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affordances of measurement

So far, we've been concentrating mostly on types of matter found in nature, like neutron stars. But we can turn this 
around, and ask questions about design: what kinds of matter configuration can we stabilize in principle? In other 

words, instead of looking for naturally occurring substances, let's ask the question: what types of matter do the laws of 
physics enable us to design? In this designer's viewpoint you ask how you can engineer reality to fit what you 

want. And the emphasis isn't so much on the “engineer” as on “what you want”. Because it turns out that 
figuring out what is possible requires immense imagination. 

(michael nielsen, “maps of matter”)

in design, affordance has a narrower meaning, it refers to possible actions that an actor can readily perceive.
(wikipedia)
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measurements and (classical) feedback

• As components in finite-depth circuits: what power do they have that unitaries don’t?

• As ways of defining processes that lead to steady states: what steady states are possible?

• As ways of manipulating the entanglement pattern of a preexisting quantum state



light cones



the “finite-depth” question

• Given an initial state, what can you prepare using a finite-depth circuit (i.e., a circuit that 
remains finite depth in the thermodynamic limit)?

• Simple constraints for unitary circuits starting from MPS:
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finite-depth question for channels

• CPTP property for channels leads to Kraus form  
 

• Operator expectation values evolve as 

• Operator evolution under channels is “unital” i.e. 
preserves the identity

• Circuits composed of local channels also have 
light cones

ℰ(ρ) = ∑i
MiρM†

i , M†
i Mi = 𝕀

Tr(Oℰ(ρ)) = ∑i
Tr(OMiρM†

i ) = Tr [(∑i
M†

i OMi) ρ] ≡ Tr(ℰ*(O)ρ)
U U†



finite-depth question for channels

• Folded circuit notation for channels
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finite-depth question for channels
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channels have light cones and cannot 
change asymptotics of correlations at  

finite depth 



nontrivial QCAs as channels

• In the Heisenberg picture, operator evolution under local channels is constrained by light 
cones: so they cannot create nontrivial states at finite depth

• But channels can implement operator evolution that corresponds to nonlocal unitaries

• General family: “QCAs”, nontrivial unitaries such that many copies are trivial (e.g. translation) [I 
learned this from Ruben Verresen]



beating light cones with  
nonlocal classical communication



quantum teleportation





teleportation (and feedback) as a channel
• Each trajectory consists of Bell measurements followed by a (classically) conditioned unitary 
 

• The full channel can be written as 
 

• Although each trajectory is a product, the channel is not a product because of the classical dependency 
structure

• Channels like this are called separable

• An important class of separable channels can be implemented via local operations and classical 
communication (LOCC)

• Note: the measurements seem to do the hard work of moving entanglement around, but the “CC” is 
essential to get a determinate state at the end of the process (and to avoid the light cone bound)

U( ⃗i)nΠ
in−1
n−1,n−2Π

in−3
n−3,n−4…Πi3

32

ℰ(ρ) = ∑ ⃗i
U( ⃗i)nΠ̃

⃗i
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nonlocal info and quantum error correction

• Recovery channels for QEC tend to be of this form: measure all the syndromes, process 
classically, find a unitary (e.g., matching anyons)

• Can one correct errors without nonlocality (with “cellular automaton decoders”)? Currently 
unclear, examples exist mostly in cases where passive error correction is possible

• Classically, there are fault-tolerant Markov chains even in 1D [Gacs 1983], so the space of 
nontrivial steady states does not coincide with finite-temperature order

• Many open questions about the space of steady states of quantum channels…



measurement-induced entanglement



bell pairs revisited

• In the pre-measurement state,  since there are no correlations across MI(A : B) = 0

A M B



bell pairs revisited

• In the pre-measurement state,  since there are no correlations across M

• Post-measurement,  (in bits): measurements moved correlations across M

I(A : B) = 0

I(A : B) = 2S(A) = 2

A M B

A M B
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quantum trajectory: 
|ψ⟩ → Mk |ψ⟩

k



Û
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Û

channels revisited (and seen as MPSs)

alice bob

tim
e

channel perspective: Bob’s qubits are lost,  
have to be traced over

Û Û†

POVM perspective: Bob measures

Û Û†

k k

dual perspective: Bob harvests qubits 
and collects an entangled state (MPS)

Û
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MIE for an MPS

Correlations across M flow through the black wire, so you can think about MIE in terms of this 
diagram instead

M



MIE for an MPS

Correlations across M flow through the black wire, so you can think about MIE in terms of this 
diagram instead

M

But this is just purification (in terms of the bond space)



some implications

• For a 1D MPS the transfer matrix is 0D, so iterating the transfer matrix gives a pure state (except for “resource 
states” like SPTs)

• For a 2D state sliced up into an MPS, the transfer matrix is 1D and this maps (more or less) onto the 1+1D 
circuit, which has a purification transition

• “Sideways” understanding of the mixed phase: long-range MIE (“teleportation”; Bao et al.), highly entangled 
transfer matrix (hard to sample measurement outcomes; Napp et al.), “volume-law” entanglement if you 
measure everything but the last slice

• Connection to “deep thermalization” (Choi, Ho, Ippoliti…)

transfer matrix



some loose ends…

• General relationship between quantum states and lower-dimensional processes

• Spacetime dualities, temporal entanglement, and related questions

• Non-Markovianity

• Connections to classification of phases of matter


