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What is a quantum phase transition ?

Non-analyticity in ground state properties as a function of 
some control parameter g

E

g

Avoided level crossing which 
becomes sharp in the infinite 

volume limit:

second-order transition

E

g

True level crossing:

Usually a first-order transition





T Quantum-critical

Why study quantum phase transitions ?

ggc
• Theory for a quantum system with strong correlations:          
describe phases on either side of gc by expanding in                            
deviation from the quantum critical point.                    
• Critical point is a novel state of matter without 
quasiparticle excitations               

• Critical excitations control dynamics in the wide 
quantum-critical region at non-zero temperatures.                      

~ z
cg g ν∆ −

Important property of ground state at g=gc :                              
temporal and spatial scale invariance;                                  

characteristic energy scale at other values of g: 
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I. Quantum Ising Chain



I. Quantum Ising Chain
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leads to entangled states at g of order unity
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Experimental realization



Weakly-coupled qubits
Ground state:
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Lowest excited states:
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Coupling between qubits creates “flipped-spin” quasiparticle states at momentum p

Entire spectrum can be constructed out of multi-quasiparticle states

jipx
j

j
p e= ∑

( ) ( )

( )

2 1

1

Excitation energy 4 sin
2

         Excitation gap 2 2

pap J O g

gJ J O g

ε −

−

⎛ ⎞= ∆ + +⎜ ⎟
⎝ ⎠

∆ = − + p

∆

a
π

a
π

−

( )pε

( )1g



Dynamic Structure Factor :
          Cross-section to flip a   to a (or vice versa)
           while transferring energy

 
  and momentum 
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Three quasiparticle
continuum

Quasiparticle pole

~3∆

Weakly-coupled qubits ( )1g

Structure holds to all orders in 1/g

At 0,  collisions between quasiparticles broaden pole to 
a Lorentzian of width 1 where the  
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S. Sachdev and A.P. Young, Phys. Rev. Lett. 78, 2220 (1997)



Ground states:
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Lowest excited states: domain walls
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Dynamic Structure Factor :
          Cross-section to flip a   to a (or vice versa)
           while transferring energy

 
  and momentum 
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Structure holds to all orders in g
~2∆

At 0,  motion of domain walls leads to a finite  ,
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S. Sachdev and A.P. Young, Phys. Rev. Lett. 78, 2220 (1997)



Entangled states at g of order unity

ggc

“Flipped-spin” 
Quasiparticle

weight Z

( )1/ 4~ cZ g g−

A.V. Chubukov, S. Sachdev, and J.Ye, 
Phys. Rev. B 49, 11919 (1994) 

ggc

Ferromagnetic 
moment N0

( )1/8
0 ~ cN g g−

P. Pfeuty Annals of Physics, 57, 79 (1970)

ggc

Excitation 
energy gap ∆ ~ cg g∆ −



Dynamic Structure Factor :
          Cross-section to flip a   to a (or vice versa)
           while transferring energy

 
  and momentum 
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No quasiparticles --- dissipative critical continuum



Quasiclassical
dynamics

Quasiclassical
dynamics
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S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992).
S. Sachdev and A.P. Young, Phys. Rev. Lett. 78, 2220 (1997).
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II. Landau-Ginzburg-Wilson theory

Mean field theory and the evolution of the 
excitation spectrum
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III. Superfluid-insulator transition

Boson Hubbard model at integer filling



Bosons at density f = 1
Weak interactions: 

superfluidity

Strong interactions: 
Mott insulator which 
preserves all lattice 

symmetries

LGW theory: continuous quantum transitions between these states
M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).



I. The Superfluid-Insulator transition

Boson Hubbard model
†

†

Degrees of freedom: Bosons, ,  hopping between the 

sites, , of a lattice, with short-range repulsive interactions.
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U nH t µ= − + − +∑ ∑ ∑

†                          j j jn b b≡
M.PA. Fisher, P.B. Weichmann,     

G. Grinstein, and D.S. Fisher     
Phys. Rev. B 40, 546 (1989).

For small U/t, ground state is a superfluid BEC with

superfluid density         density of bosons≈



What is the ground state for large U/t ?

Typically, the ground state remains a superfluid, but with

superfluid density         density of bosons

The superfluid density evolves smoothly from large values at 
small U/t, to small values at large U/t, and there is no quantum 
phase transition at any intermediate value of U/t.
(In systems with Galilean invariance and at zero temperature, 
superfluid density=density of bosons always, independent of the 
strength of the interactions)



What is the ground state for large U/t ?

Incompressible, insulating ground states, with zero 
superfluid density, appear at special commensurate densities

t
U

−3jn =

7 / 2jn = Ground state has “density wave” order, which 
spontaneously breaks lattice symmetries



Excitations of the insulator: infinitely long-lived, finite energy 
quasiparticles and quasiholes
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Excitations of the insulator: infinitely long-lived, finite energy 
quasiparticles and quasiholes
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Excitations of the insulator: infinitely long-lived, finite energy 
quasiparticles and quasiholes
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Boson Green's function :
          Cross-section to add a boson
           while transferring energy  and momentum 

( , )

p

G p

ω

ω Insulating ground state   

Continuum of            
two quasiparticles +    

one quasihole

ω

( ),G p ω
( )( )Z pδ ω ε−
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Similar result for quasi-hole excitations obtained by removing a boson



Entangled states at of order unity/g t U≡
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A.V. Chubukov, S. Sachdev, and J.Ye, 
Phys. Rev. B 49, 11919 (1994) 



Quasiclassical
dynamics

Quasiclassical
dynamics
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Relaxational dynamics ("Bose molasses") with 
 phase coherence/relaxation time  given by
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S. Sachdev and J. Ye, 
Phys. Rev. Lett. 69, 2411 (1992).
K. Damle and S. Sachdev
Phys. Rev. B 56, 8714 (1997).

Crossovers at nonzero temperature
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M.P.A. Fisher, G. Girvin, and G. Grinstein, Phys. Rev. Lett. 64, 587 (1990).
K. Damle and S. Sachdev Phys. Rev. B 56, 8714 (1997).
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IV. Tilting the Mott insulator

Density wave order at an Ising transition



Applying an “electric” field to the Mott insulator



V0= 13 Erecoil τperturb = 4 msV0=10 Erecoil τperturb = 2 ms
What is the 

quantum state 
here ?

V0= 16 Erecoil τperturb = 9 ms V0= 20 Erecoil τperturb = 20 ms
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Describe spectrum in subspace of states resonantly 
coupled to the Mott insulator

S. Sachdev, K. Sengupta, and S.M. Girvin, Physical Review B 66, 075128 (2002) 



Important neutral excitations (in one dimension)



Important neutral excitations (in one dimension)

Nearest neighbor dipole



Important neutral excitations (in one dimension)

Creating dipoles on nearest neighbor links creates a 
state with relative energy U-2E ; such states are not

part of the resonant manifold



Important neutral excitations (in one dimension)

Nearest neighbor dipole



Important neutral excitations (in one dimension)

Nearest-neighbor dipoles

Dipoles can appear resonantly on non-nearest-neighbor links.
Within resonant manifold, dipoles have infinite on-link 

and nearest-link repulsion



Charged excitations (in one dimension)

Effective Hamiltonian for a quasiparticle in one dimension (similar for a quasihole):

( )† † †
eff 1 13 j j j j j j

j
H t b b b b Ejb b+ +
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ε
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= = −∞ ∞

=

All charged excitations are strongly localized in the plane perpendicular electric field.
Wavefunction is periodic in time, with period h/E (Bloch oscillations)

Quasiparticles and quasiholes are not accelerated out to infinity



A non-dipole state

State has energy 3(U-E) but is connected to resonant 
state by a matrix element smaller than t2/U

State is not part of resonant manifold



Hamiltonian for resonant dipole states (in one dimension)
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          Creates dipole on link 
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Constraints:    1 ; 0
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Determine phase diagram of Hd as a function of (U-E)/t

Note: there is no explicit dipole hopping term. 

However, dipole hopping is generated by the 
interplay of terms in Hd and the constraints.



Weak electric fields: (U-E)      t

Ground state is dipole vacuum (Mott insulator) 0

† 0dFirst excited levels: single dipole states

Effective hopping between dipole states † 0d

† † 0md d
† 0md

0

If both processes are permitted, they exactly cancel each other.
The top processes is blocked when          are nearest neighbors,m

t t

t t

2

A nearest-neighbor dipole hopping term ~ is generatedt
U E−

⇒



Strong electric fields: (E-U)      t

Ground state has maximal dipole number.

Two-fold degeneracy associated with Ising density wave order:
† † † † † † † † † † † †
1 3 5 7 9 11 2 4 6 8 10 120 0d d d d d d or d d d d d d

(U-E)/t

Eigenvalues



Ising quantum critical point at E-U=1.08 t

-1.90 -1.88 -1.86 -1.84 -1.82 -1.80
0.200

0.204

0.208

0.212

0.216

0.220

πS  /N3/4

λ

 N=8
 N=10
 N=12
 N=14
 N=16

Equal-time structure 
factor for Ising order 

parameter

(U-E)/t

S. Sachdev, K. Sengupta, and S.M. Girvin, Physical Review B 66, 075128 (2002) 



Non-equilibrium dynamics in one dimension

Start with the ground state at E=32 on a chain with open boundaries.
Suddenly change the value of E and follow the evolution of the wavefunction

Critical point at E=41.85



Dependence on chain length

Non-equilibrium dynamics in one dimension



Non-equilibrium response is maximal near the Ising critical point

Non-equilibrium dynamics in one dimension

K. Sengupta, S. Powell, and S. Sachdev, Physical Review A 69, 053616 (2004) 
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V. Bosons at fractional filling

Beyond the Landau-Ginzburg-Wilson 
paradigm



Bosons at density f = 1
Weak interactions: 

superfluidity

Strong interactions: 
Mott insulator which 
preserves all lattice 

symmetries

LGW theory: continuous quantum transitions between these states
M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).



Bosons at density f = 1/2

Weak interactions: superfluidity

Strong interactions: Candidate insulating states

1
2
(         +         )=

( ) .All insulating phases have density-wave order  with 0ieρ ρ ρ= ≠∑ Q r
Q Q

Q
r

0scΨ ≠

C. Lannert, M.P.A. Fisher, and T. Senthil, Phys. Rev. B 63, 134510 (2001) 
S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)



Predictions of LGW theory

First 
order 

transition

   Superconductor

0, 0sc ρΨ ≠ =Q

Charge-ordered insulator

   0, 0sc ρΨ = ≠Q

1 2r r−

   Superconductor

0, 0sc ρΨ ≠ =Q

Charge-ordered insulator

   0, 0sc ρΨ = ≠Q

    
    (Supersolid)

0, 0sc

Coexistence

ρΨ ≠ ≠Q

1 2r r−

   Superconductor

0, 0sc ρΨ ≠ =Q

Charge-ordered insulator

   0, 0sc ρΨ = ≠Q

  " " 

0, 0sc

Disordered

ρΨ = =Q

1 2r r−



Superfluid insulator transition of hard core bosons at f=1/2 

A. W. Sandvik, S. Daul, R. R. P. Singh, and  D. J. Scalapino, Phys. Rev. Lett. 89, 247201 (2002)

Large scale (> 8000 sites) numerical study of the destruction of superfluid order at 
half filling with full square lattice symmetry
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Boson-vortex duality

Quantum 
mechanics of two-

dimensional 
bosons: world 

lines of bosons in 
spacetime

x
y

τ

C. Dasgupta and B.I. Halperin, Phys. Rev. Lett. 47, 1556 (1981); D.R. Nelson, Phys. Rev. Lett. 60, 
1973 (1988); M.P.A. Fisher and D.-H. Lee, Phys. Rev. B 39, 2756 (1989); 



Boson-vortex duality

Classical statistical 
mechanics of a  
“dual” three-
dimensional  

superconductor:
vortices in a 

“magnetic” field

x
y

z

Strength of “magnetic” field = density of bosons 
= f flux quanta per plaquette

C. Dasgupta and B.I. Halperin, Phys. Rev. Lett. 47, 1556 (1981); D.R. Nelson, Phys. Rev. Lett. 60, 
1973 (1988); M.P.A. Fisher and D.-H. Lee, Phys. Rev. B 39, 2756 (1989); 



Boson-vortex duality
Statistical mechanics of dual superconductor is invariant 

under the square lattice space group:
,  :  Translations by a lattice spacing in the ,  directions

 :  Rotation by 90 degrees.
x yT T x y

R

2

1 1 1 4

             Magnetic space group:
                   ;   

 ;     ;   1

if
x y y x

y x x y

T T e T T

R T R T R T R T R

π

− − −

=

= = =

Strength of “magnetic” field = density of bosons 
= f flux quanta per plaquette



Boson-vortex duality

At density = /  ( ,  relatively 
prime integers) there are  species 
of vortices,  (with =1 ),  
associated with  gauge-equivalent 
regions of the Brillouin zone

f p q p q
q

q
q

ϕ …

Hofstädter spectrum of dual “superconducting” order
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Boson-vortex duality

2
1

2

1

The  vortices form a  representation of the space group
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Hofstäder spectrum of dual “superconducting” order

At density = /  ( ,  relatively 
prime integers) there are  species 
of vortices,  (with =1 ),  
associated with  gauge-equivalent 
regions of the Brillouin zone

f p q p q
q

q
q

ϕ …

See also X.-G. Wen, Phys. Rev. B 65, 165113 (2002) 



Boson-vortex duality

The  fields characterize  superconducting and charge orderbothϕ

Superconductor insulator : 0 0  ϕ ϕ= ≠
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* 2

1
ˆ

Charge order: 

Status of space group symmetry determined by 
2density operators  at wavevectors ,
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Boson-vortex duality

The  fields characterize  superconducting and charge orderbothϕ

2
1

Competition between superconducting and charge orders:

"  LGW" theory of the  fields with the action
invariant under the projective transformations:
              :    ;    : i f
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Extended

T T e π
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ϕ ϕ ϕ ϕ+→ →

2

1
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R e
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=
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Immediate benefit: There is no intermediate   
“disordered” phase with neither order                           

(or without “topological” order).



First 
order 

transition

   Superconductor

0, 0sc ρΨ ≠ =Q

Charge-ordered insulator

   0, 0sc ρΨ = ≠Q

1 2r r−

Analysis of “extended LGW” theory of projective representation

   Superconductor

0, 0sc ρΨ ≠ =Q

Charge-ordered insulator

   0, 0sc ρΨ = ≠Q

    
    (Supersolid)

0, 0sc

Coexistence

ρΨ ≠ ≠Q

1 2r r−

   Superconductor

0, 0sc ρΨ ≠ =Q

Charge-ordered insulator

   0, 0sc ρΨ = ≠Q

  " " 

0, 0sc

Disordered

ρΨ = =Q

1 2r r−



First 
order 

transition

   Superconductor

0, 0sc ρΨ ≠ =Q

Charge-ordered insulator

   0, 0sc ρΨ = ≠Q

1 2r r−

Analysis of “extended LGW” theory of projective representation

   Superconductor

0, 0sc ρΨ ≠ =Q

Charge-ordered insulator

   0, 0sc ρΨ = ≠Q

    
    (Supersolid)

0, 0sc

Coexistence

ρΨ ≠ ≠Q

1 2r r−

Second 
order 

transition

   Superconductor

0, 0sc ρΨ ≠ =Q

Charge-ordered insulator

   0, 0sc ρΨ = ≠Q

1 2r r−



Analysis of “extended LGW” theory of projective representation
Spatial structure of insulators for q=2 (f=1/2)

1
2
(         +         )=

 unit cells; ,  ,  ,  all integersq q aba b a b q×



Analysis of “extended LGW” theory of projective representation
Spatial structure of insulators for q=4 (f=1/4 or 3/4)

 unit cells; ,  ,  ,  all integersq q aba b a b q×


