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21.8 

1A 4.45. 114.8 18.4 

1.4 

ONTOGENY OF GROOMING 

Fig. 1. Ontogeny of grooming. Large numbers represent order in which body areas were 
first groomed in development, and small numbers represent the mean age (in days) at 

which grooming of these body areas first appeared. 

Results. 
The ontogeny of grooming is represented in Fig. 1. Here both the 

order in which areas of the body are first groomed and the mean age at 
which these individual acts appear in development are shown. The first 
grooming movements to appear, by one or 2 days after birth, were 
motions of the forepaws that looked like nose wipes but usually did not 
reach the nose. By Day 3, wiping movements reliably contacted the nose, 
and licking of the forepaws followed by Day 5. Although eye wiping and 
ear wiping movements appeared on Days 6-8, the integration of these 
acts into a sequence of adult head grooming did not occur until Day 11. 
Licking or biting of more posterior parts of the body appeared later and 
included the belly (Day 14), hip (Day 15), back (Day 18), and anogenital 
region and tail (Day 20). 

Thus, whereas grooming movements begin to appear shortly after 
birth, it takes approximately three weeks for the complete adult pattern to 
develop. Furthermore, the development of grooming actions by forepaws 
and mouth follows an overall cephalocaudal gradient, beginning with 
nose wipes on post-natal Days 2-3 and ending with grooming of the 
anogenital and tail regions just before weaning (Days 18-20). 

An important observation to note is that grooming of anterior parts of 
the body with the hindpaws appeared much earlier than grooming of 
more posterior parts with the mouth and forepaws. In addition, the order 
in which these scratching movements emerged was not cephalocaudal, 
nor was it synchronous with forepaw wiping. By Day 6, for example, rats 
scratched their heads with their hindpaws, and by Day 11 they scratched 
their heads with their hindpaws and licked their hindpaws. Thus the on- 
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ty of 29 % in each of these cases. Furthermore, the order in which body 
areas were scratched was also unpredictable; that is, no clear rank order 
could be constructed. 

Another way of representing the sequential organization of grooming 
behaviour is by examining how often transitions occurred between pairs 
of groomed body areas. Table 1 contains such an analysis. Letters on the 

TABLE 1 

Observedfrequencies of transition between pairs of groomed body areas 

FOL L0 W I N G 

N E Ea B S H Bo AG 
+4f - - 

N X 25 3 0 1 0 1 0 

E a X 17 1 5 3 2 1 

0Ea H 0 X 14 6 2 4 1 
z - - - - 

0B 0 2 1 X 3 11 3 2 
- ~~~~+4 

B O I r 

1 0 1 4 X 2 2 3 

+4 

Be 0 0 1 1 3 1 X 9 

AG O 0 3 0 2 0 1 X 

Plus and minus signs denote transitions which occurred more or less frequently than 
expected by chance. One sign: p<.05. Two signs p<.01. 

top and side of the matrix represent the 8 body areas groomed most fre- 
quently: nose (N), eye (E), ear (Ea), back (B), side (S), hip (H), and 
anogenital region (AG). Those listed on the left are the antecedent target 
areas of each pair, and those listed along the top of the table are the target 
areas which follow in each pair. Within each cell of the matrix are placed 
(a) the observed frequency of transition between each member of a pair of 
groomed body areas, and (b) plus or minus signs denoting those transi- 
tions that occur significantly more ( + ) or less (-) often than would be 
predicted by chance. 1) In calculating these values repetitions of grooming 
acts within a bout were omitted; therefore, for example, after the ear was 

1) These results were obtained by conducting an analysis of residuals appropriate for 
cross-classified tables. This was done after adjusting the marginal values for structural 
zeros, i.e., a priori empty cells in the matrix. The specific formula upon which the 
statistical analysis was based can be found in HABERMAN (1973) or EVERITT (1975); the 
computer program is listed in the BMDP P-series manual (BROWN, 1977). 
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FIG. 2. Long time scale transition matrices and non–Markovian dynamics. (A) Markov model transition matrix for ⌧ = 100,
TM (100), from Eq (3). (B and C) Transition matrices for ⌧ = 100 and ⌧ = 1, 000, respectively, from Eq (1). (D) Absolute
values of the leading eigenvalues of the transition matrices T(⌧) as a function of ⌧ . The curves represent the average over
all flies, and thicknesses represent the standard error of the mean. Dashed lines are the predictions for the Markov model
TM (⌧). The black line is a noise floor, corresponding to the typical value of the second largest eigenvalue in a transition matrix
calculated from random temporal shu✏ing of our finite data set. (E) Eigenmode decay rates, rµ(⌧) ⌘ � log |�µ(⌧)|/⌧ , as a
function of the number of transitions. Line colors represent the same modes as in (D) and the black line again corresponds to
a “noise floor,” in this case the largest decay rate that we can resolve above the random structures present in our finite sample.

tions:

[T(⌧)]i,j =
X

µ

�µ(⌧)uµ
i (⌧)vµ

j (⌧), (2)

where uµ
⌘ {uµ

i } and vµ
⌘ {vµ

i } are the left and right
eigenvectors, respectively, and �µ(⌧) is the eigenvalue
with the µth largest modulus. Because probability is
conserved in the transitions, the largest eigenvalue will
always be equal to one, �1(⌧) = 1, and v1

i (⌧) describes
the stationary distribution over states at long times. All
the other eigenvalues have magnitudes less than one,
|�µ 6=1(⌧)| < 1, and describe the loss of predictability over
time, as shown in more detail below.

The matrix T(⌧ = 1) describes the probability of tran-
sitions from one state to the next, the most elementary
steps of behavior (Fig. 1B). To the eye, this transition
matrix appears modular, with most transitions out of
any given state only going to one of a handful of other
states. By appropriately organizing the states in Figure
1B, T(⌧ = 1) takes on a nearly block-diagonal structure,
which can be broken up into modular clusters using the
information bottleneck formalism (see below). Plotting
this matrix on the behavioral map itself (Fig. 1C), we
see that the transitions are largely localized, with nearly
all large probability transitions occurring between nearby
behaviors. Furthermore, the transition clusters are con-
tiguous in the behavioral space, defining gross categories

of motion including locomotion, behaviors involving an-
terior parts of the body etc. (Fig. 1D).

It is important to note that T(⌧ = 1) does not di-
rectly contain information about the location of behav-
ioral states in the two dimensional map, and hence any
relationship we observe between the transition structure
and the patterning of behaviors in the map is a con-
sequence of the animal’s behavior and not the way we
construct the analysis. We thus conclude that behavioral
transitions are mostly restricted to occur between similar
actions—e.g., grooming behaviors are typically followed
by other grooming behaviors of close-by body parts and
animals transition between locomotion gates systemati-
cally by changing gate speed and velocity. These observa-
tions are consistent with classical ideas of postural facili-
tation and previous observations that transitions largely
occur between similar behaviors [9, 20–22].

We begin to see the necessity of looking at longer time
scales as we measure the transition matrices for ⌧ � 1.
If the observed dynamics are purely Markovian, then the
transitions from one state to the next do not depend
on the history of behavior, and T(⌧ = 1) provides a
complete characterization of the system. In particular,
if the behavior is Markovian then we can calculate the
transition matrix after ⌧ state just by iterating the matrix
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FIG. 2. Long time scale transition matrices and non–Markovian dynamics. (A) Markov model transition matrix for ⌧ = 100,
TM (100), from Eq (3). (B and C) Transition matrices for ⌧ = 100 and ⌧ = 1, 000, respectively, from Eq (1). (D) Absolute
values of the leading eigenvalues of the transition matrices T(⌧) as a function of ⌧ . The curves represent the average over
all flies, and thicknesses represent the standard error of the mean. Dashed lines are the predictions for the Markov model
TM (⌧). The black line is a noise floor, corresponding to the typical value of the second largest eigenvalue in a transition matrix
calculated from random temporal shu✏ing of our finite data set. (E) Eigenmode decay rates, rµ(⌧) ⌘ � log |�µ(⌧)|/⌧ , as a
function of the number of transitions. Line colors represent the same modes as in (D) and the black line again corresponds to
a “noise floor,” in this case the largest decay rate that we can resolve above the random structures present in our finite sample.

tions:

[T(⌧)]i,j =
X

µ

�µ(⌧)uµ
i (⌧)vµ

j (⌧), (2)

where uµ
⌘ {uµ

i } and vµ
⌘ {vµ

i } are the left and right
eigenvectors, respectively, and �µ(⌧) is the eigenvalue
with the µth largest modulus. Because probability is
conserved in the transitions, the largest eigenvalue will
always be equal to one, �1(⌧) = 1, and v1

i (⌧) describes
the stationary distribution over states at long times. All
the other eigenvalues have magnitudes less than one,
|�µ 6=1(⌧)| < 1, and describe the loss of predictability over
time, as shown in more detail below.

The matrix T(⌧ = 1) describes the probability of tran-
sitions from one state to the next, the most elementary
steps of behavior (Fig. 1B). To the eye, this transition
matrix appears modular, with most transitions out of
any given state only going to one of a handful of other
states. By appropriately organizing the states in Figure
1B, T(⌧ = 1) takes on a nearly block-diagonal structure,
which can be broken up into modular clusters using the
information bottleneck formalism (see below). Plotting
this matrix on the behavioral map itself (Fig. 1C), we
see that the transitions are largely localized, with nearly
all large probability transitions occurring between nearby
behaviors. Furthermore, the transition clusters are con-
tiguous in the behavioral space, defining gross categories

of motion including locomotion, behaviors involving an-
terior parts of the body etc. (Fig. 1D).

It is important to note that T(⌧ = 1) does not di-
rectly contain information about the location of behav-
ioral states in the two dimensional map, and hence any
relationship we observe between the transition structure
and the patterning of behaviors in the map is a con-
sequence of the animal’s behavior and not the way we
construct the analysis. We thus conclude that behavioral
transitions are mostly restricted to occur between similar
actions—e.g., grooming behaviors are typically followed
by other grooming behaviors of close-by body parts and
animals transition between locomotion gates systemati-
cally by changing gate speed and velocity. These observa-
tions are consistent with classical ideas of postural facili-
tation and previous observations that transitions largely
occur between similar behaviors [9, 20–22].

We begin to see the necessity of looking at longer time
scales as we measure the transition matrices for ⌧ � 1.
If the observed dynamics are purely Markovian, then the
transitions from one state to the next do not depend
on the history of behavior, and T(⌧ = 1) provides a
complete characterization of the system. In particular,
if the behavior is Markovian then we can calculate the
transition matrix after ⌧ state just by iterating the matrix
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FIG. 2. Long time scale transition matrices and non–Markovian dynamics. (A) Markov model transition matrix for ⌧ = 100,
TM (100), from Eq (3). (B and C) Transition matrices for ⌧ = 100 and ⌧ = 1, 000, respectively, from Eq (1). (D) Absolute
values of the leading eigenvalues of the transition matrices T(⌧) as a function of ⌧ . The curves represent the average over
all flies, and thicknesses represent the standard error of the mean. Dashed lines are the predictions for the Markov model
TM (⌧). The black line is a noise floor, corresponding to the typical value of the second largest eigenvalue in a transition matrix
calculated from random temporal shu✏ing of our finite data set. (E) Eigenmode decay rates, rµ(⌧) ⌘ � log |�µ(⌧)|/⌧ , as a
function of the number of transitions. Line colors represent the same modes as in (D) and the black line again corresponds to
a “noise floor,” in this case the largest decay rate that we can resolve above the random structures present in our finite sample.

tions:

[T(⌧)]i,j =
X

µ

�µ(⌧)uµ
i (⌧)vµ

j (⌧), (2)

where uµ
⌘ {uµ

i } and vµ
⌘ {vµ

i } are the left and right
eigenvectors, respectively, and �µ(⌧) is the eigenvalue
with the µth largest modulus. Because probability is
conserved in the transitions, the largest eigenvalue will
always be equal to one, �1(⌧) = 1, and v1

i (⌧) describes
the stationary distribution over states at long times. All
the other eigenvalues have magnitudes less than one,
|�µ 6=1(⌧)| < 1, and describe the loss of predictability over
time, as shown in more detail below.

The matrix T(⌧ = 1) describes the probability of tran-
sitions from one state to the next, the most elementary
steps of behavior (Fig. 1B). To the eye, this transition
matrix appears modular, with most transitions out of
any given state only going to one of a handful of other
states. By appropriately organizing the states in Figure
1B, T(⌧ = 1) takes on a nearly block-diagonal structure,
which can be broken up into modular clusters using the
information bottleneck formalism (see below). Plotting
this matrix on the behavioral map itself (Fig. 1C), we
see that the transitions are largely localized, with nearly
all large probability transitions occurring between nearby
behaviors. Furthermore, the transition clusters are con-
tiguous in the behavioral space, defining gross categories

of motion including locomotion, behaviors involving an-
terior parts of the body etc. (Fig. 1D).

It is important to note that T(⌧ = 1) does not di-
rectly contain information about the location of behav-
ioral states in the two dimensional map, and hence any
relationship we observe between the transition structure
and the patterning of behaviors in the map is a con-
sequence of the animal’s behavior and not the way we
construct the analysis. We thus conclude that behavioral
transitions are mostly restricted to occur between similar
actions—e.g., grooming behaviors are typically followed
by other grooming behaviors of close-by body parts and
animals transition between locomotion gates systemati-
cally by changing gate speed and velocity. These observa-
tions are consistent with classical ideas of postural facili-
tation and previous observations that transitions largely
occur between similar behaviors [9, 20–22].

We begin to see the necessity of looking at longer time
scales as we measure the transition matrices for ⌧ � 1.
If the observed dynamics are purely Markovian, then the
transitions from one state to the next do not depend
on the history of behavior, and T(⌧ = 1) provides a
complete characterization of the system. In particular,
if the behavior is Markovian then we can calculate the
transition matrix after ⌧ state just by iterating the matrix
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FIG. 2. Long time scale transition matrices and non–Markovian dynamics. (A) Markov model transition matrix for ⌧ = 100,
TM (100), from Eq (3). (B and C) Transition matrices for ⌧ = 100 and ⌧ = 1, 000, respectively, from Eq (1). (D) Absolute
values of the leading eigenvalues of the transition matrices T(⌧) as a function of ⌧ . The curves represent the average over
all flies, and thicknesses represent the standard error of the mean. Dashed lines are the predictions for the Markov model
TM (⌧). The black line is a noise floor, corresponding to the typical value of the second largest eigenvalue in a transition matrix
calculated from random temporal shu✏ing of our finite data set. (E) Eigenmode decay rates, rµ(⌧) ⌘ � log |�µ(⌧)|/⌧ , as a
function of the number of transitions. Line colors represent the same modes as in (D) and the black line again corresponds to
a “noise floor,” in this case the largest decay rate that we can resolve above the random structures present in our finite sample.

tions:

[T(⌧)]i,j =
X

µ

�µ(⌧)uµ
i (⌧)vµ

j (⌧), (2)

where uµ
⌘ {uµ

i } and vµ
⌘ {vµ

i } are the left and right
eigenvectors, respectively, and �µ(⌧) is the eigenvalue
with the µth largest modulus. Because probability is
conserved in the transitions, the largest eigenvalue will
always be equal to one, �1(⌧) = 1, and v1

i (⌧) describes
the stationary distribution over states at long times. All
the other eigenvalues have magnitudes less than one,
|�µ 6=1(⌧)| < 1, and describe the loss of predictability over
time, as shown in more detail below.

The matrix T(⌧ = 1) describes the probability of tran-
sitions from one state to the next, the most elementary
steps of behavior (Fig. 1B). To the eye, this transition
matrix appears modular, with most transitions out of
any given state only going to one of a handful of other
states. By appropriately organizing the states in Figure
1B, T(⌧ = 1) takes on a nearly block-diagonal structure,
which can be broken up into modular clusters using the
information bottleneck formalism (see below). Plotting
this matrix on the behavioral map itself (Fig. 1C), we
see that the transitions are largely localized, with nearly
all large probability transitions occurring between nearby
behaviors. Furthermore, the transition clusters are con-
tiguous in the behavioral space, defining gross categories

of motion including locomotion, behaviors involving an-
terior parts of the body etc. (Fig. 1D).

It is important to note that T(⌧ = 1) does not di-
rectly contain information about the location of behav-
ioral states in the two dimensional map, and hence any
relationship we observe between the transition structure
and the patterning of behaviors in the map is a con-
sequence of the animal’s behavior and not the way we
construct the analysis. We thus conclude that behavioral
transitions are mostly restricted to occur between similar
actions—e.g., grooming behaviors are typically followed
by other grooming behaviors of close-by body parts and
animals transition between locomotion gates systemati-
cally by changing gate speed and velocity. These observa-
tions are consistent with classical ideas of postural facili-
tation and previous observations that transitions largely
occur between similar behaviors [9, 20–22].

We begin to see the necessity of looking at longer time
scales as we measure the transition matrices for ⌧ � 1.
If the observed dynamics are purely Markovian, then the
transitions from one state to the next do not depend
on the history of behavior, and T(⌧ = 1) provides a
complete characterization of the system. In particular,
if the behavior is Markovian then we can calculate the
transition matrix after ⌧ state just by iterating the matrix
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FIG. 2. Long time scale transition matrices and non–Markovian dynamics. (A) Markov model transition matrix for ⌧ = 100,
TM (100), from Eq (3). (B and C) Transition matrices for ⌧ = 100 and ⌧ = 1, 000, respectively, from Eq (1). (D) Absolute
values of the leading eigenvalues of the transition matrices T(⌧) as a function of ⌧ . The curves represent the average over
all flies, and thicknesses represent the standard error of the mean. Dashed lines are the predictions for the Markov model
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function of the number of transitions. Line colors represent the same modes as in (D) and the black line again corresponds to
a “noise floor,” in this case the largest decay rate that we can resolve above the random structures present in our finite sample.

tions:

[T(⌧)]i,j =
X

µ

�µ(⌧)uµ
i (⌧)vµ

j (⌧), (2)

where uµ
⌘ {uµ

i } and vµ
⌘ {vµ

i } are the left and right
eigenvectors, respectively, and �µ(⌧) is the eigenvalue
with the µth largest modulus. Because probability is
conserved in the transitions, the largest eigenvalue will
always be equal to one, �1(⌧) = 1, and v1

i (⌧) describes
the stationary distribution over states at long times. All
the other eigenvalues have magnitudes less than one,
|�µ 6=1(⌧)| < 1, and describe the loss of predictability over
time, as shown in more detail below.

The matrix T(⌧ = 1) describes the probability of tran-
sitions from one state to the next, the most elementary
steps of behavior (Fig. 1B). To the eye, this transition
matrix appears modular, with most transitions out of
any given state only going to one of a handful of other
states. By appropriately organizing the states in Figure
1B, T(⌧ = 1) takes on a nearly block-diagonal structure,
which can be broken up into modular clusters using the
information bottleneck formalism (see below). Plotting
this matrix on the behavioral map itself (Fig. 1C), we
see that the transitions are largely localized, with nearly
all large probability transitions occurring between nearby
behaviors. Furthermore, the transition clusters are con-
tiguous in the behavioral space, defining gross categories

of motion including locomotion, behaviors involving an-
terior parts of the body etc. (Fig. 1D).

It is important to note that T(⌧ = 1) does not di-
rectly contain information about the location of behav-
ioral states in the two dimensional map, and hence any
relationship we observe between the transition structure
and the patterning of behaviors in the map is a con-
sequence of the animal’s behavior and not the way we
construct the analysis. We thus conclude that behavioral
transitions are mostly restricted to occur between similar
actions—e.g., grooming behaviors are typically followed
by other grooming behaviors of close-by body parts and
animals transition between locomotion gates systemati-
cally by changing gate speed and velocity. These observa-
tions are consistent with classical ideas of postural facili-
tation and previous observations that transitions largely
occur between similar behaviors [9, 20–22].

We begin to see the necessity of looking at longer time
scales as we measure the transition matrices for ⌧ � 1.
If the observed dynamics are purely Markovian, then the
transitions from one state to the next do not depend
on the history of behavior, and T(⌧ = 1) provides a
complete characterization of the system. In particular,
if the behavior is Markovian then we can calculate the
transition matrix after ⌧ state just by iterating the matrix

0

PDF

2 x 10 -4

C D

= 1= .5

Idle/Slow
Motions

Slow
Motions Anterior

Motions

Locomotion
Gaits

Abdomen
Motions

Wing
Motions

20

20

A

0

PDF

2 x 10 -4

B

0

.15

Ini
tia

l S
tat

e

Final State

Idle
Slow

Abdomen

W
ing

Locomotion

Anterior

T
ij

Final State

In
iti

al
 S

ta
te

3

A B

100 103101 102

Number of Transitions

0

1
D

|�
|

   μ = 2
   μ = 3
   μ = 4
   μ = 5
   μ = 6
Random

100 103101 102

Number of Transitions
10-3

101

10-1

E

De
ca

y R
at

e 
(tr

an
sit

io
ns

-1
)

T
M

(1
0
0
)
i,j

T
(1

0
0
)
i,j

0

.05
C

T
(1

0
0
0
)
i,j

0

.05

0

.05

Ini
tia

l S
tat

e

Final State

Ini
tia

l S
tat

e

Final State

Ini
tia

l S
tat

e

Final State

FIG. 2. Long time scale transition matrices and non–Markovian dynamics. (A) Markov model transition matrix for ⌧ = 100,
TM (100), from Eq (3). (B and C) Transition matrices for ⌧ = 100 and ⌧ = 1, 000, respectively, from Eq (1). (D) Absolute
values of the leading eigenvalues of the transition matrices T(⌧) as a function of ⌧ . The curves represent the average over
all flies, and thicknesses represent the standard error of the mean. Dashed lines are the predictions for the Markov model
TM (⌧). The black line is a noise floor, corresponding to the typical value of the second largest eigenvalue in a transition matrix
calculated from random temporal shu✏ing of our finite data set. (E) Eigenmode decay rates, rµ(⌧) ⌘ � log |�µ(⌧)|/⌧ , as a
function of the number of transitions. Line colors represent the same modes as in (D) and the black line again corresponds to
a “noise floor,” in this case the largest decay rate that we can resolve above the random structures present in our finite sample.

tions:

[T(⌧)]i,j =
X

µ

�µ(⌧)uµ
i (⌧)vµ

j (⌧), (2)

where uµ
⌘ {uµ

i } and vµ
⌘ {vµ

i } are the left and right
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the stationary distribution over states at long times. All
the other eigenvalues have magnitudes less than one,
|�µ 6=1(⌧)| < 1, and describe the loss of predictability over
time, as shown in more detail below.

The matrix T(⌧ = 1) describes the probability of tran-
sitions from one state to the next, the most elementary
steps of behavior (Fig. 1B). To the eye, this transition
matrix appears modular, with most transitions out of
any given state only going to one of a handful of other
states. By appropriately organizing the states in Figure
1B, T(⌧ = 1) takes on a nearly block-diagonal structure,
which can be broken up into modular clusters using the
information bottleneck formalism (see below). Plotting
this matrix on the behavioral map itself (Fig. 1C), we
see that the transitions are largely localized, with nearly
all large probability transitions occurring between nearby
behaviors. Furthermore, the transition clusters are con-
tiguous in the behavioral space, defining gross categories

of motion including locomotion, behaviors involving an-
terior parts of the body etc. (Fig. 1D).

It is important to note that T(⌧ = 1) does not di-
rectly contain information about the location of behav-
ioral states in the two dimensional map, and hence any
relationship we observe between the transition structure
and the patterning of behaviors in the map is a con-
sequence of the animal’s behavior and not the way we
construct the analysis. We thus conclude that behavioral
transitions are mostly restricted to occur between similar
actions—e.g., grooming behaviors are typically followed
by other grooming behaviors of close-by body parts and
animals transition between locomotion gates systemati-
cally by changing gate speed and velocity. These observa-
tions are consistent with classical ideas of postural facili-
tation and previous observations that transitions largely
occur between similar behaviors [9, 20–22].

We begin to see the necessity of looking at longer time
scales as we measure the transition matrices for ⌧ � 1.
If the observed dynamics are purely Markovian, then the
transitions from one state to the next do not depend
on the history of behavior, and T(⌧ = 1) provides a
complete characterization of the system. In particular,
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Much of systems-level neuroscience has focused on studying the 
neural circuit mechanisms that enable an individual organism to 
sense and navigate its environment. Recently though, there is 
mounting interest in the mechanisms that mediate social interactions 
between individuals (Amadei, Johnson et al, Nature, 2017).

However, natural social interactions between individuals are highly 
complex, prompting the need for computational tools to facilitate the 
characterization, quantification and modeling of social behavior in 
order to be able to study their neural circuit bases.

Here, we employed a behavioral mapping technique previously 
applied to fruit flies to measure anticipated social differences 
between socially interacting prairie voles, a premier rodent model for 
studying pair bonding behavior (Berman et al., 2014; Young and 
Wang, 2004).

Schematic of the recording apparatus.

1)

Overview of the data analysis pipeline. 

2)

The top-down view of the recorded image

3)

RESULTS

HYPOTHESIS

CONCLUSION 
• We created a preliminary behavioral space of vole behavior, 
based on two triads of voles. This space provides a representa-
tion for the animals’ stereotyped behaviors during the sessions 
(Figures 4 & 5). 

• Qualitatively and quantitatively, we see that regions within 
the map correspond to distinct stereotyped behaviors, and in 
both triads, we observed that behavioral maps for the same an-
imals varied across social context (e.g. the map of a male sub-
ject with its female partner was different from that of the male 
subject with the stranger female) (Figures 6, 7 & 8 ) . 

BACKGROUND

ACKNOWLEDGEMENTS:
This work is supported by NIMH 1R01MH115831-01

Behavioral Space Probability Density 4)

Each peak in the distribution corresponds to a distinct stereotyped 
movement. The black lines are the boundaries found from a water-
shed transform and are included to guide the eye. 

We hypothesized that the trajectory of stereotyped social behaviors is 
predictable from a latent internal state of “pair-bondedness”; and that 
modeling the dynamics of this latent state enables quantitative 
prediction of future social interactions between pair-bonded prairie 
voles. Hence, we further hypothesized that the behavioral space of a 
vole with its partner would be different from the behavioral space of 
the same vole with a stranger.

MATERIALS AND METHODS
In order to quantify the social interaction, a pair of dyadic interactions 
for two groups of 3 voles ( “subject” male vole paired with either “part-
ner” female or “stranger” female voles - x2) were video recorded for 
three hours.  A “Partner” and “Subject” vole in a triad had been cohabi-
tated with each other for 48 hours in a home cage prior to video re-
cording. “Stranger” voles had not been cohabitated with, and were not 
related to, the Subject vole in its triad. The voles were placed in a re-
cording chamber separated with a transparent plexiglas (Figures 1 & 
2). Holes were drilled through the plexiglas to allow the two animals to 
see, smell and hear each other, but prevent direct contact. For video 
analysis, we applied a behavioral mapping technique previously ap-
plied to fruit flies to measure anticipated social differences between 
pairs of voles (Figure 3).

RGB CameraRecording 
Chamber

Raw images of the prairie voles are segmented from the background, 
rescaled to a reference size and then aligned, creating a stack of 
images in the co-moving and co-rotating frame of the vole. These 
images are then decomposed via PCA into a relatively 
low-dimensional set of time series. A Morlet wavelet transform is 
subsequently applied to these time series, creating a spectrogram for 
each postural mode separately. After normalization, each point in time 
is mapped into a two-dimensional plane via t-SNE. Lastly, a watershed 
transform is applied to a Gaussian-smoothed density over these 
points, isolating individual peaks from one another (Berman et al., 
2014).

FIRST TRIAD6)

Map of Partner, with Subject Map of Stranger, with Subject

Map of Subject, with Partner Map of Subject, with Stranger

SECOND TRIAD7)

Map of Partner, with Subject Map of Stranger, with Subject

Map of Subject, with Partner Map of Subject, with Stranger

Figure 6 and 7.  Comparison between the pair of dyadic interactions for two groups of 3 voles. The subjects in both cases show qualitatively different 
stereotyped behavior when interacting with their partners as to when they interact with the strangers. 

REFERENCES:
1. E. A. Amadei*, Z. V. Johnson*, Y. J. Kwon, A. C. Shpiner, V. Saravanan, W. Mays, S. Ryan, H. 
Walum, D. Rainnie, L. J. Young and R. C. Liu (2017), Dynamic corticostriatal activity biases 
social bonding in monogamous female prairie voles, Nature 546(7657):297-301.
2. Berman, G.J., Choi, D. M., Bialek, W., and Shaevitz, J.W., "Mapping the stereotyped 
behaviour of freely moving fruit flies" J. Royal Soc. Interface, 11, 2014, 20140672.
3. Young LJ, Wang Z (2004) The neurobiology of pair bonding. Nat Neurosci 7:1048-1054.

• Apply methods to fully interacting voles without a barrier.

• Decipher whether stereotypy and predictability in behavior 
can be observable signatures of latent states.

• Combine behavioral space mapping with electrophysiology.

• Predict the underlying neural dynamics driving animals’ 
social interactions.

FUTURE DIRECTIONSThe graph represents the calculation of Jensen-Shannon (J-S) Divergence, 
a measure of distance between two distribution, where J-S Divergence is 
between 0 and 1. 0 means there is no difference between the distributions 
and 1 means there is complete difference between them. This quantita-
tively indicates that the subject’s interaction with the partner is different 
from its interaction with the stranger in both cases.

8) Behavioral Map Dissimilarity

Behavioral Map5)

Each colored region coarsely groups similar behavior patterns.
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from one step:

TM (⌧) ⌘ [T(1)]⌧ =
X

µ

[�µ(1)]⌧uµ(1)vµ(1). (3)

Because |�µ(1)| < 1 for all but the leading eigenvalue,
the contributions from the µ > 1 terms decay to zero
exponentially as ⌧ ! 1. For very long times, there-
fore, TM (⌧) loses all information about the current state
and instead reflects the average probabilities of perform-
ing any particular behavior. Thus, in a Markovian
system, the slowest time scale in the system is deter-
mined by |�2(1)|, resulting in a characteristic decay time
t2 = �1/ log |�2(1)|. Calculating these eigenvalues for
each fly and averaging, we find h�2(1)i = 0.953 ± 0.004,
or ht2i = 29 ± 2 transitions. Thus, any memory that
extends beyond ⇡ 30 transitions into the future is di-
rect evidence for hidden states that carry a memory over
longer times and modulate behavior.

Initial evidence for long-time structure in T(⌧) comes
by comparing the lack of structure within TM (100) to
that within T(⌧) for ⌧ = 100 and ⌧ = 1, 000 (Fig 2A-
C). After 100 transitions, (⇡ 3ht2i), the Markov model
retains essentially no information, as demonstrated by
the similarity between all of the rows, implying that all
transitions have been randomized. Conversely, although
some of the block–diagonal structure from Fig. 1B has
dissipated, we see that T(100) and T(1000) retrain a
great deal of non-randomness.

This observation can be made more precise by looking
at the eigenvalue spectra of the transition matrices. In
Figure 2D, we plot |�µ(⌧)| as a function of ⌧ for µ = 2
through 6 (solid color lines) in addition to the predictions
from the Markov model of Eq (3) based on T(1) (colored
dashed lines). In a Markovian system, it would be more
natural to plot these results with a logarithmic axis for �,
but here we see that structure extends over such a wide
range of time scales that we need a logarithmic axis for
⌧ . We can make this di↵erence more obvious by mea-
suring the apparent decay rate, rµ(⌧) = � log |�µ(⌧)|/⌧ ,
which should be constant for a Markovian system. For
the leading mode, the apparent decay rate falls by nearly
two orders of magnitude before the corresponding eigen-
value is lost in the noise (Figure 2E). Similar patterns
appear in higher modes, but we have more limited dy-
namic range for observing them.

These results are direct evidence that many time scales
are required to model behavioral sequences, even in this
simple context where no external stimuli are provided.
Accordingly, we can infer that the organism must have in-
ternal states that we do not directly observe, even though
we are making rather thorough measurements of the mo-
tor output. Roughly speaking, the appearance of decay
rates ⇡ 10�3 means that the internal states must hold
memory across at least ⇡ 103 behavioral transitions, or
approximately 20 minutes—much longer than any time
scale apparent in the Markov model.

IV. PREDICTABILITY AND HIERARCHY

The modular structure of the flies’ transition matrix,
combined with the observed long time scales of behav-
ioral sequences, suggests that we might be able to group
the behavioral states into clusters that preserve much of
the information that the current behavioral state pro-
vides about future actions (predictive information [23]).
Furthermore, we should be able to probe whether this
results in a hierarchical organization: if the states are
grouped into a hierarchy, then increasing the number
of clusters will largely subdivide existing clusters rather
than mix behaviors from two di↵erent clusters.

To make this idea more precise, we hope to map the
behaviors into groups, S(n) ! Z, that compress our
description in a way that preserves information about
a state ⌧ transitions in the future, S(n + ⌧). Mathe-
matically, this means that we should maximize the in-
formation about the future, I(Z; S(n + ⌧)), while hold-
ing fixed the information that we keep about the past,
I(Z; S(n)). Introducing a Lagrange multiplier to hold
I(Z; S(n)) fixed, we wish to maximize

F = I(Z; S(n + ⌧)) � �I(Z; S(n)). (4)

At � = 0 we retain the full complexity of the 117 be-
havioral states, and as we increase �, we are forced to
tighten our description into a more and more compressed
form, thus losing predictive power. This is an example
of the information bottleneck problem [24]. If the com-
pressed description Z involves a fixed number of clusters,
then we find solutions that range from soft clustering,
where behaviors can be assigned to more than one cluster
probabilistically, to hard clustering, where each behav-
ior belongs to only one cluster, as � increases; changing
the number of clusters allows us to move along a curve
that trades complexity of description against predictive
power, as shown in Fig 3 (see §VI C for details).
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# of Clusters = 1 # of Clusters = 2 # of Clusters = 3 # of Clusters = 4

# of Clusters = 5 # of Clusters = 6 # of Clusters = 7 # of Clusters = 25

FIG. 4. Information bottleneck partitioning of behavioral space for ⌧ = 67 (approximately twice the longest time scale in the
Markov model). Borders from the previous partitions are shown in black. For 25 clusters (bottom right), the partitions, still
contiguous, are denoted by dashed lines.

As expected, the optimal curves move downward as the
time lag increases, implying that the ability to predict
the behavioral state of the animal decreases as we look
further into the future. We also observe a relatively rapid
decrease in the height of these curves for small ⌧ , followed
by increasingly-closely spaced optimal curves as the lag
length increases. It this slowing that is indicative of the
long time-scales in behavior.

Along each of these trade-o↵ curves lie partitions of
the behavioral space that contain an increasing number
of clusters. We can make several observations about these
data. First, in agreement with our investigation of the
single-step transition matrix, we find that the clusters
are spatially contiguous in the behavioral map as exem-
plified in Figure 4 for ⌧ = 67. Thus, even when we add
in the long time-scale dynamics, we find that transitions
predominantly occur between similar behaviors. Second,
these spatially-contiguous clusters separate hierarchically
as we increase the number of clusters, i.e. new clusters
largely result from subdividing existing clusters instead
of emerging from multiple existing clusters. One example
of this can be seen in Figure 5, where the probability flow
between partitions of increasing size subdivide in a tree-
like manner. It is important to note that these results
are not built in to the information bottleneck algorithm:
we can solve the bottleneck problem for di↵erent num-
bers of clusters independently, and hence (in contrast
to hierarchical clustering) this method could have found
non-hierarchical evolution with new clusters comprised of
behaviors from many other clusters, That this does not
happen is strong evidence that fly behavior is organized
hierarchically.

We can go beyond this qualitative description, how-
ever, by quantifying the degree of hierarchy in our rep-
resentation as the number of clusters increases using a
“treeness” metric, T (Fig. 6). The idea behind this met-
ric, which is similar to the one introduced by Corominas–
Murta et al [25], is that if our representation is perfectly

hierarchical, then each cluster has precisely one “parent”
in a partitioning with a smaller number of clusters. Thus,
the better our ability to distinguish the lineage of a clus-
ter as it splits through increasingly complex partitionings
implies a higher value of T . More precisely, the treeness
index is given by the relative reduction in entropy going
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Locomotion

Anterior

Posterior

Side Legs

FIG. 5. Hierarchical organization for optimal solutions with
lag ⌧ = 100 ranging from 1 cluster to 25. The displayed
clusterings are those that have the largest value of I(Z;S(n+
⌧)) for that number of clusters. The length of the vertical
bars are proportional to the percentage of time a fly spends
in each of the clusters, and the lines flowing horizontally from
left to right are proportional in thickness to the flux from the
clustering on the left to the clustering on the right. Fluxes
less than .01 are suppressed for clarity.
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from one step:

TM (⌧) ⌘ [T(1)]⌧ =
X

µ

[�µ(1)]⌧uµ(1)vµ(1). (3)

Because |�µ(1)| < 1 for all but the leading eigenvalue,
the contributions from the µ > 1 terms decay to zero
exponentially as ⌧ ! 1. For very long times, there-
fore, TM (⌧) loses all information about the current state
and instead reflects the average probabilities of perform-
ing any particular behavior. Thus, in a Markovian
system, the slowest time scale in the system is deter-
mined by |�2(1)|, resulting in a characteristic decay time
t2 = �1/ log |�2(1)|. Calculating these eigenvalues for
each fly and averaging, we find h�2(1)i = 0.953 ± 0.004,
or ht2i = 29 ± 2 transitions. Thus, any memory that
extends beyond ⇡ 30 transitions into the future is di-
rect evidence for hidden states that carry a memory over
longer times and modulate behavior.

Initial evidence for long-time structure in T(⌧) comes
by comparing the lack of structure within TM (100) to
that within T(⌧) for ⌧ = 100 and ⌧ = 1, 000 (Fig 2A-
C). After 100 transitions, (⇡ 3ht2i), the Markov model
retains essentially no information, as demonstrated by
the similarity between all of the rows, implying that all
transitions have been randomized. Conversely, although
some of the block–diagonal structure from Fig. 1B has
dissipated, we see that T(100) and T(1000) retrain a
great deal of non-randomness.

This observation can be made more precise by looking
at the eigenvalue spectra of the transition matrices. In
Figure 2D, we plot |�µ(⌧)| as a function of ⌧ for µ = 2
through 6 (solid color lines) in addition to the predictions
from the Markov model of Eq (3) based on T(1) (colored
dashed lines). In a Markovian system, it would be more
natural to plot these results with a logarithmic axis for �,
but here we see that structure extends over such a wide
range of time scales that we need a logarithmic axis for
⌧ . We can make this di↵erence more obvious by mea-
suring the apparent decay rate, rµ(⌧) = � log |�µ(⌧)|/⌧ ,
which should be constant for a Markovian system. For
the leading mode, the apparent decay rate falls by nearly
two orders of magnitude before the corresponding eigen-
value is lost in the noise (Figure 2E). Similar patterns
appear in higher modes, but we have more limited dy-
namic range for observing them.

These results are direct evidence that many time scales
are required to model behavioral sequences, even in this
simple context where no external stimuli are provided.
Accordingly, we can infer that the organism must have in-
ternal states that we do not directly observe, even though
we are making rather thorough measurements of the mo-
tor output. Roughly speaking, the appearance of decay
rates ⇡ 10�3 means that the internal states must hold
memory across at least ⇡ 103 behavioral transitions, or
approximately 20 minutes—much longer than any time
scale apparent in the Markov model.

IV. PREDICTABILITY AND HIERARCHY

The modular structure of the flies’ transition matrix,
combined with the observed long time scales of behav-
ioral sequences, suggests that we might be able to group
the behavioral states into clusters that preserve much of
the information that the current behavioral state pro-
vides about future actions (predictive information [23]).
Furthermore, we should be able to probe whether this
results in a hierarchical organization: if the states are
grouped into a hierarchy, then increasing the number
of clusters will largely subdivide existing clusters rather
than mix behaviors from two di↵erent clusters.

To make this idea more precise, we hope to map the
behaviors into groups, S(n) ! Z, that compress our
description in a way that preserves information about
a state ⌧ transitions in the future, S(n + ⌧). Mathe-
matically, this means that we should maximize the in-
formation about the future, I(Z; S(n + ⌧)), while hold-
ing fixed the information that we keep about the past,
I(Z; S(n)). Introducing a Lagrange multiplier to hold
I(Z; S(n)) fixed, we wish to maximize

F = I(Z; S(n + ⌧)) � �I(Z; S(n)). (4)

At � = 0 we retain the full complexity of the 117 be-
havioral states, and as we increase �, we are forced to
tighten our description into a more and more compressed
form, thus losing predictive power. This is an example
of the information bottleneck problem [24]. If the com-
pressed description Z involves a fixed number of clusters,
then we find solutions that range from soft clustering,
where behaviors can be assigned to more than one cluster
probabilistically, to hard clustering, where each behav-
ior belongs to only one cluster, as � increases; changing
the number of clusters allows us to move along a curve
that trades complexity of description against predictive
power, as shown in Fig 3 (see §VI C for details).
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FIG. 4. Information bottleneck partitioning of behavioral space for ⌧ = 67 (approximately twice the longest time scale in the
Markov model). Borders from the previous partitions are shown in black. For 25 clusters (bottom right), the partitions, still
contiguous, are denoted by dashed lines.

As expected, the optimal curves move downward as the
time lag increases, implying that the ability to predict
the behavioral state of the animal decreases as we look
further into the future. We also observe a relatively rapid
decrease in the height of these curves for small ⌧ , followed
by increasingly-closely spaced optimal curves as the lag
length increases. It this slowing that is indicative of the
long time-scales in behavior.

Along each of these trade-o↵ curves lie partitions of
the behavioral space that contain an increasing number
of clusters. We can make several observations about these
data. First, in agreement with our investigation of the
single-step transition matrix, we find that the clusters
are spatially contiguous in the behavioral map as exem-
plified in Figure 4 for ⌧ = 67. Thus, even when we add
in the long time-scale dynamics, we find that transitions
predominantly occur between similar behaviors. Second,
these spatially-contiguous clusters separate hierarchically
as we increase the number of clusters, i.e. new clusters
largely result from subdividing existing clusters instead
of emerging from multiple existing clusters. One example
of this can be seen in Figure 5, where the probability flow
between partitions of increasing size subdivide in a tree-
like manner. It is important to note that these results
are not built in to the information bottleneck algorithm:
we can solve the bottleneck problem for di↵erent num-
bers of clusters independently, and hence (in contrast
to hierarchical clustering) this method could have found
non-hierarchical evolution with new clusters comprised of
behaviors from many other clusters, That this does not
happen is strong evidence that fly behavior is organized
hierarchically.

We can go beyond this qualitative description, how-
ever, by quantifying the degree of hierarchy in our rep-
resentation as the number of clusters increases using a
“treeness” metric, T (Fig. 6). The idea behind this met-
ric, which is similar to the one introduced by Corominas–
Murta et al [25], is that if our representation is perfectly

hierarchical, then each cluster has precisely one “parent”
in a partitioning with a smaller number of clusters. Thus,
the better our ability to distinguish the lineage of a clus-
ter as it splits through increasingly complex partitionings
implies a higher value of T . More precisely, the treeness
index is given by the relative reduction in entropy going
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FIG. 5. Hierarchical organization for optimal solutions with
lag ⌧ = 100 ranging from 1 cluster to 25. The displayed
clusterings are those that have the largest value of I(Z;S(n+
⌧)) for that number of clusters. The length of the vertical
bars are proportional to the percentage of time a fly spends
in each of the clusters, and the lines flowing horizontally from
left to right are proportional in thickness to the flux from the
clustering on the left to the clustering on the right. Fluxes
less than .01 are suppressed for clarity.
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signed randomly.

backwards rather than forwards through the tree,

T =
Hf � Hb

Hf
, (5)

where Hf and Hb are the entropies over all possible paths
going forward and backwards, respectively. This metric
is bounded between zero and one, 0  T  1, and T = 1
implies a perfect hierarchy.

We find that the partitionings derived from the in-
formation bottleneck algorithm are much more tree-like
than random partitions of the behavioral space (Fig. 6B).
This is true even when we attempt to optimally predict
behavioral states thousands of transitions into the fu-
ture. Thus, by finding optimally-predictive representa-
tions that best explain the relationship between states
over long time scales, we have uncovered a hierarchical
ordering of actions, supporting decades-old theory with-
out relying on hierarchical clustering, Markov models, or
limiting the measured behavioral repertoire.

V. CONCLUSIONS

We have measured the behavioral repertoires for
dozens of fruit flies, paying particular attention to the
structure of their behavioral transitions. We find that
these transitions exhibit multiple time scales and pos-
sess memory that persists thousands of transitions into
the future, indicative of internal states that carry mem-
ory across thousands of observable behavioral transitions.
Using an information bottleneck approach to find the
compressed representations that optimally predict our
observed dynamics, we find that behaviors are orga-
nized in a hierarchical fashion, with fine grained repre-
sentations being able to predict short–time structure and
coarser representations being su�cient to predict the fly’s
actions that are further removed in time. This is funda-
mentally di↵erent from previous measurements of hier-
archy in behavior, which were more limited in the types
of behaviors they measured, the time scales over which

the hierarchy was modeled, and/or relied on hierarchi-
cal clustering and other types of analyses that only yield
hierarchical outputs.

The type of organization we observe is reminiscent of
the functional clustering seen in mouse and primate mo-
tor cortex, where groupings of neurons from millimeter
scales down to single cells have been found to exhibit
increasing temporal correlation as the distance between
them decreases [4, 6]. Although no such pattern has been
specifically found in Drosophila, our results suggest that
such neuronal patterns may exist. As circuits for di↵er-
ent behavioral modules are uncovered, our results suggest
that such hierarchical neuroanatomical organization will
also be found in the fly, serving as a general principle
that may apply across organisms to provide insight to-
wards how the brain controls behavior and adapts to a
complex environment.
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VI. METHODS

A. Experiments

We imaged 59 individual male flies (D. melanogaster,
Oregon-R strain) for an hour each, following the pro-
tocols originally described in [18]. All flies were within
the first two weeks post-eclosion during the filming ses-
sion. Flies were placed into the arena via aspiration and
were subsequently allowed 5 minutes for adaptation be-
fore data collection. All recording occurred between the
hours of 9:00 AM and 1:00 PM. The temperature during
all recordings was 25o

± 1oC.

B. Generating Markovian Models

Markovian model data sets were generated by first ran-
domly selecting a state, and then finding another, ran-
domly chosen, instance in the measured data set where
the fly was performing that behavior. The behavior per-
formed immediately after that behavior is chosen, and
the process is iterated until the generated sequence is
equivalent in size to the original data set, similar to
the first-order alphabets generated in Shannon’s original
work on information theory [26].
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Fig. 5. Hierarchical organization for optimal solutions with lag · = 100 ranging
from 1 cluster to 25. The displayed clusterings are those that have the largest value
of I(Z; S(n + ·)) for that number of clusters. The length of the vertical bars are
proportional to the percentage of time a fly spends in each of the clusters, and the
lines flowing horizontally from left to right are proportional in thickness to the flux
from the clustering on the left to the clustering on the right. Fluxes less than .01 are
suppressed for clarity.

rather than forwards through the tree,

T = Hf ≠ Hb

Hf
, [5]

where Hf and Hb are the entropies over all possible paths
going forward and backwards, respectively. This metric is
bounded between zero and one, 0 Æ T Æ 1, and T = 1 implies
a perfect hierarchy.

We find that the partitionings derived from the information
bottleneck algorithm are much more tree-like than random
partitions of the behavioral space (Fig. 6B). This is true even
when we attempt to optimally predict behavioral states thou-
sands of transitions into the future. Thus, by finding optimally-
predictive representations that best explain the relationship
between states over long time scales, we have uncovered a
hierarchical ordering of actions, supporting decades-old theory
without relying on hierarchical clustering, Markov models, or
limiting the measured behavioral repertoire.

Conclusions

We have measured the behavioral repertoires for dozens of
fruit flies, paying particular attention to the structure of their
behavioral transitions. We find that these transitions exhibit
multiple time scales and possess memory that persists for tens
of minutes, indicative of internal states that carry memory
across thousands of observable behavioral transitions. Using
an information bottleneck approach to find the compressed
representations that optimally predict our observed dynamics,
we find that behaviors are organized in a hierarchical fashion,
with fine grained representations being able to predict short–
time structure and coarser representations being su�cient
to predict the fly’s actions that are further removed in time.
This is fundamentally di�erent from previous measurements
of hierarchy in behavior, which were more limited in the types
of behaviors they measured, the time scales over which the
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hierarchy was modeled, and/or relied on hierarchical clustering
and other types of analyses that only yield hierarchical outputs.

The type of organization we observe is reminiscent of the
functional clustering seen in mouse and primate motor cor-
tex, where groupings of neurons from millimeter scales down
to single cells have been found to exhibit increasing tempo-
ral correlation as the distance between them decreases [6, 8].
Although no such correlation has been specifically found in
Drosophila, our results suggest that such neuronal patterns
may exist – perhaps by combining descending commands from
the brain with local circuitry within and emerging from the
ventral nerve cord. As circuits for di�erent behavioral mod-
ules are uncovered, our results suggest that such hierarchical
neuroanatomical organization will also be found in the fly,
serving as a general principle that may apply across organisms
to provide insight towards how the brain controls behavior
and adapts to a complex environment.

Materials and Methods

Experiments. We imaged 59 individual male flies (D. melanogaster,
Oregon-R strain) for an hour each, following the protocols originally
described in [18]. All flies were within the first two weeks post-
eclosion during the filming session. Flies were placed into the
arena via aspiration and were subsequently allowed 5 minutes for
adaptation before data collection. All recording occurred between
the hours of 9:00 AM and 1:00 PM. The temperature during all
recordings was 25o

± 1oC.

Behavioral States. The observed behavioral space was generated
following the methods originally described in [18], including image
segmentation and alignment, projection of image data onto a set
of postural eigenmodes, wavelet transforming, and low-dimensional
embedding using t-SNE [19]. Behaviors were assigned by smoothing
the embedded points and performing a watershed transform [26]
on the inverse of the density. Behavioral epochs were defined as
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Fig: 8. The per minute rates of occurrence of seven behaviours as a function 
of four 'basic' slow processes, v 1 . . . . .  v4. The thickness of the line connect- 
ing behaviourj with the slow process vtx is proportional to the value e'ju in 
Table I. e'-coeflieients with absolute values smaller than 0.05, which included 
all negative coefficients, were discarded. 

decrease much more for higher values of m. 
Four basic processes, represented to different 
extents in the seven behaviours investigated, 
can thus be considered sufficient to describe the 
long-term correlation pattern in Fig. 4. 

The seven lines, j ,  in Table I represent the 
slow processes in the rate of  occurrences of 
seven behaviours as vectors in a four dimensional 
space, subtended by four orthogonal processes, 
vl . . . . .  v~. The value c's~ in this table indicates 
the projection of the j th  behaviour on the /zth 
co-ordinate which is to be interpreted as the 
contribution the /zth process makes in causing 
slow fluctuations in the rate of  occurrence of  the 
j th  behaviour. The first process, vl, is strongly 
represented in behaviour 3 (attacking), the 
second one in behaviour 1 (feeding), the third 
one in behaviour 5 (approaching) and the fourth 
one in behaviour 2 (digging). The strength of  
the representation of the four processes within 
the seven behaviours investigated is symbolized 
in Fig. 8. 

It should be noted, however, that the picture 
shown in Fig. 8 does not symbolize the only 
possible representation of  four orthogonal 
processes within seven different behaviours. As 
was outlined above, any orthogonal trans- 
formation of  the seven c'-vectors in Table I 
within the four dimensional v-space would yield 
the same correlation pattern as does the particu- 
lar arrangement represented in Fig. 8. This 
arrangement which is characterized by pro- 
jections of  either maximal or minimal values 
with respect to different co-ordinates, was 
chosen in the hope that some behaviours would 

cluster around particular co-ordinates which 
then tentatively could have been interpreted in 
physiological or functional terms, such as 
'reproductive', 'aggressive', etc. However, this 
hope was hardly fulfilled. 

Discussion 
In connection with equations (7) and (8) it was 
assumed that the hypothetical long-term pro- 
cesses, v,, tz = 1,. . . . .  m, are mutually ortho- 
gonal, i.e. not correlated with one another. 
Since these processes are probably based on 
certain physiological states, however, such as 
hormonal processes in the animal, it is difficult 
to imagine them not being correlated. One may 
therefore ask for the consequence in the fore- 
going calculations if the processes, v,, were 
correlated, i,e. if r(v#, vx, -r) were not zero for 
all ~- if F ~ A. In this case the term Rjk(r) in 
equation (8) has to be: extended by a term 
Sj~, such that 
R~k(r) 

m 
= E, c'j~e'k.r(v., v~, ~') + S:~(r), (10) 

Ix=l 
where S~k(~) 

= I~#~ c j~c ~xr(v~, v~, r) 

The consequence of  this extension is that 
since r(v~, v~, .r) is not necessarily symmetric 
about r ~ -0  for tz ~ A, the total correlation 
function r(fj, f~, ~-) may become similarly asym- 
metric. When one considers certain correlation 
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RANDOM PROCESSES DESCRIBING THE OCCURRENCE OF 
BEHAVIOURAL PATTERNS IN A CICHLID FISH 

BY W A L T E R  HEILIGENBERG 
Max-Planck-Institut for Verhaltensphysiologie, 8131 Seewiesen West Germany 

Abstract. Territorial males of  the cichlid fish species Haplochromis burtoni were observed over periods 
of  approximately 3 hr and seven different behaviours were recorded. A statistical analysis of the data 
led to the following results: The short-term sequential organization in the occurrence of  the seven 
recorded behaviours can be described in terms of  renewal processes (Figs 1, 2 and 3). In order to cope 
with long-term fluctuations in the rate of  occurrence of some behaviours one has to assume that some 
parameters characterizing the renewal processes involved may slowly fluctuate in time. Long-term 
fluctuations in the rate of  occurrence show particular correlations among the seven behaviours in- 
vestigated (Figs 4 and 5). The correlation pattern found (Fig. 5) suggests that the seven behaviours 
share at least four slow 'basic' processes, vl . . . . .  v4, which to different extents contribute to long-term 
fluctuations in the rate of different behaviours. A linear model representing slow fluctuations in the 
rate of  a particular behaviour as a linear combination of four basic processes yields a reasonable 
approximation to the long-term correlation pattern observed (Figs 6 and 8). 

Animals perform certain behavioural patterns 
which are as typical of  their species as are the 
physical features used by taxonomists. Some of  
these patterns occur without any obvious 
external cause, others are more likely to occur 
in response to particular stimuli. In either case, 
the probability of a particular behaviour occur- 
ring is found to depend on environmental 
factors, such as temperature, light intensity, 
time of  day or year. Moreover, even under 
constant environmental conditions, this prob- 
ability may still fluctuate, though usually in 
some systematic way. One may thus ask to what 
extent the occurrence of  certain behaviours is 
at all predictable from the previous behavioural 
history of the animal and whether suitable 
statistical models can be found to describe the 
structure of  behavioural processes in a concise 
way. Several authors found that the probability 
of a certain behaviour occurring may depend 
on immediately preceding behavioural events 
(of. Baerends, Brouwer & Waterbolk 1955; 
Wiepkema 1961; Nelson 1964; Delius 1969) 
and different statistical models were proposed 
to describe the temporal patterns observed 
(of. Cane 1959; Hauske 1967; Chatfield & 
Lemon 1970). Apart from this short-term 
structure characterizing sequences of  behavioural 
events it is found that the average rate of  certain 
behaviours may fluctuate over periods of  hours 
and days and that such long-term fluctuations 
in the rate of different behaviours may be 
correlated (el. Heiligenberg 1963; Heiligenberg 
& Kramer 1972; Delius 1969). The present 

paper attempts to describe the occurrence of  
seven behavioural patterns in a territorial male 
cichlid fish in terms of random processes 
accounting for the short-term sequential organ- 
ization as well as for the long-term fluctuations 
in the average rate of  behavioural events. 

Methods 
Single adult males of  the cichlid species Haplo- 
chromis burtoni were placed together with ten 
juveniles of the species Tilapia mariae in 100- 
litre aquaria with a gravel covered bottom. The 
water temperature was controlled thermostatic- 
ally at 27 ~ ~ 0-5~ and a 12-hr light 12-hr dark 
cycle maintained. Details of the chemical 
conditions of  the water are given elsewhere 
(Heiligenberg & Kramer 1972). 

The juveniles placed with an adult male were 
blinded by severing their optic nerves. Since 
they never formed a school, they stayed dis- 
tributed in the aquarium serving as a 'random- 
ized' test stimulus triggering attack and courting 
responses by the adult male. Each male was 
observed from a hide for 2 to 4 hr on several 
consecutive days. The occurrences of  the 
following seven behavioural patterns were re- 
corded on paper tape with a time resolution of  
0.5s. 

Feeding. The fish takes up small amounts of  
substrate into its mouth and spits out indigestible 
parts. This behaviour also occurs in the absence 
of  food particles. In order to maintain a 
standardized environmental situation the ani- 
mals were fed in the evening. Only enough food 
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FIG. 4. Information bottleneck partitioning of behavioral space for ⌧ = 67 (approximately twice the longest time scale in the
Markov model). Borders from the previous partitions are shown in black. For 25 clusters (bottom right), the partitions, still
contiguous, are denoted by dashed lines.

As expected, the optimal curves move downward as the
time lag increases, implying that the ability to predict
the behavioral state of the animal decreases as we look
further into the future. We also observe a relatively rapid
decrease in the height of these curves for small ⌧ , followed
by increasingly-closely spaced optimal curves as the lag
length increases. It this slowing that is indicative of the
long time-scales in behavior.

Along each of these trade-o↵ curves lie partitions of
the behavioral space that contain an increasing number
of clusters. We can make several observations about these
data. First, in agreement with our investigation of the
single-step transition matrix, we find that the clusters
are spatially contiguous in the behavioral map as exem-
plified in Figure 4 for ⌧ = 67. Thus, even when we add
in the long time-scale dynamics, we find that transitions
predominantly occur between similar behaviors. Second,
these spatially-contiguous clusters separate hierarchically
as we increase the number of clusters, i.e. new clusters
largely result from subdividing existing clusters instead
of emerging from multiple existing clusters. One example
of this can be seen in Figure 5, where the probability flow
between partitions of increasing size subdivide in a tree-
like manner. It is important to note that these results
are not built in to the information bottleneck algorithm:
we can solve the bottleneck problem for di↵erent num-
bers of clusters independently, and hence (in contrast
to hierarchical clustering) this method could have found
non-hierarchical evolution with new clusters comprised of
behaviors from many other clusters, That this does not
happen is strong evidence that fly behavior is organized
hierarchically.

We can go beyond this qualitative description, how-
ever, by quantifying the degree of hierarchy in our rep-
resentation as the number of clusters increases using a
“treeness” metric, T (Fig. 6). The idea behind this met-
ric, which is similar to the one introduced by Corominas–
Murta et al [25], is that if our representation is perfectly

hierarchical, then each cluster has precisely one “parent”
in a partitioning with a smaller number of clusters. Thus,
the better our ability to distinguish the lineage of a clus-
ter as it splits through increasingly complex partitionings
implies a higher value of T . More precisely, the treeness
index is given by the relative reduction in entropy going
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FIG. 5. Hierarchical organization for optimal solutions with
lag ⌧ = 100 ranging from 1 cluster to 25. The displayed
clusterings are those that have the largest value of I(Z;S(n+
⌧)) for that number of clusters. The length of the vertical
bars are proportional to the percentage of time a fly spends
in each of the clusters, and the lines flowing horizontally from
left to right are proportional in thickness to the flux from the
clustering on the left to the clustering on the right. Fluxes
less than .01 are suppressed for clarity.
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As expected, the optimal curves move downward as the
time lag increases, implying that the ability to predict
the behavioral state of the animal decreases as we look
further into the future. We also observe a relatively rapid
decrease in the height of these curves for small ⌧ , followed
by increasingly-closely spaced optimal curves as the lag
length increases. It this slowing that is indicative of the
long time-scales in behavior.

Along each of these trade-o↵ curves lie partitions of
the behavioral space that contain an increasing number
of clusters. We can make several observations about these
data. First, in agreement with our investigation of the
single-step transition matrix, we find that the clusters
are spatially contiguous in the behavioral map as exem-
plified in Figure 4 for ⌧ = 67. Thus, even when we add
in the long time-scale dynamics, we find that transitions
predominantly occur between similar behaviors. Second,
these spatially-contiguous clusters separate hierarchically
as we increase the number of clusters, i.e. new clusters
largely result from subdividing existing clusters instead
of emerging from multiple existing clusters. One example
of this can be seen in Figure 5, where the probability flow
between partitions of increasing size subdivide in a tree-
like manner. It is important to note that these results
are not built in to the information bottleneck algorithm:
we can solve the bottleneck problem for di↵erent num-
bers of clusters independently, and hence (in contrast
to hierarchical clustering) this method could have found
non-hierarchical evolution with new clusters comprised of
behaviors from many other clusters, That this does not
happen is strong evidence that fly behavior is organized
hierarchically.

We can go beyond this qualitative description, how-
ever, by quantifying the degree of hierarchy in our rep-
resentation as the number of clusters increases using a
“treeness” metric, T (Fig. 6). The idea behind this met-
ric, which is similar to the one introduced by Corominas–
Murta et al [25], is that if our representation is perfectly

hierarchical, then each cluster has precisely one “parent”
in a partitioning with a smaller number of clusters. Thus,
the better our ability to distinguish the lineage of a clus-
ter as it splits through increasingly complex partitionings
implies a higher value of T . More precisely, the treeness
index is given by the relative reduction in entropy going
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FIG. 5. Hierarchical organization for optimal solutions with
lag ⌧ = 100 ranging from 1 cluster to 25. The displayed
clusterings are those that have the largest value of I(Z;S(n+
⌧)) for that number of clusters. The length of the vertical
bars are proportional to the percentage of time a fly spends
in each of the clusters, and the lines flowing horizontally from
left to right are proportional in thickness to the flux from the
clustering on the left to the clustering on the right. Fluxes
less than .01 are suppressed for clarity.





C

G




