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Chapter 4

COMPLEX NETWORKS

Complex networks provide a rich playground for non-equilibrium statistical physics. It might seem surprising,
at first glance, that the tools of this field could describe geometrical properties of such networks. However,
by viewing a static network as a single snapshot of a dynamically evolving network, we can determine many
geometrical properties from a master equation approach. Our perspective here qualitatively parallels that in
chapter 2 on irreversible adsorption, where the hard-to-calculate final coverage of a surface — an ostensibly
static quantity — can be obtained for free by solving, in a technically simpler way, for the full time-dependent
coverage. We use such a kinetic approach to understand many properties of complex networks.

Figure 4.1: Examples of complex networks.

4.1 Erdös-Rényi Random Graph

We start by studying the classic Erdös-Rényi (ER) random graph (Fig. 4.2). There are two generic, and
closely related, forms of this model. In the probabilistic version, the graph consists of N nodes, in which the
probability that each node pair is connected by a link is p

N , with 0 ≤ p ≤ N . The factor 1
N is conventionally

included because it leads to a percolation transition at p = 1 (see below). Since each node has N − 1
neighbors, the average number of links attached to a node (also known as the node degree) is p(N − 1)/N ,
which approaches p as N → ∞. In contrast to regular lattices, the degree (or coordination number) of each
node is not the same on the ER graph (and indeed for any complex network). Thus the degree distribution
provides a new characterization of a complex network.

An alternative, but equivalent, model is to randomly connect the N(N −1)/2 pairs of nodes using a fixed
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CHAPTER 4. COMPLEX NETWORKS 40

number of links1 L. Consequently, the fraction of connected links is 2L/[N(N − 1)]. Equating this fraction
with p

N , the fixed-link rule is essentially the same, in the limit N, L → ∞, as the probabilistic ER random

graph with p = 2L
N .

Figure 4.2: A realization of the ER graph of 13 nodes and 14 links. The network is partitioned into four
clusters: one of size 8, one of size 3, and two of size 1. There are also one node of degree 5, four of degree 3,
four of degree 2, one of degree 1, and two of degree 0.

While the ER random graph construction is exceedingly simple, its geometric properties are amazingly
rich. Perhaps the most striking feature is the existence of a percolation transition, as p passes through a
critical value pc = 1, in which the nature of the cluster-size distribution change dramatically. A cluster is
defined as the maximal set of nodes that are connected by links, so that the graph consists of the union of
disjoint clusters (Fig. 4.2). For p < pc, clusters are small and tree-like. For p > pc, there exists a “giant”
cluster that consists of a non-zero fraction of all the nodes. At p = pc, the cluster size distribution decays
algebraically with size. Many of these properties have been elucidated using probabilistic approaches. In
this section, we present an alternative, kinetic approach for unraveling the structure of the ER graph.

Kinetic formulation

We recast the ER graph kinetically by starting with N isolated nodes and introducing links one by one
between randomly-selected node pairs. The two nodes could be the same and also more than one link may
be created between a pair of nodes. However, these two processes occur with a vanishingly small probability,
when N → ∞, and may be ignored. For convenience, we define the rate at which each link is introduced
as N

2 . Consequently, the total number of links at time t is Nt/2, so that the average degree 2L/N equals t.
Thus the average degree evolves by a stochastic process in which the average degree k → k + 1 at rate 1.

Let’s first determine the degree distribution of the ER graph. It is convenient to work with the normalized
degree distribution nk, defined as the fraction of nodes of degree k. Nodes of degree k are created at rate 1
by introducing a link that attaches to a node of degree k − 1; similarly nodes of degree k are lost at rate 1
by linking to create nodes of degree k + 1. The degree distribution therefore satisfies the master equation of
the Poisson process

dnk

dt
= nk−1 − nk , (4.1)

which applies for all k ≥ 0 if we impose the additional condition n−1 ≡ 0. For the initial condition of N
isolated nodes, nk(0) = δk,0, the solution to this master equation gives the Poisson distribution

nk =
tk

k!
e−kt . (4.2)

Thus the mean degree 〈k〉 = t, while the standard deviation is
√

〈k2〉 − 〈k〉2 =
√

t.
We now investigate the time evolution of the cluster size distribution, from which we can probe the

percolation transition of the ER graph. Initially the network consists of N isolated single-site clusters. As
links are added, clusters can only merge, so that the number of clusters systematically decreases and their
mean size grows. With the addition of a single link, which requires a time 2/N , the probability that two
disconnected clusters of sizes i and j join to create a cluster of size k = i + j equals (i Ni/N) × (j Nj/N);

1In this formulation, it is possible that a node pair could be joined by more than one link; however, the probability of this
event is negligible for N → ∞
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here Nj is the number of clusters of size j. Following the same reasoning that led to Eq. (1.20) in section 1.1,
the master equation for ck(t) = Nk(t)/N , the density of clusters with k nodes at time t, is

dck

dt
=

1

2

∑

i+j=k

(ici)(jcj) − k ck. (4.3)

Since the network starts with all nodes isolated, the initial condition is ck(0) = δk,1. As given in Eq. (1.30),
the cluster size distribution is

ck(t) =
kk−2

k!
tk−1 e−kt . (4.4)

We now exploit this basic result, together with various relevant results of section1.1 to determine a variety
of geometrical features for the ER graph.

The percolation transition

The first basic consequence of Eq. (4.4) is that there is a transition as t passes through 1. Applying Stirling’s
approximation to this equation, the asymptotic behavior of ck is given by (see also Eq. (1.33)) is:

ck(t) ≃ 1√
2π k5/2

e−k(t−ln t−1) ≃ 1√
2π k5/2

e−k(1−t)2/2 t → 1. (4.5)

For t < 1, the cluster size distribution ck decays exponentially with k, so that the mean cluster size is
finite. Normally, the mean size is defined as

∑
k ck. By construction, however, this sum equals 1, so that the

appropriate measure of the mean cluster size is the second moment, M2 ≡
∑

k k2ck. At t = 1, the cluster size
distribution has a power-law tail with exponent −5/2, and this implies that the mean cluster size diverges
in an infinite network. Therefore a percolation transition occurs at t = 1.

For an infinite ER graph, the singular behavior near the percolation transition is best appreciated by
studying the first few moments of the cluster size distribution, Mn ≡∑k knck (see page 8). It is important
to note that the sum does not include the contribution of the infinite cluster, whenever it happens to exist.
For the zeroth moment, we have

M0 =







1 − t/2 t ≤ 1;

1 − t/2 + 2(t − 1)3/3 + . . . t ↓ 1;

e−t + (t/2) e−2t + . . . t → ∞.

(4.6)

Thus there are of the order of N finite clusters below and at the percolation threshold, and this number goes
to zero as the infinite cluster engulfs the entire network. For the first moment, it is more useful to instead
consider the gel fraction g ≡ 1 − M1, namely, the fraction of nodes that are part of the infinite cluster. The
evolution for the gel fraction is implicitly determined by g = 1−e−gt (Eq. (1.35)), and the limiting behaviors
of this gel fraction are given by

g =







0 for t < 1

2(t − 1) − 8(t − 1)2/3 + . . . t ↓ 1

1 − e−t − te−2t + . . . t → ∞.

(4.7)

Finally, for the initial condition M2(0) = 1, the second moment is given by

M2(t) =

{

(1 − t)−1 t < 1;

(egt − t)−1 t > 1.
(4.8)

Thus an infinite cluster forms at t = 1 on an infinite ER graph. As t increases far beyond the percolation
point, the mean size of the remaining finite clusters goes to zero.

Since one normally studies a large, but finite ER graph, finite-size scaling is an integral part of the
description of the percolation transition. To appreciate the role of finite-size effects, let’s first determine the
size M∗ of the largest cluster on a finite graph. This size may be estimated by the extremal criterion

N
∑

k≥M∗

ck = 1, (4.9)
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which states that there will be a single cluster whose size is in the range [M∗,∞]. Using the asymptotic
forms in Eqs. (4.5) for ck(t) and approximating the above sum by an integral, the extremal criterion gives

M∗ ∼







lnN

(1 − t)2
t < 1;

N2/3 t = 1;

gN t > 1.

(4.10)

For a finite network, the sum for the mean cluster size should be cut off at the largest cluster size of M∗, so
that

M2 ≈
M∗

∑

k2ck ∼
∫ M∗

k2 k−5/2 dk ∼
√

M∗ ∼ N1/3.

For a finite ER graph, the mean cluster size M2 = (1 − t)−1 will be truncated when it becomes of the order
of N1/3. Consequently, the sharp percolation point becomes smeared into a critical regime that is defined
by the inequality |1 − t| ≪ N−1/3

Geometrical properties

We can understand many geometrical properties of a large ER graph by exploiting the logical consequences of
the kinetic formulation. First consider the regime below the percolation threshold. Since there are of the order
of N small clusters for t < 1 (Eq. (4.6)), a newly-introduced link will typically appear between two disjoint
clusters rather than between two nodes in the same cluster. Consequently, clusters are predominantly trees.
Generally, clusters can be categorized as trees, unicyclic, or complex. A unicyclic cluster contains a single
closed path, while a complex cluster contains at least two independent closed paths. Below the percolation
threshold, there is typically a single unicyclic cluster in the entire graph and no complex clusters.

Above the percolation threshold, the size of the largest cluster equals gN , but the size of the second
largest cluster is governed by the same exponential decay in ck as in the largest cluster below percolation.
Thus the size of this second-largest cluster scales as ln N/(t− 1)2. When the average node degree p is larger
than, but of the order of one, the structure of the ER graph above percolation is roughly that of a branching
tree. We can exploit this picture to give a cheap estimate of the diameter of the network. For p >∼ 1,
then an arbitrary node is connected, on average, to p first-generation nodes; each first-generation node is
connected to p − 1 second-generation nodes, etc., and each (k − 1)st-generation node is connected to p − 1
nodes in generation k. Because p

N ≪ 1, the probability of forming closed loops is of the order of 1
N in early

generations of this branching tree. Thus the network diameter increases by one each time a new generation
is added. However, when the total number of nodes p(p− 1)k in a tree of k generations becomes of the order
of N , then additional generations must lead to closed loops and the diameter saturates at this point. Thus
the diameter of the ER graph is of the order of lnN/ ln p. This logarithmic dependence of diameter on N is
a generic feature of many complex networks.

Above the percolation threshold, the ER graph possesses some intriguing features that cannot occur
for percolation on a regular lattice because of the possibility of long-range connections. Perhaps the most
striking is the existence of a threshold for the disappearance of all finite-size clusters. This transition can be
inferred directly from the expression for ck in Eq. (4.4). The number of monomers N1 is given by N1 = Ne−t.
Thus there is of the order of a single monomer remaining when t = lnN . In the same spirit, the number of
k-mers Nk = Nck first increases but later reaches 1 when t ≃ 1

k lnN . Thus there exists a series of transitions
times, given by tk ≃ 1

k lnN , where the last k-mer disappears.

4.2 Random Recursive Tree (RRT)

A prototypical and illustrative example of a growing network is the random recursive tree (RRT). In this
network, nodes are added one by one, and each new node attaches to a single “target” node with an
attachment rate Ak that is the same for every target. By the restriction to a single point of attachment, the
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resulting network has a tree structure2, a feature that simplifies analysis of the system. The growth rules of
the RRT thus are:

1. Pick one of the nodes of the RRT — the target — with uniform probability.

2. Introduce a new node that links to the target node.

Starting with an initial state that consists of a single node, these steps are repeated until the tree reaches
a desired number of nodes N . Since each newly-introduced node has a single link, closed loops cannot be
generated.
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Figure 4.3: Evolution of a representative random recursive tree.

An appealing aspect of the RRT is that many of its geometrical properties are readily soluble. Moreover,
there are many physically-motivated and simple ways to generalize the RRT that illustrate a variety of rich
structural properties of networks.

The degree distribution

A basic characterization of the RRT is its degree distribution. We first outline the steps needed to derive the
exact degree distribution and then turn to a more complete analysis of the degree distribution in the limit
of large N . The degree state of any network may be generally characterized by N ≡ {N1, N2, . . .}, where
Nk denotes the number of nodes of degree k. For the case of the RRT, when a new node is introduced, the
network state N evolves by:

attach to node of degree 1 : (N1, N2) → (N1, N2 + 1)

attach to node of degree k > 1: (N1, Nk, Nk+1) → (N1 + 1, Nk − 1, Nk+1 + 1).
(4.11)

While one can in principle write the master equation for the probability distribution P (N), this equation
provides “too much” information. Typically we are interested in the average number of nodes of a given
degree, 〈Nk〉 (the degree distribution), or perhaps the two-body correlations functions 〈Ni Nj〉. Here the
angle brackets denote an average over all possible growth histories of the network. As we now discuss, the
master equation approach is ideally-suited to determine such quantities.

As suggested by Eq. (4.11), we need to separately consider nodes of degree 1 and nodes of degree greater
than 1. The number of nodes of degree 1, N1(N), is a random variable that changes according to

N1(N + 1) =

{

N1(N) prob. N1

N

N1(N) + 1 prob. 1 − N1

N

(4.12)

after the addition of each new node. Namely, with probability N1/N , the new node attaches to a node of
degree 1 and the number of such nodes does not change. Conversely, with probability (1 − N1/N), the new

2If a new node attaches to more than one pre-existing node, closed loops can form. The degree distribution of such a network
is modified only slightly compared to growing trees, but other features, such as the network diameter, are strongly influenced
by the existence of loops.
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node attaches to a node of degree k > 1 and N1 thus increases by 1. The resulting evolution equation for
the average number of nodes of degree 1 is therefore given by

〈N1(N + 1)〉 =
〈

N1(N) × N1(N)

N

〉

+
〈

(N1(N) + 1) ×
(

1 − N1

N

)〉

= 1 +
(

1 − 1

N

)

〈N1(N)〉. (4.13)

By similar reasoning, the number of nodes of degree k ≥ 2, Nk ≡ Nk(N) evolves according to

Nk(N + 1) =







Nk − 1 prob. Nk

N

Nk + 1 prob.
Nk−1

N

Nk prob. 1 − Nk−1+Nk

N

(4.14)

after each node addition. Following the same states that led to Eq. (4.13), Nk evolves by

〈Nk(N + 1)〉 = 〈Nk(N)〉 +

〈
Nk−1(N) − Nk(N)

N

〉

. (4.15)

Equations (4.13) and (4.15) provide the basis for computing the exact degree distribution.
In what follows, we restrict ourselves to the much simpler leading N → ∞ behavior of the degree

distribution. To minimize notation, we drop the angle brackets and write Nk for the average number of
nodes of degree k in a network that consists of N total nodes. Now we replace the discrete differences with
derivatives in Eqs. (4.13) and (4.15), so that the asymptotic degree distribution evolves according to

dNk

dN
=

Nk−1 − Nk

N
+ δk1 . (4.16)

This master equation similar to that for the ER graph, Eq. (4.1), except for the additional delta-function
term that accounts for the introduction of the new node of degree 1.

To get a feeling for the solution, let’s solve the master equations (4.16) one by one. With the understanding
that N−1 = 0, the master equations are:

dN0

dN
= −N0

N
dN1

dN
=

N0 − N1

N
+ 1

dN2

dN
=

N1 − N2

N
dN3

dN
=

N2 − N3

N
,

etc. The solution to the first equation is N0 = 1/N . Substituting this result into the equation for N1 and
solving gives the asymptotic solution N1 ∼ N/2. Following this same approach, N2 ∼ N/4 and, in fact,
all the Nk are proportional to N . It therefore is convenient to work with the density of nodes of degree k,
nk ≡ Nk/N , in terms of which Eq. (4.16) reduces to

nk = nk−1 − nk + δk1. (4.17)

Starting with n0 = 0, we obtain n1 = 1
2 , n2 = 1

4 , etc., and the general solution is nk = 2−k. From this
distribution, The average degree 〈k〉 = 2, while the largest degree kmax, which follows from the extremal
criterion

∑∞
kmax

N 2−k = 1, gives kmax ≃ lnN/ ln 2. Qualitatively, the degree distribution of the RRT is
rapidly decaying with k and even the largest degree is, in some sense, small.

Redirection

We now generalize the RRT to incorporate redirection. One motivation for this construction is that redirec-
tion is leads to linear preferential attachment, a fundamental growth mechanism for complex networks that
will be discussed in detail in the next section. In redirection, the network is built by repeatedly applying the
following steps (Fig. 4.4):
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1. Pick a pre-existing node x from the network uniformly at random.

2. With probability 1 − r, the new node n attaches to x,

3. With probability r, node n attaches to an ancestor node y of node x.3

n

y x

Figure 4.4: Illustration of redirection. The rate at which attachment occurs to the ancestor y of node x by
redirection is proportional to the number of upstream neighbors to y (shaded).

According to redirection, the degree distribution now evolves according to

dNk

dN
=

1 − r

N
[Nk−1 − Nk] + δk1 +

r

N
[(k − 2)Nk−1 − (k − 1)Nk]

=
r

N

{[

k − 1 +

(
1

r
− 2

)]

Nk−1 −
[

k +

(
1

r
− 2

)]

Nk

}

+ δk1, (4.18)

where the second line is obtained by trivial rearrangement of terms. In the first line, the first three terms
correspond to the RRT, whose master equation (4.16) is recovered for redirection probability r = 0. The
last two terms account for the change in Nk due to redirection. To understand their origin, consider the gain
term. Since the initial node is chosen uniformly, if redirection does occur, then the probability that a node
of degree k − 1 receives the newly-redirected link is proportional to the number of its upstream neighbors
(shaded nodes in Fig. 4.4), which equals k − 2. A similar argument applies for the redirection-driven loss
term. Thus uniform attachment, in conjunction with redirection, generates linear preferential attachment
because rate at which a node attaches to a node of degree k is a linear function of k, Ak = k + (1

r − 2).
We will study preferential attachment networks systematically in the next section, from which the degree
distribution in redirection follows easily.

Genealogical tree and the diameter

A revealing feature of the RRT is its underlying genealogical structure. We define the initial node as being
in generation g = 0. Nodes that attach to those in generation g form generation g + 1, irrespective of when
attachment occurs. For example, in the final network of Fig. 4.2 (reproduced below left), node 1 is the
ancestor of 2, while nodes 3 and 7 are the descendants of 2. There are 5 nodes in generation g = 1 and 3 in
g = 2, leading to the genealogy on the right of Fig. 4.5.

How many generations are in a tree of N nodes? What is the size Lg(N) of the gth generation? To
answer these questions, note that Lg(N) increases by 1 when a new node attaches to a node in generation
g − 1. For uniform attachment, this event occurs with probability Lg−1/N . Consequently Lg evolves as

dLg(N)

dN
=

Lg−1

N
, (4.19)

with solution Lg(τ) = τg/g!, where τ = lnN . Using Stirling’s approximation, Lg(N) initially grows with g
for g < τ , and then decreases and becomes of order 1 when g = e τ . The genealogical tree therefore contains
e τ generations for a tree of N nodes. Since the diameter is twice the distance from the root to the last
generation (also the maximum distance between any pair of nodes), the diameter scales as 2e τ ≈ 2e lnN .

3There is a technical subtlety because redirection requires that every node has an ancestor. To ensure this condition always
holds, the initial state should consist of at least two nodes and one link, with each node defined as the ancestor of the other.
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Figure 4.5: A random recursive tree of 9 nodes (from Fig. 4.2) and its corresponding genealogical tree.

The genealogical tree construction can also be applied to the RRT with redirection. In this case, there
are two separate mechanisms by which the size of the gth generation can change. One way is for the new
node to attach to one of the nodes in generation g − 1. On the other hand, Lg can grow when the new
node provisionally attaches to one of the nodes in generation g and the attachment point is redirected to
generation g − 1. With these two mechanisms, the evolution equation for Lg is now

dLg(N)

dN
=

(1 − r)Lg−1 + rLg

N
, (4.20)

where the factors 1−r and r respectively account for attachment without and with redirection. The solution
to this equation is best obtained by the Laplace transform method. A basic main feature of this solution
is that the network diameter is again of order lnN times a constant that is of the order of 1. Thus the
genealogy of the RRT is robust as it is not qualitatively affected by redirection.

4.3 Preferential Attachment Networks

Master equation

In preferential attachment , the rate Ak at which the new node attaches to a pre-existing node of degree k
is an increasing function of k. Such a rule encapsulates the notion of the “rich get richer” in which being
advantaged now confers the benefit of gaining future advantage at a higher rate. As an example in the
context of scientific citations, preferential attachment corresponds to a currently well-cited paper continuing
to be well cited in the future merely be virtue of having been well cited. A ubiquitous feature of preferential
attachment networks is that the degree distribution has a broad tail. This discovery was initially surprising
because traditional network models, such as the ER random graph discussed previously, have a much steeper
Poisson degree distribution. Networks with a broad-tailed degree distribution are therefore far from random.

To solve for the degree distribution of such networks, we need to specify the attachment rate Ak and we
focus on the general case of Ak = kγ , with γ ≥ 0. The master equation for the degree distribution for an
arbitrary attachment rate is (compare with Eq. (4.16) for the RRT):

dNk

dN
=

Ak−1Nk−1 − AkNk

A
+ δk1. (4.21)

The first term on the right accounts for the new node connecting to a node that already has k − 1 links,
thereby increasing Nk by one. Since there are Nk−1 nodes of degree k − 1, the total rate at which such
processes occur equals to Ak−1Nk−1. The factor Ak−1Nk−1/A, where A(N) ≡∑j≥1 AjNj is the total rate
for any event, is then the probability that the new node attaches to a node of degree k− 1. A corresponding
role is played by the second term on the right-hand side. The overall amplitude of Ak is immaterial, since
only the ratio Ak/A appears in the master equation. The last term accounts for the new node that has one
outgoing link and no incoming links. As we shall see, fundamentally different behaviors arise for sublinear
(γ < 1), superlinear (γ > 1), and linear (γ = 1) attachment rates.
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Moments and the degree distribution

As a first step to solve for the degree distribution, it is instructive to study the moments Mα(N) ≡∑j jαNj .
The zeroth and first moments of this distribution have a particularly simple evolution with N :

dM0

dN
=
∑

j

dNj

dN
= 1;

dM1

dN
=
∑

j

j
dNj

dN
= 2. (4.22)

The equation for M0 states that the total number of nodes of any degree increases by 1 each time a new
node is introduced. Similarly, the addition of a single link increases the total degree of the network,

∑
jNj ,

by 2. Thus both the zeroth and first moments of the degree distribution increase linearly with N . For
attachment rate Ak = kγ with 0 ≤ γ ≤ 1, the total rate A =

∑

j jγNj also grows linearly with N , because
A is intermediate to the zeroth and first moments. Thus we write A ∼ µN , with µ an as yet undetermined
amplitude that varies smoothly between 1 and 2 as γ increases from 0 to 1.

Solving for the first few Nk from Eq. (4.21), it becomes clear that each Nk is also proportional to N .
Thus substituting Nk(N) = nkN and A = µN into the master equations, the overall N dependence cancels,
leaving behind the recursion relations

nk =
Ak−1nk−1 − Aknk

µ
k > 1, and n1 = −A1n1

µ
+ 1 ,

whose formal solution is

nk =
µ

Ak

k∏

j=1

(

1 +
µ

Aj

)−1

. (4.23)

To make this solution explicit, we need the amplitude µ in A(N) = µN . Using the definition µ =
∑

j≥1 AjNj

in Eq. (4.23), gives the condition
∞∑

k=1

k∏

j=1

(

1 +
µ

Aj

)−1

= 1. (4.24)

Thus the amplitude µ depends, in general, on the functional form of the attachment rate. Equations (4.23)
and (4.24) represent the formal solution for the degree distribution of preferential attachment networks. To
extract the physical meaning of this solution, we examine its asymptotic behavior for different values of the
exponent γ in the attachment rate.

Sublinear attachment rate: For AK = kγ with γ < 1, we rewrite the product in Eq. (4.23) as the
exponential of a sum, convert the sum to an integral, and then expand the logarithm inside the integral in
a Taylor series. These straightforward steps lead to

nk ∼







k−γ exp
[

−µ
(

k1−γ−21−γ

1−γ

)]
1
2 < γ < 1,

k(µ2−1)/2 exp
[

−2µ
√

k
]

γ = 1
2 ,

k−γ exp
[

−µ k1−γ

1−γ + µ2

2
k1−2γ

1−2γ

]
1
3 < γ < 1

2 ,

(4.25)

etc. The leading behavior is a universal stretched exponential decay, exp(−const. × k1−γ) that is modified
by subdominant corrections whose form changes whenever γ decreases below 1/m, with m a positive integer.

Superlinear attachment rate: For γ > 1, an analog of gelation occurs in which nearly all links condense
onto a single node. Ultra singular behavior occurs for γ > 2 in which there is a non-zero probability of a
“bible” — a single node that links to every other node in an infinite network, while only a finite number of
links exist between all other nodes. Suppose that there is a bible in a network of N + 1 nodes (Fig. 4.6).
The probability that the next node links to the bible is then Nγ/(N + Nγ), and the probability that this
pattern of connections continues indefinitely is P =

∏

N≥1(1 + N1−γ)−1. The asymptotic behavior of this
product is P = 0 for γ ≤ 2 and P > 0 for γ > 2. Thus for γ > 2, there a non-zero probability for a bible
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Figure 4.6: Creation of a “bible” in which each new node attaches only to the bible (shaded).

to exist in an infinite network. When 1 < γ < 2, the attachment pattern of low-degree nodes is less trivial
than in Fig. 4.6, but there continues to exist a single node that is linked to nearly all nodes.

Linear attachment rate: We distinguish between strictly linear attachment, Ak = k, and asymptotically
linear attachment, Ak ≃ k. In the former case, the total event rate is A =

∑

k AkNk =
∑

k kNk = 2N .
Substituting this value of µ = 2 in Eq. (4.23) immediately leads to the discrete power-law form

nk =
4

k(k + 1)(k + 2)
=

4Γ(k)

Γ(k + 3)
∼ 4

k3
, (4.26)

where Γ is the Euler gamma function. Because this distribution has no characteristic degree scale, such net-
works have been dubbed scale free, and they stand in stark contrast to the delta-function degree distribution
of regular lattices and the Poisson degree distribution of the Erdös-Rényi random graph.

For asymptotically linear attachment, the surprising feature is that the degree distribution exponent is
non-universal . This non-universality is counter to statistical-physics dogma that the absence of a charac-
teristic scale at a phase transition leads to universal power-law scaling laws. The non-universal behavior
for the degree distribution can be easily derived for asymptotically linear attachment rates, Ak ∼ k. Then
Eq. (4.23) becomes

nk =
µ

Ak

k∏

j=1

(

1 +
µ

Aj

)−1

∼ µ

k
exp

[

−
∫ k

1

ln

(

1 +
µ

j

)]

dj

∼ µ k−(1+µ) . (4.27)

Thus the degree distribution exponent can take any value larger than 2 merely by tuning the amplitude in
the total rate A = µN .




