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Boulder notes by Victor V. Albert

I. ARI TURNER

I.1. Hasting’s theorem

Hastings proved that if a system with local interactions has long-range correlations in the ground state,
then there is no gap (meaning there is a thermal conductivity and power-law heat capacity at low temperatures):

〈φ (x)φ (y)〉 =
1

|x− y|
⇒ gapless excitations .

The contrapositive means that if there is a gap, then the correlations decay exponentially:

gap⇒ 〈φ (x)φ (y)〉 = e−|x−y|/ξ .

The converse is not generally true (e.g., a ferromagnet has no correlations, but is gapless). This theorem relates to
metals and insulators, which have power-law (Friedel oscillators divided by a power of r) and exponentially decaying
correlations 〈n (r)n (0)〉, respectively. This theorem also reflects zero-point motion, which can give a more precise
meaning of entanglement. We discuss this now.

EPR noticed that if a two-spin system is in an entangled state

|ψ〉 =
1√
2

(| ↑↓〉 − | ↓↑〉)

and if Alice measures σz, then Bob has to also have σz be down. Similarly, if Alice measures σx to be up, then
Bob has σx to be down. But if Alice measures σz to be up and Bob decides to measure σx, then he has a 50/50
chance of getting up or down. This leads to Bell’s inequalities...

A generalization of this is for a three-spin GHz state 1√
2

(| ↑↑↑〉+ | ↓↓↓〉). If two people measure σy and one
measures σx, then either one of them or three of them will get −1. On the other hand, if all three measure σx, then
an even number of them will get +1. If σx,y expectation values are pre-defined and not random, this is impossible.

I.2. Entanglement

A composite state in a system with two parts A and B is entangled if it cannot be written as a product of a
state in A and a state is B. In other words, the state is entangled if the sum

|ψ〉 =
∑
i

√
pi|i〉|i〉

has more than one term (given that both |i〉’s are an orthonormal set). This includes cases where A and B are
different sizes because the |i〉’s do not have to form a basis. This is known as the Schmidt decomposition, and
we can show it always exists by starting with a generic representation

|ψ〉 =
∑
a,b

rab|a〉|b〉

and performing a singular value decomposition of the matrix rab. The degree of entanglement of a composite state
is related to the degree of mixedness of the individual reduced density matrices

ρA,B ≡ TrB,A {|ψ〉〈ψ|} =
∑
i

pi|i〉〈i| .

This matrix will not be in a definite (i.e., pure) state due to the state’s correlations with the region B. Local
observables can then be evaluated using only the reduced density matrix:

〈ψ|OA|ψ〉 = Tr {ρAOA} . (1.1)
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For an entangled state, the entropy SAB = Tr {ρ log ρ} = 0, but entropies for the parts are equal:

SA = −
∑
i

pi ln pi = SB .

Then, given a subsystem A of a system, the entropy of the ground state in that part is related to the fluctuations
of the state in A. Then the mutual information

I (A,B) = S (A) + S (B)− S (AB) = 2S (A)

which quantifies the correlations between the two systems. In a classical system, you expect a bigger system to
have a bigger entropy, but than doesn’t have to be true in QM. This can be generalized to the conditional mutual
information

I (A,B |C) = S (AC) + S (BC)− S (C)− S (ABC) .

Thermalization means that the reduced density matrix follows a Gibbs distribution

ρA =
∑
i

e−βEi |i〉〈i| .

For generic pi, one can then define the entanglement Hamiltonian

H = − 1

β

∑
i

ln pi|i〉〈i| ρA = e−βH .

It turns out this Hamiltonian typically has local interactions and its low-energy degrees of freedom are typically
localized near the boundary. The entanglement entropy turns out to be proportional to the area separating A from
the rest of the system:

SA ∝ Ld−1 .

The topological entanglement entropy can help determine whether a system is topologically ordered.
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Eigenstate thermalization hypothesis states that if you have an ergodic system, then the expectation value of
any operator in a high-energy state |ψ〉 of Hamiltonian H (with energy related to a temperature T ) is

〈ψ|O|ψ〉 =
Tr
{
e−βHO

}
Tr {e−βH}

.

This doesn’t work for all operators (e.g., O = |ψ〉〈ψ|), but may work for local ones. By eq. (1.1), we then see that

Tr {ρAO} = 〈ψ|O|ψ〉 =
Tr
{
e−βHO

}
Tr {e−βH}

,

where ρA is the reduced density matrix on the region A of the support of the operator.

II.1. Entanglement Hamiltonian

When you accelerate at a constant rate, there is light that will never reach you. In such an accelerating
reference frame, you will observe thermal radiation (Unruh effect). The Hamiltonian describing the thermal state
of the radiation is related to the entanglement Hamiltonian defined above. We can calculate this thermal state
using imaginary-time path integrals using the (Wick-rotated) 1+1D action

SE =

ˆ
dxdτ

1

2

[(
∂φ

∂τ

)2

+

(
∂φ

∂x

)2

+
1

2
m2φ2

]
.
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The wavefunction is then

ψ (φ) =

ˆ
Dφe−S[φ(x,t)] = e−H∞ ,

where the integral is over all paths of light up to present time. We split space into two, and calculate the state on
the right half by tracing out the left half. In other words, the state on the right half is

ρ (φR, φR) =
∑
φL

|ψ (φL, φR)|2 .

To perform the integral, we use angular quantization of φR, with the angular direction being time and radial being
space. The (Euclidean) action SE in that change of coordinates is

S̃Euc =

ˆ
rdrdt

1

2

[
1

r2

(
∂φ

∂θ

)2

+

(
∂φ

∂r

)2

+
1

2
m2φ2

]
.

The evolution operator which evolves in a small angle φR → φ′R (i.e., segment in time) is the action integrated over
the radial direction:

ρφRφ′
R

= e−HE =

(
1− HE

N

)N
.

The resulting entanglement Hamiltonian (after canonical transformation; recall that S =
´
dtH) is

HE = 2π

ˆ ∞
0

dr
r

2

[
(Πφ)

2
+

(
∂φ

∂r

)2

+m2φ2

]
.

Changing coordinates to r = eu and placing a cutoff log a:

HE = 2π

ˆ ∞
log a

1

2
du

[
(Πφ)

2
+

(
∂φ

∂r

)2

+ e2um2φ2

]
,

there is an effective potential v (u) = m2e2u. The potential v (u) is sharply increasing above u = ln 1
m and sharply

decreasing below u = ln 1
m . So we can approximate it with a box of length ln 1

ma . The entanglement entropy is
just the thermal entropy of e−HE

SE = S

(
ln

1

ma
,

1

2π

)
=
c

6
ln

1

ma
,

where c is the central charge.

II.2. Tensor networks

Tensor network states of multiple spins s, t,m can be interpreted as coupling those spins to ancillary particles
α, β, γ and tracing out those particles. More specifically, a matrix product state can be defined as shown in F2.
Expectation value of quantities in the thermodynamic limit are equivalent to the projection on the left and right
eigenvectors of the transfer matrix (also, double tensor).


