Frustrated Magnets (3) Materials Survey

Leon Balents Boulder summer school, 2008

The David and Lucile Packard Foundation

Recent Collaborators

Doron Bergman
Gang Chen
Sungbin Lee
Miles Stoudenmire
Jason Alicea
Ryuichi Shindou
Andreas Schnyder
Yong-Baek Kim
Arun Paramekanti
Michael Lawler
Lucile Savary

- Simon TrebstEmmanuel Gull
- Oleg Starykh
- Masanori Kohno

What do we look for?

Is it an insulator? Is it a magnet? Curie law Signs of frustration @ f>>1: $\odot \Theta_{CW}(\chi)$ \oslash T_N: signs of transition in χ , C_v, ... Iow T entropy, low energy excitations $\odot C_{v}, 1/T_{1},...$ Identify the states a nature of correlations? ordering if it occurs Compare with some theoretical expectations

AB₂X₄ spinels

cubic $Fd\overline{3}m$

 One of the most common mineral structures

Common valence:

𝔹 A²⁺,B³⁺,X^{2−}

⌀ X=0,S,Se

Deconstructing the spinel

A atoms: diamond lattice

Bipartite: not
 geometrically
 frustrated

Deconstructing the spinel

B atoms: pyrochlore

decorate the plaquettes
 of the diamond lattice

ACr₂O₄ spinels

- ø pyrochlore lattice
- S=3/2 Isotropic
 moment
- X=O spinels: B-B distance close enough for direct overlap
 - dominant AF
 nearest-neighbor
 exchange

H=0 Susceptibility

Frustration:

1	Zn	Cd	Hg
Θ _{cw} (K)	-390	-70	-32
T _N (K)	12	7.8	5.8
f	33	9	6

H. Ueda et al

Degeneracy

Heisenberg model

$$H = \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j = \frac{1}{2} \sum_t \left(\sum_{i \in t} \vec{S}_i \right)^2 + \text{const.}$$

 Ground state constraint: total spin 0 per tetrahedron

Quantum mechanically: not possible

No LRO (Reimers)

No LRO (Reimers)
 Dipolar correlations
 (Youngblood+Axe,Henley, Isakov et al...)

$$S_i^{\mu} = b_{ab}^{\mu}$$

No LRO (Reimers)Dipolar correlations

$$S_i^{\mu} = b_{ab}^{\mu}$$

Unusual "ring"
 correlations seen in
 CdCr₂O₄ related

Y₂Ru₂O₇: J. van Duijn
 et al, 2007

Broholm et al

Ordering

- Many perturbations important for ordering:
 - Spin-lattice coupling
 Further exchange
 Spin-orbit effects
 Quantum corrections

ZnCr₂O₄

CdCr₂O₄

JH Chung et al, 2005

HgCr₂O₄

S.H. Lee + many others

Magnetization Plateaus

• Classically: $M = M_s H/H_s$

Plateau indicates 3:1
 structure

H. Ueda at al, 2005/6

Magnetization Plateaus

Ø Plateau mechanism:

 spin-lattice coupling favors collinearity

 Order on plateau may be selected by

spin-lattice

ø quantum effects

"R" state observed in neutrons

Matsuda et al

A-site spinels

V. Fritsch et al. PRL 92, 116401 (2004); N. Tristan et al. PRB 72, 174404 (2005); T. Suzuki et al. (2006)

Naively unfrustrated

Why frustration?

 Roth, 1964: 2nd and 3rd neighbor exchange not necessarily small
 Exchange paths: A-X-B-X-B comparable
 Minimal model
 J₁-J₂ exchange

Ground state evolution

q

Spiral surfaces:

Monte Carlo

 $MnSc_2S_4$

f = 11 at J₂/J₁ = 0.85

Phase Diagram

- Entropy and J₃
 compete to determine
 ordered state
- Spiral spin liquid regime has intensity over entire spiral surface

Comparison to Expt.

Diffuse scattering

Expt.

 $\begin{bmatrix} -T/T_{c} = 1.1 \\ -1.5 \\ -2.9 \\ -4.7 \\ -8.9 \\ 0.5 \\ 0.75 \\ 0.75 \\ 0.75 \\ 0 \\ 0.5 \end{bmatrix} \begin{bmatrix} 1.2 \\ 1.25 \\ 1.5 \\ 0 \\ 1.25 \end{bmatrix}$

Ordered state
(qq0) spiral
Specific heat?

A. Krimmel et al, 2006

agrees with theory for FM J₁

CS₂CuCl₄

 Spatially anisotropic triangular lattice

$$H = \frac{1}{2} \sum_{ij} \left[J_{ij} \vec{S}_i \cdot \vec{S}_j - \vec{D}_{ij} \cdot \vec{S}_i \times \vec{S}_j \right]$$

couplings:
 J=0.37meV
 J'=0.3J
 D=0.05J

 $\vec{D} = D\hat{a}$

R. Coldea et al

Neutron scattering

Coldea et al, 2001/03: a 2d spin liquid?

Very broad spectrum similar to 1d (in some directions of k space). Roughly fits power law. Fit of "peak" dispersion to spin wave theory requires adjustment of J,J' by 40% – in opposite directions!

Dimensional reduction?

 Frustration of interchain coupling makes it less "relevant"
 First order energy correction vanishes

The Leading effects are in fact $O[(J')^4/J^3]!$

Dimensional reduction?

Frustration of interchain coupling makes it less "relevant"
 First order energy correction vanishes.
 Numerics: J'/J < 0.7 is "weak"

Excitations

Build 2d excitations from 1d spinons
 Exchange: $\frac{J'}{2} \left(S_i^+ S_j^- + S_i^- S_j^+ \right)$

 Expect spinon binding to lower inter-chain kinetic energy

Schroedinger equation

Broad lineshape: "free spinons"

Power law" fits well to free spinon result
Fit determines normalization

Bound state Compare spectra at J'(k)<0 and J'(k)>0:

Curves 24spinorth RAY w/experimentatheresultition

Transverse dispersion

Bound state and resonance

Solid symbols: experiment Note peak (blue diamonds) coincides with bottom edge only for J'(k)<0

Spectral asymmetry

Vertical lines: J'(k)=0.

Quantum Spin Liquids

Ultimate frustration?

- O Can quantum fluctuations prevent order even at T=0: f=∞?
- Many theoretical suggestions since Anderson
 (73)

Resonating Valence Bond" QSL states

Search for QSLs

Where do we look?

Spin-1/2 frustrated magnets

Intermediate correlation regime (near the Mott transition)

Search for QSLs

 \odot 1/f=T_c=0: no ordering (magnetic or otherwise!) Ø No spin freezing (hysteresis, NMR, μSR) Structure of low energy excitations $\chi(T), C_v(T), 1/T_1,$ inelastic neutrons theoretical guidance helpful! Smoking gun?

QSL Family Tree

spinons unpaired strong gauge fluctuations \odot Z₂ states spinons paired ø weak gauge fluctuations \varnothing stable in d=2

QSL candidates

anaular lattico

к-(BEDT-TTF)₂Cu₂(CN)₃ – triangular lattice organic

EtMe₃Sb[Pd(dmit)₂]₂ - triangular lattice organic

Na₄Ir₃O₈ – hyperkagome

Organic

 S=1/2 triangular lattice

Nearly isotropic
 Hubbard-like with
 t'/t = 1.06
 K. Kanoda group

Material is proximate to a Mott transition

Non-activated transport

Optical pseudogap

Susceptibility
 similar to
 Heisenberg
 triangular lattice

χ(T=0) finite No ordering

 No ¹H NMR line splitting down to 32 mK – no internal fields

No ordering

K-(BEDT-TTF)₂Cu₂(CN)₃

 1/T₁ relaxation rate power law at low temperature indicating gapless excitations

Linear specific heat
γ=15mJ/K² mol
field independent
Wilson ratio T χ/γ is O(1)

Interpretation?

Theoretical suggestion (Motrunich) - U(1) spin liquid with spinon Fermi surface
 Good variational energy for triangular lattice Hubbard model
 Large susceptibility
 Linear specific heat (8)

 theory predicts C_v = AT^{2/3}
 Spinon pairing?
 features visible around T=5K. related?

K-(BEDT-TTF)₂Cu₂(CN)₃

¹³C NMR: line
 broadening at low
 temperature in a
 field

indicates

 inhomogenous AF
 moments induced
 by field

EtMe₃Sb[Pd(dmit)₂]₂

another organic
 triangular lattice
 Mott insulator!

R. Kato group

$EtMe_3Sb[Pd(dmit)_2]_2$

Susceptibility very similar to κ-(ET)

 No line broadening from static moments

Cu and Zn can "invert"

Herbertsmithite – a
 2d s=1/2 kagome
 antiferromagnet

D. Nocera, Y.S. Lee groups

Opturn of χ below
 50K, probably due to
 defect spins

Ourie-Weiss
 temperature Θ_{CW} ≈
 -240K from ³⁵Cl NMR,
 Θ_{CW} ≈ -300K from χ

 No order down to T=50mK

T. Imai et al

- Specific heat is dominated by magnetic contribution below only ≈ 1K
- This appears roughly power law C ~ T^{α} with α = 0.5–1
- Indicates many low energy excitations

 Evidence of gapless spin excitations:

> low-energy χ"(E) in neutrons

Similar behavior
 observed in 1/T₁ ∝
 T χ"(0⁺,T)

χ″(E)

Theory

 U(1) Dirac ASL proposed (Y. Ran, M. Hermele et al)

 \odot Predicts $\chi \sim T$, $C_v \sim T^2$ in pure system

T by impurities
T by

A large concentration of 5–10% of disorderd inverted Zn and Cu ions makes interpretation difficult

An "hyperkagome" lattice of Ir⁴⁺ spins

Expect S=1/2 spin state – orbital state unclear?

Takagi group

$Na_4Ir_3O_8$

Susceptibility Curie-Weiss temperature $\Theta_{CW} \approx$ -650K \odot Large χ at low T μ_{eff} = 1.96 μ_B/Ir ≈ 1.73 μ_{B}/Ir (s=1/2) Consistent with Knight shift Iow-T upturn not seen in K: extrinsic

Specific Heat

broad peak around
 30K

power-law
 (between T and T²)
 at low T indicates
 many low energy
 excitations

 NMR 1/T₁ rate is power law for 50<T<200, suggestive of low energy excitations

 Transport
 Mott insulator
 but...close to a Mott transition
 Perhaps this proximity may be important

Theory

Heavy Ir (Z=77) has strong spin-orbit o expect j=1/2 spin with g=-2 Hamiltonian may be Heisenberg plus Dzyaloshinskii-Moriya corrections Probably explains large $\chi(T=0)$ Large size differences between Na, Ir, O
 suggests little disorder Gapless specific heat suggests gapless spinons Two QSL proposals can roughly fit specific heat but both have some difficulties Perhaps resolved by itinerancy?

G. Chen+LB

Y. Zou et al M. Lawler et al

Conclusions

Frustrated magnets provide a rich variety of phenomena including a number of promising new quantum spin liquid candidates

For QSLs, what is needed is a combined effort of innovative experimental and theoretical work, with attention of the latter paid to the former!