Frustrated Magnets (3)
Materials Survey

Leon Balents
Boulder summer school, 2008
Recent Collaborators

Doron Bergman
Gang Chen
Sungbin Lee
Miles Stoudenmire
Jason Alicea
Ryuichi Shindou
Andreas Schnyder
Yong-Baek Kim
Arun Paramekanti
Michael Lawler
Lucile Savary

Simon Trebst
Emmanuel Gull
Oleg Starykh
Masanori Kohno
What do we look for?

- Is it an insulator?
- Is it a magnet? Curie law
- Signs of frustration
 - $f \gg 1$
 - $\Theta_{CW}(\chi)$
 - T_N: signs of transition in χ, C_v, ...
 - low T entropy, low energy excitations
 - C_v, $1/T_1$, ...
- Identify the states
 - nature of correlations?
 - ordering if it occurs
- Compare with some theoretical expectations
\(\text{AB}_2\text{X}_4 \) spinels

- One of the most common mineral structures
- Common valence:
 - \(\text{A}^{2+}, \text{B}^{3+}, \text{X}^{2-} \)
 - \(\text{X}=\text{O}, \text{S}, \text{Se} \)

![cubic Fd\bar{3}m structure](image)
Deconstructing the spinel

- A atoms: diamond lattice
- Bipartite: not geometrically frustrated
Deconstructing the spinel

- B atoms: pyrochlore
- Decorate the plaquettes of the diamond lattice
ACr$_2$O$_4$ spinels

- pyrochlore lattice
- $S=3/2$ Isotropic moment
- $X=O$ spinels: B-B distance close enough for direct overlap
- dominant AF nearest-neighbor exchange
H=0 Susceptibility

Frustration:

<table>
<thead>
<tr>
<th></th>
<th>Zn</th>
<th>Cd</th>
<th>Hg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Θ_{CW} (K)</td>
<td>-390</td>
<td>-70</td>
<td>-32</td>
</tr>
<tr>
<td>T_N (K)</td>
<td>12</td>
<td>7.8</td>
<td>5.8</td>
</tr>
<tr>
<td>f</td>
<td>33</td>
<td>9</td>
<td>6</td>
</tr>
</tbody>
</table>

H. Ueda et al
Degeneracy

- Heisenberg model

\[H = \sum_{i,j} \vec{S}_i \cdot \vec{S}_j = \frac{1}{2} \sum_t \left(\sum_{i \in t} \vec{S}_i \right)^2 + \text{const.} \]

- Ground state constraint: total spin 0 per tetrahedron

- Quantum mechanically: not possible
Classical spin liquid

No LRO (Reimers)
Classical spin liquid

- No LRO (Reimers)
- Dipolar correlations
 (Youngblood+Axe,Henley, Isakov et al...)

\[S_i^\mu = b_{ab}^\mu \]
Classical spin liquid

- No LRO (Reimers)
- Dipolar correlations

\[S^\mu_i = b^\mu_{ab} \]
Classical spin liquid

- Unusual “ring” correlations seen in CdCr$_2$O$_4$ related
- Y$_2$Ru$_2$O$_7$: J. van Duijn et al, 2007

Broholm et al
Ordering

Many perturbations important for ordering:
- Spin-lattice coupling
- Further exchange
- Spin-orbit effects
- Quantum corrections

ZnCr$_2$O$_4$
CdCr$_2$O$_4$
HgCr$_2$O$_4$

S.H. Lee + many others

JH Chung et al, 2005
Magnetization Plateaus

Classically: $M = M_s \ H / H_s$

Plateau indicates 3:1 structure

H. Ueda et al, 2005/6
Magnetization Plateaus

Plateau mechanism:
- spin-lattice coupling favors collinearity

Order on plateau may be selected by
- spin-lattice
- quantum effects

"R" state observed in neutrons

Matsuda et al
A-site spinels

Spectrum of materials

CoRh_2O_4 Co_3O_4 MnSc_2S_4 FeSc_2S_4 MnAl_2O_4 CoAl_2O_4

$s = 5/2$ $s = 3/2$ $s = 2$

Orbital degeneracy

$T = \frac{\Theta_{\text{CW}}}{f}$

Naively unfrustrated

V. Fritsch et al. PRL 92, 116401 (2004); N. Tristan et al. PRB 72, 174404 (2005); T. Suzuki et al. (2006)
Why frustration?

- Roth, 1964: 2nd and 3rd neighbor exchange not necessarily small
- Exchange paths: A-X-B-X-B comparable
- Minimal model
- J_1-J_2 exchange
Ground state evolution

- Coplanar spirals
- Spiral surfaces:

- Neel
- \(J_2/J_1\)

- \(J_2/J_1 = 0.2\)
- \(J_2/J_1 = 0.4\)
- \(J_2/J_1 = 0.85\)
- \(J_2/J_1 = 20\)
Monte Carlo

\[f = 11 \text{ at } J_2/J_1 = 0.85 \]

\[\text{MnSc}_2\text{S}_4 \]
Entropy and J_3 compete to determine ordered state

Spiral spin liquid regime has intensity over entire spiral surface
Comparison to Expt.

- Diffuse scattering
- Ordered state
- (qq0) spiral
- Specific heat?

A. Krimmel et al., 2006

agrees with theory for FM J_1
Cs$_2$CuCl$_4$

- Spatially anisotropic triangular lattice
- Cu$^{2+}$ spin-1/2 spins

\[
H = \frac{1}{2} \sum_{i,j} \left[J_{ij} \vec{S}_i \cdot \vec{S}_j - \vec{D}_{ij} \cdot (\vec{S}_i \times \vec{S}_j) \right]
\]

- couplings:
 - $J = 0.37 \text{meV}$
 - $J' = 0.3J$
 - $D = 0.05J$

R. Coldea et al
Neutron scattering

Coldea et al, 2001/03: a 2d spin liquid?

Very broad spectrum similar to 1d (in some directions of k space). Roughly fits power law.

Fit of “peak” dispersion to spin wave theory requires adjustment of J,J’ by 40% - in opposite directions!
Dimensional reduction?

- Frustration of interchain coupling makes it less "relevant"
- First order energy correction vanishes

Leading effects are in fact $O[(J')^4/J^3]$!
Dimensional reduction?

- Frustration of interchain coupling makes it less "relevant"
- First order energy correction vanishes.
- Numerics: $J'/J < 0.7$ is "weak"

Weng et al, 2006

Very different from spin wave theory

Very weak inter-chain correlations
Excitations

Build 2d excitations from 1d spinons

Exchange: \(\frac{J'}{2} (S_i^+ S_j^- + S_i^- S_j^+) \)

Expect spinon binding to lower inter-chain kinetic energy

Use 2-spinon Schroedinger equation
Broad lineshape: “free spinons”

- “Power law” fits well to free spinon result
- Fit determines normalization

\[J'(k) = 0 \text{ here} \]
Bound state

Compare spectra at $J'(k)<0$ and $J'(k)>0$:

- Curves: 2-spinon theory w/ experimental resolution
- Curves: 4-spinon RPA w/ experimental resolution

- $k'_x = -\pi/2$
- $k'_y = 2\pi$
- $J'(k)<0$

- $k'_x = -\pi/2$
- $k'_y = 4\pi$
- $J'(k)>0$

- CVares24spinorthoRPAw/experimentalresolution
Transverse dispersion

Bound state and resonance

Solid symbols: experiment
Note peak (blue diamonds) coincides with bottom edge only for $J'(k)<0$
Spectral asymmetry

Vertical lines: $J'(k) = 0$.
Quantum Spin Liquids
Ultimate frustration?

- Can quantum fluctuations prevent order even at T=0: f=∞?
- Many theoretical suggestions since Anderson (73)
- “Resonating Valence Bond” QSL states

\[\Psi = \text{Diagram} + \text{Diagram} + \ldots \]
Search for QSLs

- Where do we look?
 - Spin-1/2 frustrated magnets
 - Intermediate correlation regime (near the Mott transition)
Search for QSLs

- $1/f = T_c = 0$: no ordering (magnetic or otherwise!)
- No spin freezing (hysteresis, NMR, μSR)
- Structure of low energy excitations
 - $\chi(T), C_v(T), 1/T_1$, inelastic neutrons
 - theoretical guidance helpful!
- Smoking gun?
QSL Family Tree

- **U(1) states**
 - spinons unpaired
 - strong gauge fluctuations
 - spinons must be gapless in \(d=2 \)
 - stable in \(d=3 \) at \(T=0 \) only

- **\(Z_2 \) states**
 - spinons paired
 - weak gauge fluctuations
 - stable in \(d=2 \)
 - \(T>0 \) Ising transition in \(d=3 \)
A diagnostic flowchart

Dimension?

Spin gap?

yes

Z\textsubscript{2} state

no

C\textsubscript{v}?

T2/3

T

U(1) FS

Z\textsubscript{2} dirty Dirac

Z\textsubscript{2} Dirac

R\textsubscript{W} = 1?

yes

no

U(1) Dirac ASL
A diagnostic flowchart

- **T > 0 transition**
 - **d = 2**
 - Spin gap? yes
 - Spin gap? no
 - **U(1)** FS
 - **U(1) ??**
 - **T ln(1/T)**

- **Z₂. Spin gap?**
 - no
 - **Cᵥ?**
 - T
 - T²
 - **Z₂ FS**
 - **Z₂ line node**
 - yes
 - **Cᵥ?**

- **d = 3**
 - **U(1) FS**
 - **U(1) ??**
 - **Cᵥ?**
 - **Z₂**

- **disordered possibilities neglected**
QSL candidates

- NiGa$_2$S$_4$ - spin 1 triangular lattice
- \(\kappa-(\text{BEDT-TTF})_2\text{Cu}_2\text{(CN)}_3 \) - triangular lattice organic
- EtMe$_3$Sb[\text{Pd(dmit)}_2]$_2$ - triangular lattice organic
- Na$_4$Ir$_3$O$_8$ - hyperkagome
- ZnCu$_3$(OH)$_6$Cl$_2$ - kagome
K-(BEDT-TTF)$_2$Cu$_2$(CN)$_3$

- Organic
- $S=1/2$ triangular lattice
- Nearly isotropic Hubbard-like with $t'/t = 1.06$
 K. Kanoda group
K-(BEDT-TTF)$_2$Cu$_2$(CN)$_3

- Material is proximate to a Mott transition
- Non-activated transport
- Optical pseudogap

![Phase diagram](image-url)
\(\kappa-(\text{BEDT-TTF})_2 \text{Cu}_2(\text{CN})_3 \)

- Susceptibility similar to Heisenberg triangular lattice
- \(\chi(T=0) \) finite
- No ordering
$\kappa-(\text{BEDT-TTF})_2\text{Cu}_2(\text{CN})_3$

- No ^1H NMR line splitting down to 32 mK - no internal fields
- No ordering
$\kappa-(\text{BEDT-TTF})_2\text{Cu}_2(\text{CN})_3$

$1/T_1$ relaxation rate power law at low temperature indicating gapless excitations

Low-lying spin excitation
\(\kappa-(\text{BEDT-TTF})_2\text{Cu}_2(\text{CN})_3 \)

- Linear specific heat
- \(\gamma=15\text{mJ/K}^2\text{ mol} \)
- Field independent
- Wilson ratio \(T \propto \gamma \) is \(O(1) \)

![Graph showing heat capacity vs. temperature squared for different fields.](image-url)
Interpretation?

- Theoretical suggestion (Motrunich) – U(1) spin liquid with spinon Fermi surface
- Good variational energy for triangular lattice Hubbard model
- Large susceptibility ✔
- Linear specific heat ☹
 - theory predicts $C_V = AT^{2/3}$
- Spinon pairing?
 - features visible around $T=5K$. related?
$\kappa-(\text{BEDT-TTF})_2\text{Cu}_2(\text{CN})_3$

- 13C NMR: line broadening at low temperature in a field indicates inhomogenous AF moments induced by field.
EtMe$_3$Sb[Pd(dmit)$_2$]$_2$

another organic triangular lattice
Mott insulator!

R. Kato group
EtMe$_3$Sb[Pd(dmit)$_2$]$_2$

- Susceptibility very similar to κ-(ET)
- No line broadening from static moments
ZnCu$_3$(OH)$_6$Cl$_2$

Cu and Zn can "invert"

Herbertsmithite - a 2d s=1/2 kagome antiferromagnet

D. Nocera, Y.S. Lee groups
ZnCu₃(OH)₆Cl₂

- Upturn of χ below 50K, probably due to defect spins
- Curie-Weiss temperature $\Theta_{CW} \approx -240K$ from 35Cl NMR, $\Theta_{CW} \approx -300K$ from χ
- No order down to $T=50mK$

T. Imai et al
ZnCu_{3}(OH)_{6}Cl_{2}

- Specific heat is dominated by magnetic contribution below only \(\approx 1 \text{K} \)
- This appears roughly power law \(C \sim T^{\alpha} \) with \(\alpha = 0.5-1 \)
- Indicates many low energy excitations
ZnCu$_3$(OH)$_6$Cl$_2$

- Evidence of gapless spin excitations:
 - low-energy $\chi''(E)$ in neutrons
 - Similar behavior observed in $1/T_1 \propto T \chi''(0^+,T)$
Theory

- U(1) Dirac ASL proposed (Y. Ran, M. Hermele et al)
 - Predicts $\chi \sim T$, $C_v \sim T^2$ in pure system
 - Can be reconciled to $\chi \sim \text{const}$, $C_v \sim T$ by impurities
- A large concentration of 5-10% of disorderd inverted Zn and Cu ions makes interpretation difficult
Na$_4$Ir$_3$O$_8$

- An “hyperkagome” lattice of Ir$^{4+}$ spins
- Expect S=1/2 spin state - orbital state unclear?

Ir$^{4+}$

$\uparrow \uparrow \uparrow$

$\downarrow \downarrow \downarrow$

t_{2g}

5d5; S = 1/2

Takagi group
Na$_4$Ir$_3$O$_8$

- Susceptibility
 - Curie-Weiss temperature $\Theta_{CW} \approx -650$K
 - Large χ at low T
 - $\mu_{\text{eff}} = 1.96 \mu_B/\text{Ir} \approx 1.73 \mu_B/\text{Ir}$ (s=1/2)
- Consistent with Knight shift
- low-T upturn not seen in K: extrinsic
Na$_4$Ir$_3$O$_8$

- Specific Heat
- broad peak around 30K
- power-law (between T and T^2)
- at low T indicates many low energy excitations
\(\text{Na}_4\text{Ir}_3\text{O}_8 \)

- NMR \(1/T_1 \) rate is power law for \(50 < T < 200 \), suggestive of low energy excitations
Na$_4$Ir$_3$O$_8$

- Transport
 - Mott insulator
 - but...close to a Mott transition
- Perhaps this proximity may be important
Heavy Ir (Z=77) has strong spin-orbit
expect $j=1/2$ spin with $g=-2$
Hamiltonian may be Heisenberg plus
Dzyaloshinskii-Moriya corrections
Probably explains large $\chi(T=0)$
Large size differences between Na, Ir, O
suggests little disorder
Gapless specific heat suggests gapless
spinons
Two QSL proposals can roughly fit specific
heat but both have some difficulties
Perhaps resolved by itinerancy?
Conclusions

- Frustrated magnets provide a rich variety of phenomena including a number of promising new quantum spin liquid candidates.

- For QSLs, what is needed is a combined effort of innovative experimental and theoretical work, with attention of the latter paid to the former!