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1. Some Philosophy

Fluid mechanics/Hydrodynamics is a remarkable subject, worthy of serious study and
contemplation. The equations of motion are unambiguous, and of tremendous practical and
scientific importance. They capture an enormous range of phenomena from very small scale
(the motion of cells, or flow through very small, microscopic, holes), to the largest scales
(flows in solar systems and galaxies), and an incredible amount in between. Understanding
the equations is in many cases tantamount to understanding the phenomena themselves. For
this reason, fluid mechanics is an incredibly interdisciplinary subject–practitioners routinely
immerse themselves into different fields of human inquiry and try to use their knowledge of
constructing solutions to the equations of motion as a means to advance basic science or
engineering in these fields.

At the same time, fluid mechanics is a very humbling subject: it is hard to solve these
equations, as we will see throughout this school. But nonetheless over the past 150 years,
we have learned an enormous amount about the solutions and how to organize them.

Knowledge of how to organize and understand solutions of equations like this has had
impact well beyond the field of fluid mechanics per se. Many if not most of the important
approximations used routinely for solving nonlinear partial differential equations were in-
vented in the context of fluid mechanics (among these we list the idea of the boundary layer;
the idea of effective diffusivities or statistical solutions to equations; the foundations of how
to solve such equations numerically, using a computer.)

Moreover, fluid mechanics gives some of the most paradigmatic examples of what it means
to actually solve a problem in the face of overwhelming complexity. The solutions to the
Navier Stokes equation for a turbulent flow field are incredibly complex-nobody can give
a complete mathematical characterization of their solutions. But G.I. Taylor’s notion of a
turbulent diffusivity gives a compelling and quantitative description of how tracers actually
behave in a turbulent flow. Kolmogorov’s characterization of the energy spectrum is simple,
but a tour de force. And it goes on.

2. The Equations

Without further adieu, lets write down the equations of motion and start to talk about
what they mean and how they are organized. The equations are the celebrated Navier Stokes
equation, given by:
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(1) ρ(∂tu + u · ∇u) = −∇p+ η∇2u + ζ∇(∇ · u) + f ,

together with the equation of mass conservation

(2) ∂tρ+∇ · (ρu) = 0.

Here ρ is the density of material, u = u(x, y, z, t) is the velocity, and η is the dynamic
viscosity, and ζ is the so-called second viscosity. These equations must be supplemented
with an equation of state for the pressure, which is usually of the form p = p(ρ, T ), where T
is the temperature of the fluid. In situations where the temperature is non-uniform, there is
an additional equation for the temperature field.

The terms have clear physical interpretations:

(1) The left hand side of the equation, ρ(∂tu + u · ∇u) represents the acceleration of
the fluid. Here we are representing u(x, y, z, t) in the coordinates of the laboratory
frame (x,y,z) of reference. The first term represents explicit time dependence, whereas
the second term represents the result of advection of a flow vector. This advection
nonlinearity is the principal nonlinearity in fluid flows.

(2) The pressure gradient ∇p is a force due to gradients of pressures. This supplements
the body force f which can be caused by a variety of different effects, depending on
the scenario.

(3) The viscous terms, ie η∇2u. These are the terms in the equation that have the
highest number of spatial derivatives, a property that leads to their own unique role
even in situations where the term doesnt seem like it should be important.

3. Organizing and Unravelling:The Principal of Dominant Balance

So, with the equations given–all we have to do is solve them. There is one fundamental
principle that is always used when the equations are solved or organized. Indeed, this
principal was also used for organizing this conference, as we will explain.

The principal is called The Principle of Dominant Balance. This is the idea that, in any
given situation, the terms in the solutions to our equations will have (often wildly) different
sizes and different terms will be the largest. For example, in one situation, the inertial terms
might be the largest; while in another it might be the viscous terms. We categorize the
solutions by which terms are the largest.

How to do this systematically? We need to estimate the sizes of the different terms in
the equations. Let us suppose that we are considering a situation where the characteristic
size of the velocity is U , and the flow is varying over a length scale L. This means that the
typical timescale of the flow is L/U 1. With these assumptions we can compare the sizes of
the various terms.

1Note that there is an implicit assumption here that the velocity field itself is not varying or if it is varying
it could vary on a timescale different than L/U. If this happens it could change the assertions we are about
to make!
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3.1. Inertial versus Viscous: The Reynolds Number. With these assumptions, the
inertial terms have a size

∂tu,u · ∇u ∼ ρ
U2

L
,

whereas the viscous terms have a size

η∇2u ∼ η
U

L2
.

We can compare these terms with each other by looking at the ratio of their sizes. This gives
the celebrated Reynolds number

(3) Re =
UL

ν
,

where ν = η/ρ is the so called kinematic viscosity of the flow. It has the dimensions of a
diffusion constant.

Discuss importance of Reynolds number: Large, the flow is inertially driven; Small the
flow is under damped.

3.2. Sound versus no sound: Mach Number. Another important approximation in-
volves the conservation equation. If we imagine that the density of the gas is constant, so
that we can write ρ ≈ ρ0, then this equation reduces to

(4) ∇ · u = 0.

When this happens, the pressure is no longer given by the equation of state, but it is instead
a Lagrange Multiplier enforcing a volume constraint.

A reasonable question to ask is: Under what conditions is the density constant? The
analysis of this is slightly involved: We need to estimate the size of the perturbation to the
density that is non-uniform ρ = ρ0+δρ, and ask under what conditions is this density change
small. For now I’ll leave this as an exercise.

3.3. Not Foolproof. Note that there is a little bit of danger in defining dimensionless
numbers and eliminating physics. This danger is the heart of the subject, and the essence
of where many discoveries are made!

Let’s illustrate this with a very simple example. Consider an infinite flat plate, that is
oscillating side to side in an incompressible fluid (constant density) according to Uplate =
U0cos(ωt). Let’s assume/imagine that the velocity of the oscillation is small; if this happens
we might feel justified in neglecting the inertial terms in the equations.

What are the equations: Let’s let u be the component of the velocity parallel to the wall
(x direction) and v the component perpindicular to the wall (the y direction). According to
∇ · u = ∂xu + ∂yv = 0, we see that it is perfectly consistent to pick v = 0, and then have
u = u(y);we expect the horizontal velocity to decay with distance from the plate.

Thus the momentum equation is

ρ(∂tu+ u∂xu) = η∇2u− ∂xp.(5)

The u∂xu term vanishes identically, as does the pressure gradient–far away from the wall
there are no flows and so the pressure gradient vanishes.
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We thus have

∂tu = ν∂2yu,(6)

the diffusion equation! To find the solution, write u(y) = <eiωtF (y), and find that

F (y) = exp(−(1 + i)y/δ),

where δ =
√

2ν/ω. Thus the solution decays exponentially away from the plate. This
solution is called the Stokes layer.

Note: We could not neglect inertia in this problem–it was critical! And this is true even
if the amplitude of oscillation, U0,is arbitrarily small.

3.3.1. More Advanced Remark. If we make this problem just a tad more complicated, the
situation gets even worse. Lets suppose that instead of an oscillating plate we have an
oscillating sphere. Now by analogy to what we have just discussed there will be a Stokes
layer around the sphere, an oscillating layer where the action is, of size δ. But now the
flow is not uni-directional–there is also a part of the velocity that is moving in the direction
perpendicular to the plate, and correspondingly there is vertical flow. We can compute this
vertical flow by just assuming that U0 = U0(x), and that the dependence is very weak–ie the
length scale over which the horizontal velocity varies is long compared to δ. We then can
use continuity to say that

∂yv = −∂xu = −dU0

dx
<eiωtF (y).

This can be directly integrated to find

v = −dU0

dx

∫
dyeiωt−(1+i)/δy =

dU0

dx

δ

1 + i
eiωt−(1+i)/δy.(7)

Now if we compute the term that we neglected before

ρv∂yu,

it is no longer nonzero. It is of course small though as long as the amplitude of the oscillation
is small–this is just the reynolds number criterion from above (using a length scale that is
the size of the region over which U0 varies).

But: you can show with some algebra that this term has a nonzero time average! The
consequence of this is profound, you can think of it as a steady forcing function in the flow.
Thus the term that we have neglected all of a sudden generates a steady flow. This is the
most striking part of the solution! And we would have missed it if following dimensional
terms too closely.

3.4. Other Dimensionless Numbers. The subject of fluid mechanics is rife with many
many other dimensionless numbers. Here are some examples:
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3.4.1. Froude number.

(8) Fr =
U√
gL
,

is called the Froude number, and represents the size of the velocity relative to what it would
be if an object freefalls from rest over a distance L. This is the competition between fluid
inertia and gravity.

3.4.2. Capillary Number.

(9) Ca =
U

γ/η
,

is called the Capillary number, and represents the size of the velocity relative to the velocity
γ/η, where γ is the fluid surface tension. This dimensionless number often arises in problems
of fluid wetting.

3.4.3. Bond number.

(10) Bo =
∆ρgL2

γ

is called the Bond number, and represents the competition between gravitational forces
and capillary forces (surface tension). Here γ is the surface tension, and ∆ρ is the density
difference of one fluid in a background, so that ∆ρg represents a bona fide body force.

3.5. Dimensional Analysis. Dimensionless numbers are quite related to another topic,
called dimensional analysis. This is the idea that – if we have a sense as to what is going
on in a given situation, we can often guess the form of the solution without having to solve
equations at all. Of course the solution to the equations will also bear these out, assuming
they are correct! But this is often extremely useful, and will come up frequently in the talks
that are given. So here is a brief introduction:

There is a famous theorem that determines how many dimensionless parameters are needed
to specify a given problem. The theorem summarizing this is called Buckingham’s theorem,
the general principle of dimensional analysis. We will present this theorem, and then present
some simple examples of dimensional analysis to illustrate the power of the approach. And
finally we will demonstrate in a few explicit examples how to put an equation into dimen-
sionless form, thus illustrating how ” ε ” arises in some concrete cases.

3.5.1. Buckingham’s π Theorem. This theorem was discovered/formalized by E. Buckingham
Phys. Rev. , 4, 345-376, 1914. It is amusing to note that Buckingham worked at the U.S.
Bureau of Standards!, building upon an earlier idea that (he credits to) Fourier that all of
the terms of a meaningful equation must have the same dimensions.

The idea is the following: suppose you are given a problem which is characterized by some
number of parameters {Qi}, i = 1 . . . N . These parameters in general have dimensions,
and for this reason they are not all independent. Buckingham’s theorem states that any
meaningful statement about the system

Φ[{Qi}] = 0(11)
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is equivalent to another statement

Ψ[{Πn}] = 0 n = 1...N − r.,(12)

where the variables Πn are dimensionless. The main point is that the second relation contains
r fewer variables than the first relation.

The basic reason behind Buckingham’s theorem is that any problem has some number of
”fundamental units” that must be specified for the problem to make sense. For example,
in a problem involving Newton’s laws of motion, we must specify the units of mass, length
and time. Equation (??) contains quantities specifying this list of units, whereas equation
(??) does not, since the variables Πn are dimensionless. The number r is therefore just the
number of fundamental units that need to be specified.

3.5.2. Examples of Dimensional Analysis. The main point of Buckingham’s theorem is that
the best way to write a mathematical relation between variables is in dimensionless form.
Sometimes, by writing the problem in dimensionless form one can learn everything one wants
to know about it. This lucky situation sometimes happens, and sometimes doesn’t; when it
doesn’t, calculation is needed, hence requiring the methods of this course!

In what follows we will go through several examples of dimensional analysis, exposing both
when it works and when it doesn’t work.

Pythagorean Theorem: Now we try to prove the Pythagorean theorem by dimensional
analysis. Suppose you are given a right triangle, with hypotenuse length L and the smallest
acute angle φ . The area A of the triangle is clearly A = A(L, φ) . Since φ is dimensionless,
it must be that

A = L2f(φ),(13)

, where f is some function that we don’t know.
Now, the right triangle can be divided into two little right triangles by dropping a line from

the other acute angle which is perpendicular to the hypotenuse. These two right triangles
have hypotenuses which happen to be the two other sides of our original right triangle, let’s
call them a and b . So we know that the area of the little right triangles are a2f(φ) and
b2f(φ) (where, elementary geometry shows that the acute angle
φ is the same for the two little trianges as the big triangle.) Moreover, since these are

all right triangles, the function f is the same for each! Therefore, since the area of the big
triangle is just the sum of the areas of the little ones, we have

L2f = a2f + b2f(14)

or,

L2 = a2 + b2.(15)

The size of atoms The size of an atom is given by the solution to the Schrodinger
equation, namely

i~
∂

∂t
Ψ(r, t) = − ~2

2m
∇2Ψ(r, t) + V (r)Ψ(r, t),(16)
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where V (r) is the interaction potential between the electrons and the nucleus. For the hy-
drogen atom this is particularly simple and the solution to this equation gives the probability
distribution that the electron will be a distance r away from the nucleus. But we can solve for
the characteristic scale even without solving the equation. The parameters in the equation
are ~ , Planck’s constant, the mass of the electron me and the electric charge e. Planck’s
constant has the dimension of Energy-Time, whereas we must recall that e2/Length is also
an energy scale. The only way to make a length scale out of these numbers is through

a0 =
~2

mee2
= 0.53× 10−8cm.(17)

This is the famous Bohr radius.
The Density of Matter We can also extend this argument to estimate the density of

matter. Roughly we say there is one proton for every bohr radius: remember that the
number of protons and electrons increase together to maintain electrical neutrality. Hence
the density is given by

ρ0 =
mp

a30
= 1.4g/cm3(18)

Fluid Viscosity Let us compute the viscosity of a fluid by dimensional analysis. The vis-
cosity is a number ν with units of Length2/Time that characterizes the momentum transport
in a fluid. Momentum transport is roughly characterized by the molecules in a fluid bumping
into each other. What numbers characterize these interactions? For a fluid at temperature
T , we have the sound velocity (itself given by dimensional analysis as c ∝

√
kBT/m, with

m the mass of a particle, and the intermolecular scale a . Now by dimensional analysis, the
viscosity must have the functional form

ν ∼ c× a.(19)

Now, the speed of sound in water (and indeed in most fluids) is about 1000m/sec ; the
characteristic distance between water molecules is about a = 10−9m . Hence the viscosity of
water should be about

ν ∼ 103m/sec× 10−9m = 10−6m2/sec = 10−2cm2/sec.(20)

Indeed, this is essentially exactly the viscosity at room temperature! Note that our little
theory also gives the temperature and molecular weight dependence of the fluid viscosity.

More serious theories of viscosity (based e.g. on the so-called Chapman Enszkog expansion
of the Boltzmann equation) solve an integral equation for ν :since the parameters in the
equation are necessarily those that we have used here c and a , the theory computes our
answer up to a prefactor, typically of order unity.

A thought question If the argument we have given here is correct then really all simple
fluids should have the same viscosity: after all, the molecular size is essentially constant, and
the sound velocity is also rather constant. However if you look in the CRC handbook, you
will note that there are some fluids e.g. glycerol that have much higher viscosity than that
predicted by our simple argument. Why?
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Atomic Energy Scale 2What is the characteristic energy of electrical binding in atoms?
We know that the interactions are electrostatic, and we have already calculated the size of
an atom a0 . Therefore the electrostatic energy is

e2

a0
=
e4m3

~2
.(21)

Evaluating this number, it is about 27eV.

Man’s Size Bill Press, when teaching a physics class at Harvard, took this argument a
step further. He asked whether he could express the size of a human in terms of fundamental
physical constants, and argued that the size of man is given by(

~2

mee2

)(
e2

Gm2
p

)1/4

,(22)

where e is the electron charge, me,mp is the mass of electrons and protons, G is Newton’s
gravitational constant.

The Radius of the Earth Press also gives a very interesting argument for the radius of
the earth. He argues that the earth’s atmosphere does not contain hydrogen, and therefore
the thermal velocity of hydrogen in the atmosphere must be above the escape velocity.

For a body to escape the earth’s gravitional field, it needs a velocity

v2 =
GMearth

Rearth

.(23)

On the other hand, the thermal velocity of hydrogen is given by v2 = kBT
mp

, , where kB is

Boltzmann’s constant, and T is the temperature of our atmosphere (300K). Thus we need

kBT

mp

=
GMearth

Rearth

.(24)

This gives one relationship between the mass of the earth Mearth and its radius. Another
relationship comes from our claim that the density of matter is given by the expression
above. Namely

Mearth

R3
earth

=
mp

a30
.(25)

If we combine these two equations, we arrive at the following expression for the radius of the
earth

Rearth = a0

(√
kBT

Gm2
p/a0

)
(26)

2Reference W. H. Press, ”Man’s size in terms of fundamental constants”, Am. J. Phys., 48, 597(1980).
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Note the number in brackets is dimensionless: this is the (square root of the) ratio of a
thermal energy to the gravitational energy between two protons separated by the Bohr radius!
Assuming T = 300K , the thermal energy kBT = 4.1 × 10−21 J, whereas the gravitational
attraction between two protons separated by the Bohr radius is Gm2

p/a0 = 3.5 × 10−54 J.
Hence we have that

Rearth = 3.5× 1016a0,(27)

which is 1.8× 108 cm.
This is to be compared with the actual answer of 6.4× 108 !
Another Calculation of the Earth’s Radius I was very enthusiastic about the elegance

of this formula, and once enthused about it to Prof. P. Chaikin, from NYU. Chaikin pointed
out to me that the problem with this argument is that it assumes that one has made a
measurement of the atmosphere of the earth, to check that there is no hydrogen. He argued
that if we were going to make such a measurement we might as well just measure g, the
gravitational acceleration of a body, and use that to make our calculation. So let’s try this:
We now combine

GMearth

R2
earth

= g,(28)

with

Mearth

R3
earth

=
mp

a30
.(29)

These give another beautiful formula, namely

Rearth = a0

(
g

Gmp/a20

)
,(30)

so the earth’s radius is the Bohr radius multipled by the ratio of the measured gravitational
acceleration, and the acceleration that a mass feels one Bohr radius away from the center of
a proton!

Evaluating numbers we find that the ratio of these accelerations is 2.28× 1017, so that

Rearth ∼ 1.17× 109cm.(31)

This overestimates the radius by a factor of two!

Taylor’s Blast This is a famous example, of some historical and fluid mechanical impor-
tance. The myth goes like this: In the early 1940’s, there appeared a picture of the atomic
blast on the cover of Life magazine. GI Taylor, an applied mathematician at Cambridge,
wondered what the energy of the blast was. When he called his friends at Los Alamos and
asked, they informed him that it was classified information. So he resorted to dimensional
analysis. Let’s imagine that the energy of the blast is E0 . The blast starts from a spatial
point. The dynamics basically just pushes the air out of the way. The speeds of this process
are enormous so viscosity isn’t important. The only important material parameter is the
density of air ρ0 . So, let’s ask: what is the radius R(t) of the blast as a function of time t
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from the detonation time? We need to create an object with units of length out of E0, ρ0
and t .

Now E0/ρ0 has the dimensions of L5/T 2 . Thus, (E0/ρ0t
2)1/5 has the units of length.

Therefore

R(t) = c(E0/ρ0t
2)1/5.(32)

Now suppose you want to estimate the energy of the blast. c is a constant we don’t know,
but it is probably ≈ 1 . We can measure the radius of the explosion from the cover of
Life magazine. We know how long it has been since the blast, since the limits of strobe
photography are around 1µ sec . We know the density of air. Thus, one can solve for E0 .

The story is that Taylor called up his friends at Los Alamos and told them the correct
number. They were deeply worried that security had been breached.

The mathematical basis for Taylor’s calculation requires finding a particular solution to
the equations of gas dynamics, assuming that the gas is initially at very high density.

3.5.3. Fireworks! Given the closeness of today to the 4th of July, perhaps it is worthwhile
to try to make some estimates about fireworks. Lets ask: what sets the radius to which the
fireworks explodes? ie what is the radius of the bright spheres that are so evident from a
fireworks display?

Note that we cannot get this directly from Taylor’s blast solution without introducing
another dimensional parameter–the time that the chemical reaction leading to the light is
on for. If we knew this time τ , we could use it in Taylor’s formula, and find

Rfireworks = c(E0/ρ0τ
2)1/5.

Let’s try a different tact and see if it works. We might imagine that the light stays on
and the explosion continues expanding until it can no longer expand. This will happen if
the blast wave is no longer able to push away atmospheric pressure, patm. If this were true,
then the radius then will be determined by the parameters E0, patm; by dimensional analysis
this gives

Rfireworks =

√
E0

patm
.(33)

How can we determine which of our “two” theories is the correct one? The only way
to do this is to try them out. The energy density of a fire work is about 5MJ/kg (This
is the energy density of TNT). Lets imagine that the firework in question weighs 100 g;
perhaps this is small enough that it can be easily projected high up in the air. The total
energy is then 0.5MJ . Atmospheric pressure is ∼ 105Pa. Putting these together implies
that Rfireworks ∼ 2− 3.

This is much too small!! I’m confused. Perhaps the constant in our formula is larger than
order unity? This isn’t entirely crazy, but....

3.6. Back to the Equations. With all of this as pre-amble, lets now go back to the equa-
tions of motion and see what sense can be made of them with our dimensionless numbers.
Lets consider the equations with ρ constant–indeed, this approximation will be made for the
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rest of this school, more or less, for better or worse 3 Let’s follow for a little bit the historical
development of the subject, now go through the logical consequence the Reynolds number
being large or small.

3.7. Airplanes. When the Reynolds number is large, the viscous term is much smaller than
the inertial terms. This is often a sensible approximation. For example I am typing this on
an airplane on the way to our summer school. The airplane is moving about 200 miles/hour
or about 10 meters/second. The airplane has a size of about 50 meters. The kinematic
viscosity of air is ν = 1× 10−5m2/sec. Hence the Reynolds number is

Replane =
10m/sec× 50m

10−5m2/sec
= 5× 107.

Thus, the viscous terms are seven orders of magnitude smaller than the inertial terms in the
equation.

Thus, you hopefully will not become too upset when we approximate the equations by
neglecting the viscous terms. Namely we have the momentum equation

(34) ρ(∂tu + u · ∇u) = −∇p,
together with ∇ · u = 0..

This doesn’t seem like a huge simplification, but, as we will see in a minute, in the
early part of the twentieth century, people used this with one other crucial assumption
(that of potential flow) to try to compute the lift and drag on airplanes. The result was
a theoretical embarassment, whose resolution eventually resulted in what was probably the
most significant applied mathematical discovery of the twentieth century.

3.8. Tiny bugs. Before discussing this lets consider one other example: Suppose I were
flying to this meeting on a tiny bug, perhaps an e. Coli, whose size is about 10µm. Suppose
the e. Coli moved very quickly at about a body length/sec (this is faster than the airplane,
relatively speaking!) Then the Reynolds number is

Replane =
10−5m/sec× 10−5m

10−6m2/sec
= 10−4.

Here we have used the viscosity of water, which is (as we calculated above) 10−2cm2/sec or
10−6m2/sec. For a tiny bug, the Reynolds number is extremely small so now the inertial
terms are ten thousand times smaller than the viscous ones. It now seems quite reasonable
to neglect inertia! The equations now are

(35) η∇2u = ∇p+ f ,

together with ∇ · u = 0. In writing these equations, I’ve kept the forcing function–as in
practice, and e.g. in this meeting, low Reynolds number flows are only interesting when
something is constantly forcing them. If you stop forcing them, they stop instantly as
the equations readily demonstrate! People call these equations, without inertia, the Stokes
equations.

3Thus, this school will ignore sound, other than the speaking of you to each other and the speakers to all
of you! There is much interesting physics of sound that will be sadly neglected. Another year...
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4. Meeting Organization

OK, with this extended pre-amble, I can now summarize to you what is going to happen
in this school. Lets go through it by week:

4.1. Week 1. This first week is partly introductory (like this lecture), and partly designed
to expose you to fascinating phenomena and regimes that happen within the subject of fluid
mechanics. We might organize the lectures this week as follows:

(1) Flows with surfaces and surface tension. Lohse will describe beautiful phenomona
with bubbles; Stebe and Quere will describe a host of important and beautiful phe-
nomona involving droplets and surface tension gradients and interactions between
particles and lots of things like this. Most of these flows will necessarily be at low
Reynolds number.

(2) Tuckerman will discuss the important subject of hydrodynamic instabilities, and
the patterns that can form from these instabilities. This is usually mainly at high
Reynolds number.

(3) Lohse will summarize what happens in one of these pattern forming instabilities,
thermal convection, when you force it very very hard. Eventually it becomes turbu-
lent. Lohse will describe how the different turbulent regimes will be organized. This
lecture in a sense connects week 1 and 2.

(4) Goldenfeld will explain how he has used the Renormalization Group from theoretical
physics to make fundamental progress on the age old problem of calculating the drag
on moving bodies.

4.2. Week 2. This week is on turbulence and is thus at high Reynolds number. Lathrop and
Goldenfeld will give introductions to the experimental and theoretical sides of this subject;
Eckhardt will discuss turbulent transition, and Pouquet will discuss geophysical examples.
Voth will show beautiful examples of the importance of turbulent mixing.

4.3. Week 3 & 4. These weeks get into the Low Reynolds number regime, and focus on
both active matter and biological examples. These are cases where the forcing function f in
the above is quite relevant–you will see a host of examples that are quite exciting. I won’t
describe these in detail–because by week 3 you will have forgotten! Peko Hosoi will give an
introduction to what will happen at the beginning of week 3.

5. The two main calculations for today

Thus far, this lecture has been more words than equations. What I’d like to do now in
the remaining time is to present two calculations–one at high Reynolds number and one at
low Reynolds number –which represent critical ideas for the subject of fluid mechanics. The
first calculation is arguably the most important applied-mathematical idea of the twentieth
century (at least I would argue it), and it is Prandtl’s discovery of the boundary layer. The
second calculation is more prosaic, but it does come up a lot–and illustrations a sort-of
application of Prandtl’s main mathematical idea at low Reynolds number.
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5.1. Ludwig Prandtl and Boundary Layer Theory. The basic ideas of boundary layer
theory were invented by Ludwig Prandtl, in what was arguably the most significant contri-
bution to applied mathematics in the 20th century. Prandtl presented his ideas in a paper in
1905, though it took many years for the depth and generality of the ideas to be appreciated.

In order to give some historical context for Prandtl’s discovery, it must be first understood
that at the time the technology of the day was man -made flight. The Wright brothers were
flying their airplanes, and one can only imagine the excitement in the scientific community
for figuring out the mathematical principles underlying these developments.

However, there was a bit of an embarrassment for the theorists: (to paraphrase Lord
Rayleigh’s 1915 review of a hydrodynamics textbook in Nature–”Someday we might hope
that theoretical hydrodynamics might be in agreement with experiments.” The reason for
this negativism was that as of the early 1900’s, theories of airplane flight predicted

(1) The only way to get an airplane off the ground is to spin it as it lifts off. However,
practically speaking, this is nonsense.

(2) Once it gets off of the ground, the drag should be identically zero. This is also
nonsense–fuel is burned!

It turned out that both of these issues were the result of a fundamental theoretical issue:
a perfectly reasonable estimate of the dissipation term in the equations of fluid dynamics
led to the conclusion that the dissipation was unimportant, and the aforementioned conclu-
sions were made with this in mind. However, Prandtl demonstrated that just because one
estimated the dissipation to be small doesn’t mean it can be neglected–hence, the idea of
boundary layers.

In what follows, we will go through the historical development to both illustrate Prandtl’s
discovery, and document how boundary layer theory dramatically simplifies the solution to
nonlinear partial differential equations.

5.1.1. Preliminaries. To proceed further into airplane flight, we need some fluid mechanical
preliminaries.

We introduced before the Navier Stokes equation

ρ(∂tu + u · ∇u) = −∇p+ ν∇2u(36)

. We also pointed out that in the airplane that I am now sitting, the Reynolds number is
enormous and hence we are safe in neglecting the viscous terms. We thus have

ρ(∂tu + u · ∇u) = −∇p.(37)

This equation can be written in an interesting form using the vector identity

u · ∇u = (∇× u)× u +∇(u)2/2(38)

as

ρ(∂tu + (∇× u)× u) = −∇(p/ρ+ u2/2).(39)

If the flow is steady ∂tu = 0 and irrotational ω = ∇× u = 0 then we have Bernoulli’s law

(40) H =
p

ρ
+

1

2
u2
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is constant. If the flow is not irrotational, then we have u · ∇H = 0 so that the quantity H
is constant along streamlines.

The constancy of H when ω = 0 is a famous result, and has many simple qualitative
consequences. It states that the pressure in a fluid is smaller when the velocity is larger.
The classical example of this is flow through segments of pipe of varying diameter. Whenever
the radius in the pipe drops, the pressure in the pipe increases.

However, for the moment, let’s question this theorem: Clearly, the constancy of H only
makes sense if it actually happens in practice. For it to happen in practice, it needs to be
true that ω = 0 for all time. This leads to the question:

If ω = 0 initially in a flow, does that imply that ω = 0 for all time?

5.2. Potential Flow. What are the consequences of ω = 0? The most important is that in
this case, it is possible to describe the flow by a velocity potential φ. Namely, there exists a
scalar function φ so that changes in φ are given by

dφ =
∑
i

uidxi.(41)

The velocity u = ∇φ. The condition for this to be possible is that

∂2φ

∂x1∂x2
=

∂2φ

∂x2∂x1
,(42)

or in other words ω = 0. Conversely, if u = ∇φ then ω = 0.
Now, the wonderful thing about this is that if the flow is incompressible, then since
∇ · u = 0, we have ∇2φ = 0! The potential obeys Laplace’s equation. What about the
pressure? Well, we can write from the Euler equation

∂tφ+ (∇φ)2/2 = −p/ρ,(43)

so that at each instant the pressure is given in terms of the velocity potential.

5.3. Kelvin’s Theorem. This result is clearly only relevant if a fluid which is initially
vorticity free remains this way for all time. That this is in fact true was first shown by Lord
Kelvin: Consider the circulation around a closed loop

K(t) =

∫
u · d`,(44)

where d` is an element of arc length. By Stokes’s theorem, K(t) =
∫
ωdA. Thus, if ω = 0,

K = 0. What is the time evolution of K?
Let us introduce the notation

D

Dt
= ∂t + u · ∇.

This is called the total derivative and takes into account the rate of change of something
due to both its explicit time dependence and its motion (through the laboratory coordinates
where we are sitting).
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The chain rule implies that

DK

Dt
=

∫
(
Du

Dt
d`+ u

D`

Dt
),(45)

where Dd`/Dt = ∂`ud` so that

u · D(d`)

Dt
= u∂`udl = d(u2)/2.(46)

Since integrating around the loop leaves u2 unchanged, the second term is zero. As for the
first term, it is easy to argue that it also integrates to zero using the Euler equation itself.
thus, we have that

DK

Dt
= 0.(47)

Since this is true for every loop, it shows that a fluid with initially zero vorticity remains
zero for all time.

One of the most interesting things about this theorem is its historical origin: Kelvin viewed
it as the basis of his vortex theory of the atom!

One historical comment: imagine you were working in the end of the 19th century: you
now have the wonderful situation where the most important technological problem of the
day, air plane flight, is related to the most beautiful mathematical problem–potential flow,
and two dimensional potential flow (conformal invariance and all) at that! Imagine how
excited you would be..

5.3.1. Drag on a wing section. Lets now make a model for the drag and lift on a wing
section. For simplicity lets consider a wing as an infinite two dimensional body with constant
cross section. I’m looking out the wing of the airplane to Boulder as I’m writing this, and
this is clearly not true-but it is a reasonable model. For simplicity, lets also pretend that
the wing is a circle. (we will relax this in a bit). From the approximations given–Euler
equation/potential flow, lets compute the lift and the drag.

Initially when the airplane is taking off, there is no vorticity in the flow. The airplane is
just sitting at rest. So this must always be true.

Now lets take the wing as circle of radius R. Let’s say the flow is uniform (with magnitude
V ) in the x direction, as |x| → ∞. In polar coordinates, Laplace’s equation is

1

r
∂r(r∂rφ) +

1

r2
∂θ(∂θφ) = 0.(48)

A uniform flow has φ = V rcos(θ) At the surface of the circle, we have the boundary condition
that the normal component of the velocity is zero: ∂rφ(r = R) = 0. Let’s find the solution
of Laplace’s equation consistent with these conditions.

To proceed, let’s guess a solution to Laplace’s equation of the form φ = f(r)g(θ). Plugging
this into Laplace’s equation gives

r(rf ′)′/f + g′′/g = 0.

The first term in this formula depends solely on r and the second term solely on θ. Hence
both terms must be constants: Namely, r(rf ′)′ = cf and g′′ = −cg. The first equation
has solutions of the form f(r) = rα, so that c = α2. This implies that g(θ) = Asin(αθ) +
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Bcos(αθ). Since g must be single valued, α must be an integer. (Call it n). Hence, the most
general solution is

φ =
∑
n

(Cnr
n +Dnr

−n)(Ancos(nθ) +Bnsin(nθ)).

We need this to satisfy the boundary conditions. For φ ∼ x as x→∞ we need the highest
power of r in the expansion to be n = 1. That is

φ = V rcos(θ) +
∑
n

r−n((Ancos(nθ) +Bnsin(nθ))).

To find the other An and Bn we need to satisfy the boundary condition ∂rφ(r = R) = 0.
This implies that

V cos(θ)− A1cos(θ)/R
2 +

∑
n>1

(An(cos(nθ) +Bnsin(nθ)))
−n
Rn+1

.

This is satisfied only if A1 = V R2 and An, Bn = 0 for n > 1. Hence the solution is

φ = (V r + V
R2

r
)cos(θ).

Using the solution we just computed, let’s figure out the force on the sphere: The velocity
components at the sphere are ur = 0 and uθ = −2V sin(θ). By Bernoulli’s law, the pressure
is p = A − 1/2ρ(u2r + u2θ). Let’s fix the constant A = V 2ρ/2 so that the pressure is zero far
from the circle. Hence the pressure is p = 1/2ρ(V 2 − V 2sin(θ)2). The pressure is maximal
in front and back of the cylinder, and vanishes at the apex.

Now note the interesting result:
The net force on the cylinder vanishes, because the pressure is symmetrical about the

equatorial plane of the cylinder. Thus, a cylinder in uniform motion in the fluid experiences
no force whatsoever! This result has been known as D’Alembert’s paradox.

Note something interesting about our solution: At the surface of the wing, the flow does
not obey the no-slip boundary condition, since uθ is not zero at the surface of the cylinder.

5.4. Solving more arbitrary wing shapes. There is a beautiful bit of early twentieth
century applied mathematics that repeats this analysis and demonstrates that it is true for
arbitrary wing cross sections, even those that have singular tips (like those on a real wing).
The mathematics works using a little bit of complex analysis and conformal mappings.
Briefly, we introduce a useful devise for thinking about two dimensional flows. Let’s write
(ux, uy) = (∂yψ,−∂xψ), where ψ is called the stream function of the flow. This velocity field
automatically satisfies the two dimensional incompressibility condition. Note that

u · ∇ψ = ux∂xψ + uy∂yψ = 0.

Thus, ψ is constant along streamlines of the flow.
Now, besides it’s physical convenience, another great thing about the stream function is

the following: by definition

ux = ∂xφ = ∂yψ uy = ∂yφ = −∂xψ.
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The second of the equations in each pair are the well known Cauchy Riemann equations of
complex analysis! This allows us to use the power of complex analysis to think about two
dimensional potential flow problems.

Namely, w = φ+ iψ is an analytic function of z = x+ iy (i.e. depends only on z = x+ iy.)
Using this observation, it is possible to generalize the result for the circular wing to arbitrary
shape wings–the lift and drag on the wings simply vanish.

This was a tremendous embarassment for early 20th century theorists. At the dawn of
quantum mechanics we couldn’t even compute a nonzero drag for an airplane–this despite
the fact that fuel was clearly being burned!

5.4.1. Problems and Resolutions. We have thus found two crucial problems with our solu-
tions

1 They did not satisfy the no slip boundary condition known to be true at solid bound-
aries.

2 There was no drag on our objects. Although I didnt have time to show this, one
could show that there could be lift but only if circulation was induced around the
object initially. However, according to Kelvin’s theorem, production of circulation is
not possible.

Now we will present solutions to both of these problems, by first, focusing on the first
question.

The issue, as we have remarked several times, is our initial estimate for the importance of
the viscosity: In fact, the beautifully simple calculation that we presented at the beginning
of this lecture turns out to be dead wrong. The reason is subtle, but it is one that crops up
again and again. Lets review our argument:

We argued that the Reynolds number is enormous, and hence the flow should not be
affected by viscosity, and we neglected it; writing down inviscid theories. Although it was by
no means obvious at the time, it turns out that all of our troubles can be solved by thinking
more carefully about viscosity. Is it really negligible?

The answer to this question, as first given by Prandtl in 1904, is no. Prandtl hypothesized
that the flow consists of two regions. A region far from the solid body where viscosity really
is negligible. And a region close to the body where viscosity is very important. The reason,
Prandtl said, that viscosity can be important in a flow with a small viscosity is that it is
only important in a layer of very thin thickness. Let’s call this thickness δ. Assume the
characteristic velocity of the (inviscid) flow is named U0, and the characteristic scale over
which it varies is L. Then the idea is that δ � L in the boundary layer, which makes viscous
stresses important.

5.4.2. The beginning. For simplicity let’s confine ourselves to two dimensional steady bound-
ary layers. Let’s suppose that the wall occurs at y = 0 and that the variation is along the x
coordinate. It is okay if the wall is curved, as long as it isn’t so curved that the characteristic
curvature is much greater than the characteristic length δ of the boundary layer. We will
denote the velocity field by (u, v), where u is going to vary on a scale L in the x direction 4

and v varies across the boundary layer on a scale δ.

4Of course, u will also vary in the y direction. We need to solve for this dependence.

17



The continuity equation for the flow is

(49) ∂xu+ ∂yv = 0.

Let’s estimate the size of ∂xu. Since u varies on a scale L, this is of size U0/L. Similarity,
∂yv ∼ V/δ, where V is the size of velocity in the y direction. Hence we have found that

V ∼ U0
δ

L
.

The y velocity is much smaller than the x velocity!
Onwards to the navier stokes equation. The x component is

u∂xu+ v∂yv = −∂xp+ ν(∂2xu+ ∂2yu).(50)

The y component is

u∂xv + v∂yv = −∂yp+ ν∇2v.(51)

Estimate sizes of terms: In the first equation u∂xu ∼ U2
0/L. v∂yu ∼ U0V/δ ∼ U2/L. The

important point is that ν∂2yu� ν∂2xu, since the former is of order νU0/δ
2. Thus we neglect

that derivatives of u in the x direction in the viscous stresses. What about the pressure
gradient? Since it is causing the flow, we expect it will be of order the inertial terms, and
so it is not negligible.

Now you should see the point of the boundary layer: it is not legitimate to neglect the
viscous term because ν is small because this could be compensated as long as δ is small as
well! In fact, if

νU0/δ
2 ∼ U2

0/L(52)

then these two terms are exactly of the same size. Indeed, we will argue that this is exactly
what happens.

Before doing this, let’s look at the y equations. You can convince yourself that the biggest
term in this equation is ∂2yv so to leading order we should just set this equal to zero. This
implies that ∂yv = f(x). By the continuity equation, we know that f(x) = −∂xu, so that
v = −y∂xu. We will not really use this form in what follows but it is good to keep in mind.

The equations we must solve for the structure of the boundary layer are

u∂xu+ v∂yu = −p(x)′/ρ+ ν∂2yu,(53)

and the continuity equation. That the pressure p(x) depends only on x comes from the
following reasoning: far from the boundary layer, the flow is parallel to the plate, and the
pressure is just p(x). Near the plate there is indeed a pressure variation induced by the y
component of the flow but since the y component of the flow is small this correction to the
pressure will be small. And moreover, the pressure in this equation will be given by the
pressure variation far away from the plate!

Far from the plate of course, viscosity is not importnat, there are no substantial variations
of the flow in the y direction, and the equation for the velocity field u0(x) is just

u0u
′
0 = −p′.(54)
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So the pressure far away can be represented in terms of the velocity far away. Our goal is
now to solve these equation under the conditions that the velocity vanishes at the solid wall
(y = 0) and goes to u0 far away from the wall.

5.4.3. Back to boundary layers. It is clear that since the equation for the boundary layer
depends on U0, there will be many different cases for the types of boundary layers that can
occur. Roughly speaking, one can divide them into three cases, depending on the pressure
gradient:

(1) dp/dx > 0. Here the external flow is decelerating.
(2) dp/dx < 0. External flow is accelerating.
(3) dp/dx = 0 no acceleration.

It turns out that the first situation is rather unstable, and the second is rather stable.
Let’s first do the simplest case first, called the Blasius boundary layer in which p = 0, and

the velocity asympotes to a constant far away. We will consider a situation where in the left
half plane there is no solid, and in the right half plane there is an infinite solid at y = 0.
The question is what does the boundary layer look like in the right side.

We will sketch a few high points of the derivation:
The pressure far from the boundary layer is uniform. Thus, we need to solve the equations

u∂xu+ v∂yu = ν∂2u(55)

0 = ∂xu + ∂yv,(56)

with a boundary layer for x > 0 (where the plate exists). What will the structure of the
boundary layer be? Before going through the derivation let’s anticipate. We have already
emphasized that the length scale in the x direction is L and the length scale in the y direction
is δ, where balancing the viscous term against the others we find that δ =

√
νL/U0. Now,

in the present case, there IS no horizontal length scale L! What does dimensional analysis
say?

The quantity u/U0 must be a function of x/L and y/δ, which is independent of L. The

only combination that has this property is y/δ/
√
x/L = y

√
U0/(νx). Hence, we anticipate

u = U0F (y
√
U0/(νx)).(57)

Let’s check that this actually comes out of the calculation. Guess that u = U0F (y/g(x)).
To satisfy continuity, take a stream function (u, v) = (∂yψ,−∂xψ), so that ψ = Ug(x)

∫ η
F (η)+

k(x). For the plate itself to be a streamline, we need k = 0. Let’s express ψ = g(x)f(η),
with f(0) = 0. Now plug this into the boundary Layer equations, and proceed.

5.4.4. Computing Drag. Now that we have the correct structure near the flat plate, we can
return to the strange problems we were having with the drag. The stress on the plate is just

tx = σ · (0, 1, 0) = µ(∂yu+ ∂xv)y=0 = µ∂yu = µU(U/(2νx))1/2f ′′(0).

Hence, the total drag on the plate is 2
∫
tx = 2

√
2f ′′(0)ρU2L/

√
R.

Note two features: (a) The drag scales with
√
L, NOT L as you might have guessed. (b)

as ν → 0, the drag is supposed to vanish.
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5.5. A Low Reynolds number Example: Lubrication Theory. Let’s consider a droplet
spreading on a solid surface. Assume the liquid is very viscous and that it therefore spreads
very slowly. We want to find out how it moves.

In this limit, the fluid obeys the Stokes equations, namely

η∇2u = ∇p,(58)

together with ∇·u = 0. Lets parameterize the droplet shape by a function h(x, t). Typically
in such problems, the thickness of the droplet is much smaller than its extent–ie h � R,
where R is the radius of the droplet. In such a case, we can use an approximation, similar
to that of Prandtl, to derive a tractable equation of motion. Indeed, we can use it to derive
the equations for droplets as they spread.

Here it goes, as a sketch. Lets call the components of the velocity field (u, v), respectively.
The continuity condition then becomes

∂xu+ ∂yv.(59)

If we call the typical horizontal velocity U and the typical vertical velocity V , this equation
then implies that

V ∼ h

R
U,

so that vertical velocities are smaller than horizontal velocities by a factor h/R.
Now lets write out the two components of the Stokes equations:

η(∂xx + ∂yy)u = ∂xp,(60)

and

η(∂xx + ∂yy)v = ∂yp.(61)

Now since v � u, the second equation implies that ∂yp� ∂xp. We therefore can assume
that at first approximation, the pressure in the droplet p ≈ p(x); ie , it does not depend on
the vertical (y) direction.

Now lets turn to (??): because of the scale separation, the ∂xx � ∂yy. Thus we have that

η∂yyu =
dp

dx
.(62)

Since dp/dx is only dependent on x we can integrate the equation twice with respect to y,
to arrive at

u =
1

η

dp

dx

(
y2

2
+ Ay +B

)
.(63)

Here A and B are constants. We can determine then using boundary conditions. No slip at
the solid surface (y = 0) implies that B = 0. If we require there is no tangential stress at
the top surface y = h, this implies that ∂yu(y = h) = 0, which means that A = −h. We
thus have

u =
1

η

dp

dx

(
y2

2
− hy

)
.(64)
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Now to proceed and arrive at an equation, we compute the total flux in the x direction, given
by

Q =

∫ h

0

dy u = − h3

12η

dp

dx
.(65)

Mass conservation

∂th = −∂xQ(66)

then implies the equation of motion

∂th = ∂x

(
h3

12η

dp

dx

)
.(67)

Other remarks:

(1) What sets the pressure? For droplets this is generally a combination of surface
tension and gravity. For surface tension, there is a boundary condition across the
fluid interface that says the pressure jump is the product of the surface tension and
mean curvature. This gives that p = γ∂xxh.

(2) Comment about gravity
(3) Tanner’s Law
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