

When does pipe flow become	turbulent?
 Reynolds Gerthsen (physics textbook) Wikipedia Fluid mechanics books Recent experiments (Mullin) Stöcker (Data reference) From a lab report: Laminar regime 2100 < Re < 4000 	
	???

Stability against small perturbations ... in theory:

Linearisation around laminar profile:

All sufficiently small perturbations decay at all Reynolds numbers !

		and as a patent: reepatentsonline.com/3945402.html			
•	Title: Laminar flow pi United States Patent 3 Abstract: A pipe syste Reynolds number exce	pe system			
	Inventors: Application Number: Filing Date: Publication Date:	Murphy, Peter J. (Ithaca, NY, US) 518035 10/25/1974 03/23/1976			
	Claims: 1. A fluid conveying system having laminar fluid flow and a Reynolds number in excess of 2200, comprising a straight pipe of circular cross-section having an inlet and outlet, and fluid turbulence control means				
	using the usual feature internal roughness of t Reynolds number, lam	nd a series of experimental investigations, I have found that by es of a pipe system and by, in addition, properly relating the he pipe and the fluid turbulence at the inlet of the pipe to the ninar flows can be obtained consistently at higher values her than the usual 2200, e.g., 20,000 and higher			

Key Reynolds numbers							
	pCf	pPf	pipe				
Re(E)	20.7	49.6	81.5				
Re(lin)	∞	5772	8				
Re(turb)	320	1500	1800				
Re(3D)	125						
Re(TW)	150	~1000	1243				
Re(UPO)	<400?	???	???				

