguish song bouts beginning in sine
versus pulse mode retains male forward velocity and the distance be-
tween fly centres as the most predictive features, but with significantly
increased performance (Extended Data Fig. 6b, c). Therefore, we focus
hereafter on song patterning decisions, rather than the male’s decision
to sing versus perform another courtship behaviour. Here a decision
refers to a behavioural choice biased by sensory information19.

During song bouts, males typically alternate between sine and pulse
modes, with each mode lasting tens to hundreds of milliseconds. We
next investigated whether GLMs could also predict the current mode
of song within bouts. Model performance was optimal using only two
features: male forward velocity and male lateral speed (a 58% improve-
ment over the null model; Fig. 2e). The absence of the distance between
fly centres (Dis) feature in this model is probably due to its reduced
variance during song (Extended Data Fig. 6d, e). Using different, male-
centric, features only decreased model performance (Extended Data
Fig. 8). We then went on to predict all mode transitions within a bout:
increases in male forward velocity and male lateral speed predict tran-
sitions to pulse mode, whereas decreases in male forward velocity and
increases in female lateral speed predict transitions to sine mode (Fig. 2f).
Mode transitions represent a subtle change in behaviour (for example,
whether 300 ms of pulse song is followed by 30 ms of sine song or 30 ms
of continued pulse song); nonetheless, our model predictions produced
a combined PCor of 0.64 (Fig. 2g). Thus, taking into account male motion
and inter-fly distance can largely explain variability in song patterning.
Although studies in birds have shown that auditory cues, either produced
by the singer itself20 or by a duetting partner21, affect acoustic sequence
generation, to our knowledge, ours is the first demonstration of a role
for non-auditory sensory inputs in dynamically patterning the struc-
ture of individual song sequences.

Next, we considered which sensory pathways mediated the male’s
decision-making during song production. Although male motion is
the primary contributor to song patterning in our models, we observed
a strong correlation (r2 5 0.95) during song bouts between inter-fly
distance (beyond the tactile range of ,5 mm; the tail of the distribution
in Extended Data Fig. 6d) and the pulse/sine ratio (Fig. 3a; correlation
is independent of male movement). We conclude that flies use vision
to measure distance over this range, because blind males or wild-type
males placed in the dark, sing significantly more pulse song (Fig. 3b, c);
this is not true for any other sensory deficit and cannot be explained by
changes in male speed (Extended Data Fig. 5e).

Previous studies have demonstrated that separate neurons control
pulse and sine song production22,23. This indicates that song patterning
is neurally controlled, and does not arise simply from mechanical coup-
ling with male locomotion changes. In support of this, males sing both
song modes at all velocities (Fig. 3d). We further conclude that visual
measurements of optic flow are not used to convey male motion signals
to song patterning networks, because a model based on only male for-
ward velocity and male lateral speed predicts current song mode for
blind males (Fig. 3e). This left two likely possibilities (Fig. 3f): either
(mechanism 1) a cue from the female induces males to change speed
and concomitantly affects song patterning or (mechanism 2) neural
circuits that carry information about male motion (via either a copy of
the motor commands or proprioceptive feedback from the legs) modu-
late song patterning circuits. Because female forward velocity predicts
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Figure 2 | Song bout patterning is predictable and based on few features.
a, Schematic of the GLM (see Methods). Inputs—stimulus histories (features;
f (t)) for each movement parameter—are used to predict binary event
probabilities. Significant features are convolved with a linear filter h(t), and
the result, g(t), is transformed into a probability P(t), via a logistic function.
Performance plots show the predicted and actual event probability
relationships. Confusion matrices, from which we derive PCor values, quantify
model performance. b, Filters for pulse and sine song initiation GLMs. Unlike
male lateral speed (mLS) or male forward velocity (mFV), the Dis filter
indicates a time lag between distance estimation and sine song initiation.
c, GLM performance for identifying pulse song starts (PS) using male forward
velocity and male lateral speed filters (n 5 11,020 test events from 315 males)
and sine song starts (SS) using the Dis filter (n 5 2,476 test events from 315
males). N 5 no song start. d, Male forward velocity pulse song start filters and
Dis sine song start filters are similar for data from pheromone-insensitive or
arista-cut males or males paired with arista-cut or sex-peptide-injected females;
filters from wild-type males are also plotted. e, GLM performance for
classifying current song mode (PM, pulse mode; SM, sine mode) using mean
male forward velocity and male lateral speed (n 5 55,464 test events from 315
males). f, Filters for sine to pulse (S–P) transitions (top) and the pulse to sine
(P–S) transitions (bottom). g, GLM performance for identifying S–P transitions
(versus continued sine song (S–S)) using male forward velocity and male lateral
speed filters (n 5 17,118 test events from 315 males) and P–S transitions
(versus continued pulse song (P–P)) using male forward velocity and female
lateral speed filters (n 5 11,748 test events from 315 males). Error bars (most
too small to visualize) indicate 95% confidence intervals (c, e, g).
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and with two-alternative forced choice behavioural performance in
Drosophila17. PCor values are equivalent (r2 5 0.98) to area under the
curve values, an alternative performance measure (Extended Data
Fig. 4c, d). We used a similar GLM framework to identify female for-
ward velocity (fFV) as the best predictor of changes in male motion
(male forward velocity (Extended Data Fig. 5a–c) and male lateral speed
(data not shown)): that is, when the female speeds up, the male accel-
erates to follow her. Therefore, any correlation between male motion

and song mode choice ultimately establishes a link between a sensory
cue (for example, female motion) and song patterning. We address this
point further below.

For songs that start in sine mode, the optimal model included only
the distance between fly centres (Dis) (Fig. 2b, c and Extended Data
Fig. 6a). Song start filters derived from PI (pheromone-insensitive)
or arista-cut males paired with PIBL females, or from wild-type males
paired with arista-cut or unreceptive/sex-peptide-injected18 (SP) females,
were indistinguishable from wild-type filters (Fig. 2d), even though
males take longer to copulate with arista-cut females (Fig. 1c), and never
copulate with unreceptive/sex-peptide-injected females (Extended Data
Fig. 7a). A model designed to distinguish song bouts beginning in sine
versus pulse mode retains male forward velocity and the distance be-
tween fly centres as the most predictive features, but with significantly
increased performance (Extended Data Fig. 6b, c). Therefore, we focus
hereafter on song patterning decisions, rather than the male’s decision
to sing versus perform another courtship behaviour. Here a decision
refers to a behavioural choice biased by sensory information19.

During song bouts, males typically alternate between sine and pulse
modes, with each mode lasting tens to hundreds of milliseconds. We
next investigated whether GLMs could also predict the current mode
of song within bouts. Model performance was optimal using only two
features: male forward velocity and male lateral speed (a 58% improve-
ment over the null model; Fig. 2e). The absence of the distance between
fly centres (Dis) feature in this model is probably due to its reduced
variance during song (Extended Data Fig. 6d, e). Using different, male-
centric, features only decreased model performance (Extended Data
Fig. 8). We then went on to predict all mode transitions within a bout:
increases in male forward velocity and male lateral speed predict tran-
sitions to pulse mode, whereas decreases in male forward velocity and
increases in female lateral speed predict transitions to sine mode (Fig. 2f).
Mode transitions represent a subtle change in behaviour (for example,
whether 300 ms of pulse song is followed by 30 ms of sine song or 30 ms
of continued pulse song); nonetheless, our model predictions produced
a combined PCor of 0.64 (Fig. 2g). Thus, taking into account male motion
and inter-fly distance can largely explain variability in song patterning.
Although studies in birds have shown that auditory cues, either produced
by the singer itself20 or by a duetting partner21, affect acoustic sequence
generation, to our knowledge, ours is the first demonstration of a role
for non-auditory sensory inputs in dynamically patterning the struc-
ture of individual song sequences.

Next, we considered which sensory pathways mediated the male’s
decision-making during song production. Although male motion is
the primary contributor to song patterning in our models, we observed
a strong correlation (r2 5 0.95) during song bouts between inter-fly
distance (beyond the tactile range of ,5 mm; the tail of the distribution
in Extended Data Fig. 6d) and the pulse/sine ratio (Fig. 3a; correlation
is independent of male movement). We conclude that flies use vision
to measure distance over this range, because blind males or wild-type
males placed in the dark, sing significantly more pulse song (Fig. 3b, c);
this is not true for any other sensory deficit and cannot be explained by
changes in male speed (Extended Data Fig. 5e).

Previous studies have demonstrated that separate neurons control
pulse and sine song production22,23. This indicates that song patterning
is neurally controlled, and does not arise simply from mechanical coup-
ling with male locomotion changes. In support of this, males sing both
song modes at all velocities (Fig. 3d). We further conclude that visual
measurements of optic flow are not used to convey male motion signals
to song patterning networks, because a model based on only male for-
ward velocity and male lateral speed predicts current song mode for
blind males (Fig. 3e). This left two likely possibilities (Fig. 3f): either
(mechanism 1) a cue from the female induces males to change speed
and concomitantly affects song patterning or (mechanism 2) neural
circuits that carry information about male motion (via either a copy of
the motor commands or proprioceptive feedback from the legs) modu-
late song patterning circuits. Because female forward velocity predicts
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Figure 2 | Song bout patterning is predictable and based on few features.
a, Schematic of the GLM (see Methods). Inputs—stimulus histories (features;
f (t)) for each movement parameter—are used to predict binary event
probabilities. Significant features are convolved with a linear filter h(t), and
the result, g(t), is transformed into a probability P(t), via a logistic function.
Performance plots show the predicted and actual event probability
relationships. Confusion matrices, from which we derive PCor values, quantify
model performance. b, Filters for pulse and sine song initiation GLMs. Unlike
male lateral speed (mLS) or male forward velocity (mFV), the Dis filter
indicates a time lag between distance estimation and sine song initiation.
c, GLM performance for identifying pulse song starts (PS) using male forward
velocity and male lateral speed filters (n 5 11,020 test events from 315 males)
and sine song starts (SS) using the Dis filter (n 5 2,476 test events from 315
males). N 5 no song start. d, Male forward velocity pulse song start filters and
Dis sine song start filters are similar for data from pheromone-insensitive or
arista-cut males or males paired with arista-cut or sex-peptide-injected females;
filters from wild-type males are also plotted. e, GLM performance for
classifying current song mode (PM, pulse mode; SM, sine mode) using mean
male forward velocity and male lateral speed (n 5 55,464 test events from 315
males). f, Filters for sine to pulse (S–P) transitions (top) and the pulse to sine
(P–S) transitions (bottom). g, GLM performance for identifying S–P transitions
(versus continued sine song (S–S)) using male forward velocity and male lateral
speed filters (n 5 17,118 test events from 315 males) and P–S transitions
(versus continued pulse song (P–P)) using male forward velocity and female
lateral speed filters (n 5 11,748 test events from 315 males). Error bars (most
too small to visualize) indicate 95% confidence intervals (c, e, g).
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Before start of sine song: Before sine to pulse song transitions:
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Linking individuals through regression:
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Determining individual-level interactions that govern highly coor-
dinated motion in animal groups or cellular aggregates has been a
long-standing challenge, central to understanding the mechanisms
and evolution of collective behavior. Numerous models have been
proposed, many of which display realistic-looking dynamics, but
nonetheless rely on untested assumptions about how individuals
integrate information to guide movement. Here we infer behavior-
al rules directly from experimental data.We begin by analyzing tra-
jectories of golden shiners (Notemigonus crysoleucas) swimming
in two-fish and three-fish shoals to map the mean effective forces
as a function of fish positions and velocities. Speeding and turning
responses are dynamically modulated and clearly delineated. Speed
regulation is a dominant component of how fish interact, and
changes in speed are transmitted to those both behind and ahead.
Alignment emerges from attraction and repulsion, and fish tend to
copy directional changes made by those ahead.We find no evidence
for explicit matching of body orientation. By comparing data from
two-fish and three-fish shoals, we challenge the standard assump-
tion, ubiquitous in physics-inspired models of collective behavior,
that individual motion results from averaging responses to each
neighbor considered separately; three-body interactions make a
substantial contribution to fish dynamics. However, pairwise inter-
actions qualitatively capture the correct spatial interaction structure
in small groups, and this structure persists in larger groups of 10 and
30 fish. The interactions revealed here may help account for the
rapid changes in speed and direction that enable real animal groups
to stay cohesive and amplify important social information.

A fundamental problem in a wide range of biological disci-
plines is understanding how functional complexity at a

macroscopic scale (such as the functioning of a biological tissue)
results from the actions and interactions among the individual com-
ponents (such as the cells forming the tissue). Animal groups such
as bird flocks, fish schools, and insect swarms frequently exhibit
complex and coordinated collective behaviors and present unri-
valed opportunities to link the behavior of individuals with dynamic
group-level properties. With the advent of tracking technologies
such as computer vision and global positioning systems, group be-
havior can be reduced to a set of trajectories in space and time.
Consequently, in principle, it is possible to deduce the individual
interaction rules starting from the observed kinematics. However,
calculating interindividual interactions from trajectories means sol-
ving a fundamental inverse problem that appears universally in
many-body systems. In general, such problems are very hard to solve
and, even if they can be solved, their solution is often not unique.

To avoid solving these inverse problems (and because detailed
kinematic data were not available until recently), many attempts
have been made to replicate the patterns observed in animal
groups by so-called self-propelled particle models (1–11). These
models use the basic ingredients believed to underlie collective
motion such as schooling in fish (12–14): a short-range repulsion,
a longer-range attraction, and/or an alignment among interacting
agents. This is sufficient to generate patterns similar to those
observed in animal groups [e.g., Couzin et al. (7)], and a number
of observables such as nearest-neighbor distance, polarization,
group speed, and turning rate have been successfully matched
to experimental data (14–19).

Recent empirical studies (19–26) have collected large datasets
of freely interacting individuals in order to infer the rules under-
lying their emergent collective motion. Ballerini et al. (22) and
Cavagna et al. (26) have used the spatial structure of starling flocks
to infer that starlings use topological rather than metric interac-
tions and that information is transferred over large distanceswithin
flocks in a scale-free manner. High-temporal-resolution data from
several species have been analyzed by employing model-based
approaches. Lukeman et al. (25) fit data on the spatial conurations
of surf scoters to a zonal model and identified best-fit parameter
values as well as evidence for an additional frontal zone of inter-
action. Buhl et al. (21) used a statistical mechanical model to show
how the transition in locusts from disorder to order depends on
the density of individuals, and Bode et al. (24) used an indivi-
dual-based model to provide evidence for asynchronous updating
of positions and velocities in sticklebacks. In other species of
fish, Grünbaum et al. (20) used a control theoretic framework
to relate preferred nearest-neighbor positions to swimming speed,
andGautrais et al. (19) used a stochastic differential equationmod-
el based on correlations between consecutive turning angles to
describe individual trajectories. Thus, models have also provided
good fits to finer scale experimental and observational data.

Despite these successes, model-based approaches are inher-
ently limited in that many sets of microscopic rules can produce
the same macroscopic behaviors. Even if a model matches an
experimental system across a set of observables, unless the under-
lying rules are also correct, there is no guarantee that it will give a
reasonable representation of other observables or share the same
response to perturbation. For example, when predators attack a
fish school, information selectively becomes amplified to produce
a rapid collective response (27–30). Models can produce qualita-
tively similar patterns to those seen during predation (31, 32), but
they are likely to have difficulty generating the same dynamic
response. This is because most models assume that individual
movement decisions result from averaging pairwise interactions
with neighbors. Averaging has the effect of damping out cues
because each cue gets “diluted” when it is combined with the
others in the average, making model groups difficult to perturb
and hence failing to transmit pertinent information.

Here we introduce a force-based approach for inferring inter-
action rules directly from empirical data. Instead of assuming a
specific model based on biological ansatze and using data to fit its
parameters or test its validity, we map the instantaneous accel-
eration (behavioral response) of a focal fish due to the influence
of its neighbors. Following a classical mechanics framework, we
define the effective social force (33, 34) as the total force F on a
focal fish required to produce the observed acceleration a (using

Author contributions: Y.K., C.H., and I.D.C. designed research; Y.K., K.T., C.C.I., C.H., and
I.D.C. performed research; Y.K. and K.T. analyzed data; and Y.K., K.T., C.C.I., C.H.,
and I.D.C. wrote the paper.

The authors declare no conflict of interest.

*This Direct Submission article had a prearranged editor.

Freely available online through the PNAS open access option.
1To whom correspondence should be addressed. E-mail: icouzin@princeton.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/
doi:10.1073/pnas.1107583108/-/DCSupplemental.

18720–18725 ∣ PNAS ∣ November 15, 2011 ∣ vol. 108 ∣ no. 46 www.pnas.org/cgi/doi/10.1073/pnas.1107583108

F ¼ ma and considering its mass to be 1). The effective force
includes all physical forces in the system (hydrodynamics and
self-propulsion), but their details can be ignored as their influ-
ences are accounted for in the total force responsible for the re-
sulting acceleration. Indeed, the actual motion of individual fish
may be ruled by a complex stochastic decision-making process
based on interindividual interactions, environmental conditions,
differences in body size (35), and even on hidden properties such
as the internal state of each fish (36). However, such complex
biological reactions can still be interpreted, on average, as indi-
vidual fish accelerations in response to a given configuration of its
neighbors’ positions and velocities (37).

Our approach allows us to systematically study how social in-
teractions depend on the motion of neighbors. In a shoal of many
fish, it is difficult to infer these interactions without assumptions,
because how individuals respond to one neighbor is confounded
with how they combine their responses to multiple neighbors. To
disentangle these two issues, we begin with a group of only two
fish and compute the acceleration of one fish as a function of the
position and velocity of its neighbor. Looking at shoals of three
fish then allows us to calculate how the measured effective forces
differ from what would be predicted if the fish simply averaged
their would-be response to each of their neighbors. We find that
the averaged quantities computed result in clear signatures de-
scribing the effective social response, and these persist in larger
groups of 10 and 30 fish, revealing common mechanisms of
coordination. Although the pairwise interactions capture the qua-
litative structure of the force, we find evidence for higher-order
interactions that are not present in existing models of animal
groups. In contrast to model-based approaches where hypothe-
sized behavioral rules serve as inputs, this approach has the
advantage that unexpected rules can be found.

Results
We begin by analyzing the free-swimming behavior of schools of
just two fish. Pairs of golden shiners were placed in a large shallow
tank and filmed from above at high spatial and temporal resolu-
tion. Shoals were approximately two-dimensional, which is appro-
priate as shiners often occupy shallow lakes in the wild (38, 39). In
order to quantify fish behavior, we used custom tracking software
to convert over 13 h of video data per group size for 2- and 3-fish
shoals and over 6 h of video data per group size for 10- and 30-fish
shoals into trajectories consisting of the center-of-mass positions
of each fish at each point in time (see SI Materials and Methods).

Analysis of Two-Fish Groups. If we consider one fish the focal fish
and place it at the center of our coordinate system heading north
(Fig. 1A), the neighboring fish tends to be approximately 1.5–2
body lengths away and at a preferred angle of approximately
−60 to 60° with respect to the focal fish’s heading (Fig. 1B). The
neighboring fish is unlikely to be closer to the focal fish than ap-
proximately 1 body length or farther away than approximately 4
body lengths, and the fish school also tends to be elongated in its
direction of motion (Fig. 1B).
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fish is to the front of or behind the focal fish (its distance along
the focal fish’s direction of motion, or its “front-back distance”),
but is relatively insensitive to how far the neighbor is to its sides
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Fig. 1. Two-fish configurations. (A) Diagram of dynamical variables. As the fish swim freely in the tank, their bodies form a natural Cartesian coordinate
system. We place the focal fish at the origin, pointing north, and measure the relative position and heading of the neighboring fish. The effective force on the
focal fish (i.e., its measured acceleration) is decomposed into its speeding and turning components. (B) Probability of finding the neighboring fish at a given
position with respect to the focal fish using the framework in A. Each time the neighbor is at a particular position, one count is added to the corresponding bin
(see SI Materials and Methods). Contours represent isolevels at 10, 50, and 90% of the “highest” (most visited) bin, which contains 37,481 events. (C and D)
Speeding and turning components, respectively, of the mean measured effective force on the focal fish as a function of the neighboring fish’s position. Note
that regions of zero effective force correspond to high density regions in B. For all force maps, colors utilize the same scale. For the speeding forces, positive
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Much of systems-level neuroscience has focused on studying the 
neural circuit mechanisms that enable an individual organism to 
sense and navigate its environment. Recently though, there is 
mounting interest in the mechanisms that mediate social interactions 
between individuals (Amadei, Johnson et al, Nature, 2017).

However, natural social interactions between individuals are highly 
complex, prompting the need for computational tools to facilitate the 
characterization, quantification and modeling of social behavior in 
order to be able to study their neural circuit bases.

Here, we employed a behavioral mapping technique previously 
applied to fruit flies to measure anticipated social differences 
between socially interacting prairie voles, a premier rodent model for 
studying pair bonding behavior (Berman et al., 2014; Young and 
Wang, 2004).

Schematic of the recording apparatus.

1)

Overview of the data analysis pipeline. 

2)

The top-down view of the recorded image

3)

RESULTS

HYPOTHESIS

CONCLUSION 
• We created a preliminary behavioral space of vole behavior, 
based on two triads of voles. This space provides a representa-
tion for the animals’ stereotyped behaviors during the sessions 
(Figures 4 & 5). 

• Qualitatively and quantitatively, we see that regions within 
the map correspond to distinct stereotyped behaviors, and in 
both triads, we observed that behavioral maps for the same an-
imals varied across social context (e.g. the map of a male sub-
ject with its female partner was different from that of the male 
subject with the stranger female) (Figures 6, 7 & 8 ) . 

BACKGROUND
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Behavioral Space Probability Density 4)

Each peak in the distribution corresponds to a distinct stereotyped 
movement. The black lines are the boundaries found from a water-
shed transform and are included to guide the eye. 

We hypothesized that the trajectory of stereotyped social behaviors is 
predictable from a latent internal state of “pair-bondedness”; and that 
modeling the dynamics of this latent state enables quantitative 
prediction of future social interactions between pair-bonded prairie 
voles. Hence, we further hypothesized that the behavioral space of a 
vole with its partner would be different from the behavioral space of 
the same vole with a stranger.

MATERIALS AND METHODS
In order to quantify the social interaction, a pair of dyadic interactions 
for two groups of 3 voles ( “subject” male vole paired with either “part-
ner” female or “stranger” female voles - x2) were video recorded for 
three hours.  A “Partner” and “Subject” vole in a triad had been cohabi-
tated with each other for 48 hours in a home cage prior to video re-
cording. “Stranger” voles had not been cohabitated with, and were not 
related to, the Subject vole in its triad. The voles were placed in a re-
cording chamber separated with a transparent plexiglas (Figures 1 & 
2). Holes were drilled through the plexiglas to allow the two animals to 
see, smell and hear each other, but prevent direct contact. For video 
analysis, we applied a behavioral mapping technique previously ap-
plied to fruit flies to measure anticipated social differences between 
pairs of voles (Figure 3).

RGB CameraRecording 
Chamber

Raw images of the prairie voles are segmented from the background, 
rescaled to a reference size and then aligned, creating a stack of 
images in the co-moving and co-rotating frame of the vole. These 
images are then decomposed via PCA into a relatively 
low-dimensional set of time series. A Morlet wavelet transform is 
subsequently applied to these time series, creating a spectrogram for 
each postural mode separately. After normalization, each point in time 
is mapped into a two-dimensional plane via t-SNE. Lastly, a watershed 
transform is applied to a Gaussian-smoothed density over these 
points, isolating individual peaks from one another (Berman et al., 
2014).

FIRST TRIAD6)

Map of Partner, with Subject Map of Stranger, with Subject

Map of Subject, with Partner Map of Subject, with Stranger

SECOND TRIAD7)

Map of Partner, with Subject Map of Stranger, with Subject

Map of Subject, with Partner Map of Subject, with Stranger

Figure 6 and 7.  Comparison between the pair of dyadic interactions for two groups of 3 voles. The subjects in both cases show qualitatively different 
stereotyped behavior when interacting with their partners as to when they interact with the strangers. 
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• Apply methods to fully interacting voles without a barrier.

• Decipher whether stereotypy and predictability in behavior 
can be observable signatures of latent states.

• Combine behavioral space mapping with electrophysiology.

• Predict the underlying neural dynamics driving animals’ 
social interactions.

FUTURE DIRECTIONSThe graph represents the calculation of Jensen-Shannon (J-S) Divergence, 
a measure of distance between two distribution, where J-S Divergence is 
between 0 and 1. 0 means there is no difference between the distributions 
and 1 means there is complete difference between them. This quantita-
tively indicates that the subject’s interaction with the partner is different 
from its interaction with the stranger in both cases.

8) Behavioral Map Dissimilarity
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Each colored region coarsely groups similar behavior patterns.
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How can we think about predictability as a dynamical property?

“library” of points in the attractor manifold built
from Y, MY , and points in the X manifold, MX,
where these two manifolds are constructed from
lagged coordinates of the time-series variables Y
and X, respectively (3, 19, 24) (movies S1 and S2).

Essentially, the idea is to see whether the time
indices of nearby points on the Y manifold can be
used to identify nearby points onMX. If so, then one
can use Y to estimate X and vice versa. This pro-
cedure is illustrated in Fig. 2 and movie S3, with
full technical details including an algorithm in (26).

Note that CCM is related to the general notion
of cross prediction (3, 25) but with important dif-
ferences. First, CCM estimates “states” across varia-
bles and does not forecast how the system “evolves”
on the manifold. This eliminates possible infor-
mation loss from chaotic dynamics (Lyapunov di-
vergence) and accommodates nondynamic (i.e.,
random) variables. More important, CCM involves
convergence, a key property that distinguishes cau-
sation from simple correlation. Convergence means
that cross-mapped estimates improve in estima-

tion skill with time-series length L (sample size
used to construct a library) (Fig. 3A, fig. S2, and
box S1). With more data, the trajectories defining
the attractor fill in, resulting in closer nearest neig-
hbors and declining estimation error (a higher cor-
relation coefficient) as L increases (Fig. 2). Thus,
CCM becomes a necessary condition for causation.
Indeed, failure to account for convergence explains
conflicting results reported in the literature with
related methods (supplementary text and fig. S5).

In practical applications, where shadowmanifolds
are low-dimensional approximations of the true
system, convergencewill be limited by observation-
al error, process noise, and time-series lengthL. Thus,
with limited or noisy field data, CCM is demon-
strated by predictability that increases with L (fig.
S3). See (26) for a discussion of data requirements.

Framework for identifying causation, case
(i) Bidirectional causality via functional coupling.
Bidirectional causality is analogous to the concept
of “feedback” between two time series described
by Granger (18) and is the primary case covered
by Takens (19). Simply put, if variables are mu-
tually coupled (e.g., predator and prey), they will
crossmap in both directions (Fig. 3A and fig. S1A).
Thus, each variable can be estimated from the other
(predator histories can estimate prey states). Figure
3B gives examples of the general case i.

Notice that as the strength of coupling increases,
information becomesmore distinct in the affected
variables. As a result, their manifolds will contain
stronger historical signatures of the causes. In
Fig. 1 (Eq. 1), for example, where by,x >> bx,y the
much stronger effect of species X on Y implies
faster convergence for predicting X than for Y
(Fig. 3A). Thus, all things equal, the relative skill
of cross mapping can indicate the relative strength
of causative effect (Fig. 3B).

Framework for identifying causation, case
(ii) Unidirectional causality. Here, species X in-
fluences the dynamics of Y, but Y has no effect on
X (Fig. 3C and fig. S1B). This describes an amensal
or commensal relationship, or where X represents
external environmental forcing.

Figure 3C examines the systemwhen bx,y = 0.
Notice that with moderately strong forcing from
X (via by,x), even though Y exerts no effect, there
may still be partial cross mapping of Yarising from
the contemporaneous dependence of Yon X. How-
ever, this statistical effect is not convergent (shown
by the asymptotic level curves with respect to L in
Fig. 3E).With extremely strong forcing, the intrinsic
dynamics of the forced variable become subordinate
to the forcing variable, leading to the well-studied
phenomenon of “synchrony” (27). The red plateau
in Fig. 3E shows that bidirectional convergence
can occur with strong forcing. Thus, strong forcing
(synchrony)must be ruled out forCCM tounequiv-
ocally imply bidirectional coupling, although it still
impliesmembership in a common dynamic system.

Transitivity. Notice that causation is transitive
(e.g., if foxes prey on rabbits, and rabbits eat grass,
then foxes and grass are causally linked). More for-
mally, X⇔ Y⇔ Z implies X⇔ Z, whether or not X
and Z interact directly. Similarly, for unidirectional

0.2

0.4

0.6

0.8

1
A B C

Time

X(t+1) = X(t) [3.8 - 3.8 X(t) -0.02 Y(t)]
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Fig. 1. Mirage correlations. (A toC) Three samples froma single run of a coupled two-species nonlinear logistic
difference system with chaotic dynamics. Variables X (blue) and Y (red) appear correlated in the first time
segment (A), anticorrelated in the second time segment (B), and lose all coherence in the third time segment (C)
with alternating interspersed periods of positive, negative, and zero correlation. Although the system is
deterministic and dynamically coupled, there is no long-term correlation (n = 1000, r = 0.0054, P = 0.864).

M

m(t) = [X(t),Y(t),Z(t)]

MX

x(t) = [X(t),X(t-τ),X(t-2τ)]

MY

y(t) = [Y(t),Y(t-τ),Y(t-2τ)]

Fig. 2. Convergent cross mapping (CCM) tests for correspondence between shadow manifolds. This example
based on the canonical Lorenz system (a coupled system in X, Y, and Z; eq. S7 without V) shows the attractor
manifold for the original system (M) and two shadowmanifolds,MX andMY, constructed using lagged-coordinate
embeddings of X and Y, respectively (lag= t). Because X and Y are dynamically coupled, points that are nearby on
MX (e.g., within the red ellipse) will correspond temporally to points that are nearby onMY (e.g., within the green
circle). That is, the points inside the red ellipse and green circle will have corresponding time indices (values for t).
This enables us to estimate states across manifolds using Y to estimate the state of X and vice versa using nearest
neighbors (3). With longer time series, the shadowmanifolds become denser and the neighborhoods (ellipses of
nearest neighbors) shrink, allowing more precise cross-map estimates (see movies S1 to S3).
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How can we think about predictability as a dynamical property?

“library” of points in the attractor manifold built
from Y, MY , and points in the X manifold, MX,
where these two manifolds are constructed from
lagged coordinates of the time-series variables Y
and X, respectively (3, 19, 24) (movies S1 and S2).

Essentially, the idea is to see whether the time
indices of nearby points on the Y manifold can be
used to identify nearby points onMX. If so, then one
can use Y to estimate X and vice versa. This pro-
cedure is illustrated in Fig. 2 and movie S3, with
full technical details including an algorithm in (26).

Note that CCM is related to the general notion
of cross prediction (3, 25) but with important dif-
ferences. First, CCM estimates “states” across varia-
bles and does not forecast how the system “evolves”
on the manifold. This eliminates possible infor-
mation loss from chaotic dynamics (Lyapunov di-
vergence) and accommodates nondynamic (i.e.,
random) variables. More important, CCM involves
convergence, a key property that distinguishes cau-
sation from simple correlation. Convergence means
that cross-mapped estimates improve in estima-

tion skill with time-series length L (sample size
used to construct a library) (Fig. 3A, fig. S2, and
box S1). With more data, the trajectories defining
the attractor fill in, resulting in closer nearest neig-
hbors and declining estimation error (a higher cor-
relation coefficient) as L increases (Fig. 2). Thus,
CCM becomes a necessary condition for causation.
Indeed, failure to account for convergence explains
conflicting results reported in the literature with
related methods (supplementary text and fig. S5).

In practical applications, where shadowmanifolds
are low-dimensional approximations of the true
system, convergencewill be limited by observation-
al error, process noise, and time-series lengthL. Thus,
with limited or noisy field data, CCM is demon-
strated by predictability that increases with L (fig.
S3). See (26) for a discussion of data requirements.

Framework for identifying causation, case
(i) Bidirectional causality via functional coupling.
Bidirectional causality is analogous to the concept
of “feedback” between two time series described
by Granger (18) and is the primary case covered
by Takens (19). Simply put, if variables are mu-
tually coupled (e.g., predator and prey), they will
crossmap in both directions (Fig. 3A and fig. S1A).
Thus, each variable can be estimated from the other
(predator histories can estimate prey states). Figure
3B gives examples of the general case i.

Notice that as the strength of coupling increases,
information becomesmore distinct in the affected
variables. As a result, their manifolds will contain
stronger historical signatures of the causes. In
Fig. 1 (Eq. 1), for example, where by,x >> bx,y the
much stronger effect of species X on Y implies
faster convergence for predicting X than for Y
(Fig. 3A). Thus, all things equal, the relative skill
of cross mapping can indicate the relative strength
of causative effect (Fig. 3B).

Framework for identifying causation, case
(ii) Unidirectional causality. Here, species X in-
fluences the dynamics of Y, but Y has no effect on
X (Fig. 3C and fig. S1B). This describes an amensal
or commensal relationship, or where X represents
external environmental forcing.

Figure 3C examines the systemwhen bx,y = 0.
Notice that with moderately strong forcing from
X (via by,x), even though Y exerts no effect, there
may still be partial cross mapping of Yarising from
the contemporaneous dependence of Yon X. How-
ever, this statistical effect is not convergent (shown
by the asymptotic level curves with respect to L in
Fig. 3E).With extremely strong forcing, the intrinsic
dynamics of the forced variable become subordinate
to the forcing variable, leading to the well-studied
phenomenon of “synchrony” (27). The red plateau
in Fig. 3E shows that bidirectional convergence
can occur with strong forcing. Thus, strong forcing
(synchrony)must be ruled out forCCM tounequiv-
ocally imply bidirectional coupling, although it still
impliesmembership in a common dynamic system.

Transitivity. Notice that causation is transitive
(e.g., if foxes prey on rabbits, and rabbits eat grass,
then foxes and grass are causally linked). More for-
mally, X⇔ Y⇔ Z implies X⇔ Z, whether or not X
and Z interact directly. Similarly, for unidirectional
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Fig. 2. Convergent cross mapping (CCM) tests for correspondence between shadow manifolds. This example
based on the canonical Lorenz system (a coupled system in X, Y, and Z; eq. S7 without V) shows the attractor
manifold for the original system (M) and two shadowmanifolds,MX andMY, constructed using lagged-coordinate
embeddings of X and Y, respectively (lag= t). Because X and Y are dynamically coupled, points that are nearby on
MX (e.g., within the red ellipse) will correspond temporally to points that are nearby onMY (e.g., within the green
circle). That is, the points inside the red ellipse and green circle will have corresponding time indices (values for t).
This enables us to estimate states across manifolds using Y to estimate the state of X and vice versa using nearest
neighbors (3). With longer time series, the shadowmanifolds become denser and the neighborhoods (ellipses of
nearest neighbors) shrink, allowing more precise cross-map estimates (see movies S1 to S3).
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Problem: We don’t have a continuous dynamical system…

flies using a custom-built tracking setup, producing more than 21
million images (18).
These data were used to generate a 2D map of fly behavior based

on an unsupervised approach that automatically identifies stereo-
typed actions (Fig. 1A; for full details, see ref. 18). Briefly, this
approach takes a set of translationally and rotationally aligned im-
ages of the flies and decomposes the dynamics of the observed pixel
values into a low-dimensional basis set describing the flies’ posture.
Time series are produced by projecting the original pixel values onto
this basis set, and the local spectrogram of these trajectories is then
embedded into two dimensions (19). Each position in the behav-
ioral map corresponds to a unique set of postural dynamics, with
nearby points representing similar motions, i.e., those involving re-
lated body parts executing similar temporal patterns.
In the resulting behavioral space, z, we estimate the probability

distribution function PðzÞ and find that it contains a set of peaks
corresponding to short segments of movement that are revisited
multiple times by multiple individuals (Fig. 1A). Pauses in the
trajectories through this space, zðtÞ, are interspersed with quick
movements between the peaks. These pauses in zðtÞ at a partic-
ular peak correspond to the fly performing one of a large set of
distinct, stereotyped behaviors such as right wing grooming,
proboscis extension, or alternating tripod locomotion (18). In all,
we identify 117 unique stereotyped actions, with similar behaviors,
i.e., those that use similar body parts at similar frequencies, lo-
cated near each other in the behavioral map. A watershed algo-
rithm, combined with a threshold on dzðtÞ=dt, is used to separate
the peaks and to segment each movie into a sequence of discrete,
stereotyped behaviors.
In this paper, we treat pauses at these peaks to be our states, the

lowest level of description of behavioral organization, and investigate
the pattern of behavioral transitions among these states over time.
We count time in units of the transitions between states, so we have
a description of behavior as a discrete variable SðnÞ that can take on
N = 117 different values at each discrete time n. Note that because
we count time in units of transitions, we always have Sðn+ 1Þ≠ SðnÞ.

Combining data from all 59 flies, we observe a mean residency time
in a behavioral state of 0.21 s and an average transition time be-
tween pauses at behavioral space peaks of 0.13 s. In total, we ob-
serve ≈ 6.4× 105 behavioral transitions, or about 104 per experiment.

Transition Matrices and Non-Markovian Time Scales
To investigate the temporal pattern of behaviors, we first calculated
the behavioral transition matrix over different time scales

½TðτÞ$i,j ≡ pðSðn+ τÞ= ijSðnÞ= jÞ, [1]

which describes the probability that the animal will go from state
j to state i after τ transition steps. We expect that this distribution
becomes less and less structured as τ increases because we lose
the ability to make predictions of the future state as the horizon
of our predictions extends further. In addition, it will be useful to
think about these matrices in terms of their eigendecompositions

½TðτÞ$i,j =
X

μ

λμðτÞuμi ðτÞv
μ
j ðτÞ, [2]

where uμ ≡ fuμi g and vμ ≡ fvμi g are the left and right eigenvectors,
respectively, and λμðτÞ is the eigenvalue with the μth largest
modulus. Because probability is conserved in the transitions,
the largest eigenvalue λ1ðτÞ= 1, and v1ðτÞ is proportional to the
stationary distribution over states at long times. All of the other
eigenvalues have magnitudes less than 1, jλk≠1ðτÞj< 1, and de-
scribe the loss of predictability over time, as shown in more
detail below.
The matrix Tðτ= 1Þ describes the probability of transitions from

one state to the next, the most elementary steps of behavior (Fig.
1B). To the eye, this transition matrix appears modular, with most
transitions out of any given state only going to one of a handful of
other states. By appropriately organizing the states in Fig. 1B,
Tðτ= 1Þ takes on a nearly block-diagonal structure, which can be
broken up into modular clusters using the information bottleneck
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Fig. 1. Transition probabilities and behavioral
modularity. (A) Behavioral space probability density
function (PDF). Here, each peak in the distribution
corresponds to a distinct stereotyped movement.
(B) One-step Markov transition probability matrix
Tðτ= 1Þ. The 117 behavioral states are grouped by
applying the predictive information bottleneck cal-
culation and allowing six clusters (Eq. 4). Black lines
denote the cluster boundaries. (C) Transitions rates
plotted on the behavioral map. Each red point rep-
resents the maximum of the local PDF, and the black
lines represent the transition probabilities between
the regions. Line thicknesses are proportional to the
corresponding value of Tðτ=1Þij, and right-handed
curvature implies the direction of transmission. For
clarity, all lines representing transition probabilities
of less than 0.05 are omitted. (D) The clusters found
using the information bottleneck approach (colored
regions) are contiguous in the behavioral space.
Behavioral labels associated with each partitioned
graph cluster from B are shown. Black line thick-
nesses represent the conditional transition proba-
bilities between clusters. All transition probabilities
less than 0.05 are omitted.
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Much of systems-level neuroscience has focused on studying the 
neural circuit mechanisms that enable an individual organism to 
sense and navigate its environment. Recently though, there is 
mounting interest in the mechanisms that mediate social interactions 
between individuals (Amadei, Johnson et al, Nature, 2017).

However, natural social interactions between individuals are highly 
complex, prompting the need for computational tools to facilitate the 
characterization, quantification and modeling of social behavior in 
order to be able to study their neural circuit bases.

Here, we employed a behavioral mapping technique previously 
applied to fruit flies to measure anticipated social differences 
between socially interacting prairie voles, a premier rodent model for 
studying pair bonding behavior (Berman et al., 2014; Young and 
Wang, 2004).

Schematic of the recording apparatus.

1)

Overview of the data analysis pipeline. 

2)

The top-down view of the recorded image

3)

RESULTS

HYPOTHESIS

CONCLUSION 
• We created a preliminary behavioral space of vole behavior, 
based on two triads of voles. This space provides a representa-
tion for the animals’ stereotyped behaviors during the sessions 
(Figures 4 & 5). 

• Qualitatively and quantitatively, we see that regions within 
the map correspond to distinct stereotyped behaviors, and in 
both triads, we observed that behavioral maps for the same an-
imals varied across social context (e.g. the map of a male sub-
ject with its female partner was different from that of the male 
subject with the stranger female) (Figures 6, 7 & 8 ) . 

BACKGROUND
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Behavioral Space Probability Density 4)

Each peak in the distribution corresponds to a distinct stereotyped 
movement. The black lines are the boundaries found from a water-
shed transform and are included to guide the eye. 

We hypothesized that the trajectory of stereotyped social behaviors is 
predictable from a latent internal state of “pair-bondedness”; and that 
modeling the dynamics of this latent state enables quantitative 
prediction of future social interactions between pair-bonded prairie 
voles. Hence, we further hypothesized that the behavioral space of a 
vole with its partner would be different from the behavioral space of 
the same vole with a stranger.

MATERIALS AND METHODS
In order to quantify the social interaction, a pair of dyadic interactions 
for two groups of 3 voles ( “subject” male vole paired with either “part-
ner” female or “stranger” female voles - x2) were video recorded for 
three hours.  A “Partner” and “Subject” vole in a triad had been cohabi-
tated with each other for 48 hours in a home cage prior to video re-
cording. “Stranger” voles had not been cohabitated with, and were not 
related to, the Subject vole in its triad. The voles were placed in a re-
cording chamber separated with a transparent plexiglas (Figures 1 & 
2). Holes were drilled through the plexiglas to allow the two animals to 
see, smell and hear each other, but prevent direct contact. For video 
analysis, we applied a behavioral mapping technique previously ap-
plied to fruit flies to measure anticipated social differences between 
pairs of voles (Figure 3).

RGB CameraRecording 
Chamber

Raw images of the prairie voles are segmented from the background, 
rescaled to a reference size and then aligned, creating a stack of 
images in the co-moving and co-rotating frame of the vole. These 
images are then decomposed via PCA into a relatively 
low-dimensional set of time series. A Morlet wavelet transform is 
subsequently applied to these time series, creating a spectrogram for 
each postural mode separately. After normalization, each point in time 
is mapped into a two-dimensional plane via t-SNE. Lastly, a watershed 
transform is applied to a Gaussian-smoothed density over these 
points, isolating individual peaks from one another (Berman et al., 
2014).

FIRST TRIAD6)

Map of Partner, with Subject Map of Stranger, with Subject

Map of Subject, with Partner Map of Subject, with Stranger

SECOND TRIAD7)

Map of Partner, with Subject Map of Stranger, with Subject

Map of Subject, with Partner Map of Subject, with Stranger

Figure 6 and 7.  Comparison between the pair of dyadic interactions for two groups of 3 voles. The subjects in both cases show qualitatively different 
stereotyped behavior when interacting with their partners as to when they interact with the strangers. 
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• Apply methods to fully interacting voles without a barrier.

• Decipher whether stereotypy and predictability in behavior 
can be observable signatures of latent states.

• Combine behavioral space mapping with electrophysiology.

• Predict the underlying neural dynamics driving animals’ 
social interactions.

FUTURE DIRECTIONSThe graph represents the calculation of Jensen-Shannon (J-S) Divergence, 
a measure of distance between two distribution, where J-S Divergence is 
between 0 and 1. 0 means there is no difference between the distributions 
and 1 means there is complete difference between them. This quantita-
tively indicates that the subject’s interaction with the partner is different 
from its interaction with the stranger in both cases.

8) Behavioral Map Dissimilarity

Behavioral Map5)

Each colored region coarsely groups similar behavior patterns.
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At the LHC, this task will be performed by the 4 detectors planted around its 27 km 

circumference: ALICE, LHCb, CMS, and ATLAS.  ALICE (A Lead Ion Collider 

Experiment) and LHCb are smaller detectors which will focus on heavy ion physics and 

b-physics respectively, whereas CMS (Compact Muon Solenoid) and ATLAS (A 

Torroidal LHC ApparatuS) are large, multi-purpose detectors designed to test the wide 

variety of physics goals described in the previous section.   

This thesis focuses on the Monitored Drift Tube (MDT) System of the ATLAS 

muon spectrometer.  A cut-away view of ATLAS13 is shown below in Figure 1.3.   

Figure 1.3 – The ATLAS Detector 

 

In general, ATLAS is designed to measure all hadronic and electromagnetic 

components of the initial interaction.  Primarily emphasis, however, has been placed on 

μ+

μ−

μ+

μ−

 5

Figure 1.2 – Signal Significance for the ATLAS Higgs Boson Search 

 

 
1.2.3) Other Physics Channels 

 Although the search for the Higgs Boson is the highest profile physics aim at the 

LHC, it is by no means the only area of interest to be explored.  The LHC should provide 

insight into many well-understood and exotic physics channels. 

 One primary goal is to verify and test the limits of the Standard Model which 

were established at the Tevatron and LEP.  This largely involves precisely measuring the 

parameters which make-up the theory.  Of particular interest are measurements of the 

gauge boson coupling constants, Charge-Parity (CP) violation in b-quark processes, the 

elements of the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix, as well as the 

masses of the rW and 0Z  Bosons and the top quark14,15.   

 Along with these tests of the Standard Model, it is hoped that results from the 

LHC will give insight into the veracity of the many models which are designed to 
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