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Chapter 1

AGGREGATION

In aggregation, reactive clusters join irreversibly whenever two of them meet. Aggregation is ubiquitous
in nature: it underlies milk curdling, blood coagulation, and star formation by gravitational accretion.
Aggregation also provides a beautiful example of many paradigmatic features of non-equilibrium phenomena,
such as scaling, phase transitions, and non-trivial steady states. Schematically, we write aggregation as

Ai + Aj
Kij−→Ai+j ,

in which a cluster of mass i+ j is created at an intrinsic rate Kij by the aggregation of two clusters of mass i
and mass j. The goal of this chapter is to determine the concentration of clusters of mass k at time t, ck(t),
and to understand which features of the underlying reaction rate, or kernel, Kij influence this distribution.

j

i+j
i

Figure 1.1: Clusters of mass i and mass j merge irreversibly into a cluster of mass i + j.

The Master Equations

The starting point for treating aggregation is an infinite set of master equations that describe how the cluster
mass distribution evolves. In the approximation of well-mixed reactants, in which the rate at which an i-mer
and j-mer meet is cicj , the master equations may be written generally as

dck(t)

dt
=

1

2

∑

i,j

Kij ci(t)cj(t) [ δi+j,k − δi,k − δj,k ] . (1.1a)

The delta functions account, in a foolproof manner, for the ways in which a k-mer can be created or removed.
A k-mer is created by the coalescence of clusters of masses i and j with i + j = k, while a k-mer is removed
when either i or j equals k and this cluster reacts with any other cluster. The leading factor of 1

2 is for later
convenience. Upon implementing the delta function constraints, the master equations become

dck(t)

dt
=

1

2

k−1∑

j=1

Kj,k−j cj(t) ck−j(t) − ck(t)

∞∑

i=1

Kik ci(t). (1.1b)

Notice that the prefactor 1
2 in the gain term ensures the correct accounting of reactions between same-mass

clusters.1

1It is helpful to consider a finite system to understand this factor. Denote by Nk the total number of clusters of mass k.
For i 6= j there are NiNj pairs of type ij, while the number of same-mass pairs is 1

2
Nk(Nk − 1) → 1

2
N2

k in the thermodynamic

2
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In equations (1.1), and generally throughout chapter we tacitly assume that the mass k runs over the
integers — this merely implies that we measure mass in terms of a minimal mass, and a cluster of mass k
contains k primal, minimal-mass clusters. Primal clusters are called monomers while clusters of mass k are
termed k−mers. With this convention regarding the mass, the reaction rates form an infinite symmetric
matrix Kij = Kji. The master equations (1.1) admit an important integral of motion — the mass density

M(t) =
∑

k≥1

k ck(t) (1.2)

is conserved. To verify this conservation law we write

dM

dt
=
∑

k

k
dck

dt
=
∑

k

∑

i+j=k

1

2
Kij (i + j) ci cj −

∑

k

∑

i

Kik k ci ck = 0. (1.3)

The outer sum over k causes the sums over i and j in the gain term to become independent and unrestricted.
The gain and loss terms then cancel and therefore the mass density is manifestly conserved.

The master equations are the starting point in almost all studies of aggregation, and it is instructive to
highlight the assumptions underlying this approach, including:

• The system is well mixed, and the reaction proceeds with a rate proportional to the product of reactant
densities. This is the mean-field assumption.

• Bimolecular reactions. The system is sufficiently dilute so that higher-body interactions are negligible.

• Shape independence. The aggregate mass is the only dynamical variable; cluster shape play no role in
the evolution. One such example is the aggregation of spherical liquid droplets.

• Thermodynamic limit. The system is sufficiently large that cluster concentrations are continuous
functions; discreteness effects are ignored.

1.1 Exact Solutions

The master equations are a formidable infinite set of coupled non-linear differential equations that are soluble
only for a few neat kernels. Many clever solution techniques have been developed for these kernels and we
present several such approaches. We start with the constant reaction kernel because it represents an ideal
playground to illustrate a variety of approaches. We then turn to more challenging cases of the product and
sum kernels, Kij = ij and Kij = i + j, respectively. These three examples represent most of the exactly
solved models of aggregation.

Constant Reaction Rates

The constant kernel aggregation was proposed and solved in a seminal paper about aggregation by Smolu-
chowski in 1917. A crude physical justification of the model is based on the form of the reaction kernel for
Brownian aggregation. The rate at which particles of diffusivity D hit a sphere of radius R is proportional to
DRd−2, where d is the spatial dimension. The generalization to a collection of diffusing spherical aggregates,
each of radius Ri and diffusivity Di, is then Kij = (Di + Dj)(Ri + Rj). Since the radius scales as the cube
root of the mass and the diffusivity is proportional to the inverse radius, the reaction rate becomes

Kij ≃ (i−1/3 + j−1/3)(i1/3 + j1/3)

= 2 +
(

i
j

)1/3

+
(

j
i

)1/3
. (1.4)

This Brownian kernel — as yet unsolved — shares one important feature with the constant kernel —
both are invariant under the transformation (i, j) −→ (ai, aj), that is, Kai,aj = Ki,j . This suggests that

limit. Thus the prefactor 1

2
properly accounts for the relative fraction of same-mass pairs. The loss term for same-mass pairs

in (1.1) is Kkkckck rather than 1

2
Kkkckck since two clusters of mass k disappear in such a collision.
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the constant kernel is a reasonable but uncontrolled approximation for the physically-important Brownian
kernel.

For the constant kernel, we choose Kij = 2 for convenience, and then the master equations are

dck

dt
=
∑

i+j=k

cicj − 2ck

∞∑

i=1

ci ≡
∑

i+j=k

cicj − 2ck N (1.5)

where N(t) =
∑

k≥1 ck(t) is the concentration of clusters of any mass. The first few of these equations are

ċ1 = −2c1 N

ċ2 = c2
1 − 2c2 N

ċ3 = 2c1 c2 − 2c3 N

ċ4 = 2c1 c3 + c2
2 − 2c4 N

ċ5 = 2c1 c4 + 2c2 c3 − 2c5 N

ċ6 = 2c1 c5 + 2c2 c4 + c2
3 − 2c6 N ,

(1.6)

where the overdot denotes the time derivative.
One major lesson that emerges from studies of aggregation and other irreversible processes is that the

asymptotic behavior (which is the most interesting characteristic of the system) depends on the initial
condition in a trivial way, e.g., in terms of the entire mass, while the detailed behavior of the initial data is
irrelevant. Therefore it is convenient to choose the natural monomer-only initial condition

ck(0) = δk,0 . (1.7)

If not stated otherwise, we shall always assume such an initial condition in the following. Before solving the
initial-value problem (1.5)–(1.7), let us look at the moments of the mass distribution, where considerable
information can be gleaned with relatively little effort.

Moments

For master equations with neat kernels, the moments Mn(t) ≡ ∑

k≥1 knck(t) usually satisfy simple rate
equations that may be solvable even if the master equations are unsolvable. Moments also immediately give
us some basic information about the mass distribution, e.g., the ratio M1/M0 ≡ M/N gives an estimate for
the average cluster mass.

In the case of the constant reaction rates, the moment equations are particularly simple. Using Eqs. (1.5)
we deduce

dMn

dt
=

∞∑

k=1

kn ċk =
∞∑

k=1

kn
[ ∑

i+j=k

cicj − 2ck

∞∑

i=1

ci

]

=

∞∑

i,j

(i + j)n ci cj − 2Mn M0, (1.8)

where the sums over i and j are unrestricted in the second line. The explicit equations for the first few
moments are

Ṁ0 =
∑

i,j

ci cj − 2M2
0 = −M2

0

Ṁ1 =
∑

i,j

(i + j) ci cj − 2M1M0 = 0

Ṁ2 =
∑

i,j

(i2 + 2ij + j2) ci cj − 2M2M0 = 2M2
1

Ṁ3 =
∑

i,j

(i3 + 3i2j + 3ij2 + j3) ci cj − 2M3M0 = 6M1M2

Ṁ4 =
∑

i,j

(i4 + 4i3j + 6i2j2 + 4ij3 + j4) ci cj − 2M4M0 = 8M1M3 + 6M2
2

(1.9)



CHAPTER 1. AGGREGATION 5

For the monomer-only initial condition, Mn(0) = 1 for all n ≥ 0. The solution for the zeroth moment
M0 = N is

N(t) =
1

1 + t
. (1.10)

Solving equations (1.9) for the higher moments one by one we obtain M1 = 1, M2 = 1+2t, M3 = 1+6t+6t2,
M4 = 1 + 14t + 36t2 + 24t3, etc. In general, Mn ≃ n! tn−1 as t → ∞.

Pedestrian approach

The master equations (1.5) are recursive and therefore they can be solved one by one. For the monomer-only
initial condition, we substitute N(t) from (1.10) into the first of (1.6) and integrate to give c1(t) = (1+ t)−2.
Having found c1, the master equation for c2 becomes

ċ2 = (1 + t)−4 − 2(1 + t)−1 c2

Solving this equation subject to c2(0) = 0 gives c2(t) = t/(1 + t)3. The next density satisfies

ċ3 = 2t(1 + t)−5 − 2(1 + t)−1 c3 , c3(0) = 0

whose solution is c3(t) = t2/(1 + t)4. Continuing this recursive approach we find c4(t) = t3/(1 + t)5, then
c5(t) = t4/(1 + t)6, etc. This pattern suggests the general solution

ck(t) =
tk−1

(1 + t)k+1
. (1.11)

A direct argument using induction proves that this guess is correct.
The elegant closed-form solution (1.11) has many interesting asymptotic properties, including

1. For t → ∞, ck → t−2 e−k/t. Thus for fixed k, each ck(t) approaches a common limit that decays as
t−2 as t → ∞ (Fig. 1.2). For k < t, the mass distribution is nearly flat, as shown on the right side of
the figure.

2. The area under the mass distribution is therefore proportional to t−2 × t = t−1, which reproduces the
correct time dependence of the total concentration of clusters.

3. The short- and long-time limits of ck can be easily determined without solving the full master equations.
For the short-time behavior we ignore the loss terms in the master equations. From the resulting master
equations, we obtain ck(t) ∼ tk−1 for t ≪ 1. Conversely for t → ∞, there is no production of k-mers
for fixed k. We therefore ignore the gain terms in the master equation to give ċk ∼ −2ckN , whose
solution is ck ∼ t−2.

Exponential ansatz

Solutions to the master equations often have an exponential form — equation (1.11) is one such example.
By making use of this assumption at the outset, we can simplify the rate equations considerably. For the
case of the constant kernel, the appropriate exponential ansatz is

ck(t) = A(t) a(t)k−1, (1.12)

with the initial conditions A(0) = 1 and a(0) = 0. Choosing the power k−1 for a makes the ansatz compatible
with the monomer-only initial condition. Substituting the ansatz (1.12) into the master equations (1.5), and
dividing both sides of the equation by ck, we find

Ȧ

A
+ (k − 1)

ȧ

a
= (k − 1)

A

a
− 2A

1 − a
.
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Figure 1.2: Left: Cluster concentrations ck(t) versus time for constant kernel aggregation for k = 1, 2, 3, 4, 5
(top to bottom). The concentrations approach a common limit as t → ∞, as predicted by the scaling form
in Eq. (1.11). Right: ck(t) versus k on a double logarithmic scale for t = 1, 2, 5, 10, 20, 50, and 100 (upper
left to lower right).

Thus the exponential ansatz leads to k-dependent and k-independent components that we can equate sepa-
rately to give

Ȧ = − 2A2

1 − a
; ȧ = A. (1.13)

If we had chosen a different power of a in the initial ansatz, there would not be the natural alignment of
terms given above, but it would also be clear from the degree of misalignment how to choose the correct
power of a. Since

∑

k≥1 kck = A
∑

k≥1 kak−1 = A(1 − a)−2, mass conservation implies A = (1 − a)2; the

same conservation law also follows from equations (1.13). Substituting A = (1 − a)2 back into (1.13) we
immediately find

A =
1

(1 + t)2
; a =

t

1 + t
, (1.14)

thus reproducing the solution for ck(t) in Eq. (1.11).
The exponential ansatz has an advantage over the two previous approaches in that it involves less guess-

work and it requires dealing with two (instead of infinitely many) differential equations. In addition, this
ansatz works for all exponentially decaying initial conditions.

Generating function method

A powerful approach for solving the master equations is the generating function method. This technique is
ideally-suited for aggregation because the master equations have a discrete convolution form that transform
into an easily-soluble product by the generating function. The generating function is defined as

C(z, t) ≡
∞∑

k=1

ck(t)zk, (1.15)

and it encodes the entire mass distribution within a single function. To apply the generating function method
to constant-kernel aggregation, we take each of the equations for ck in (1.6), multiply by zk, and sum over
all k. This gives

dC

dt
=
∑

k

∑

i+j=k

ciz
i cjz

j − 2
∑

k

ckzk
∑

i

ci = C
2 − 2 CN (1.16)
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Here the sum over k renders the two sums over i and j independent, so that the first term reduces to a
product. This reduction to a product is the essential simplification of the generating function. Since the
rate equation for N is Ṅ = −N2, the function C− ≡ C − N satisfies Ċ− = C2

−. This equation should be
supplemented with an initial condition which is C−(z, t = 0) = z−1, for the monomer-only initial condition.
The solution is C− = (z − 1)/[1 − (z − 1)t], from which we obtain

C =
1

1 + t

z

1 − (z − 1)t
. (1.17)

Expanding (1.17) as a power series in z gives

C(z, t) =
∞∑

k=1

zk tk−1

(1 + t)k+1
.

From this form, we directly read off the mass distribution and thereby recover Eq. (1.11).
For an arbitrary initial condition the generating function is

C(z, t) = (1 + t)−2 C0(z)

1 − t
1+tC0(z)

, (1.18)

where C0(z) = C(z, t = 0) and we also assume that N(t = 0) = C0(z = 1) = 1. Expanding the generating
function (1.18) as a power series in z to obtain the densities ck(t) for all k is straightforward in principle but
may be computationally tedious.

Product Kernel, Kij = ij

When the aggregation rate is a sufficiently increasing function of the masses of the reacting clusters, gelation
can occur in a finite time, in which a non-zero fraction of the total mass condenses into a single cluster
(think of the setting of Jello). The product kernel represents an exactly soluble example of this spectacular
feature. Beyond the gelation time, the system divides into two phases: the gel , or the infinite cluster, and
the remaining sol of finite clusters whose total mass decreases with time.

The product kernel arises for monomers that consist of f -functional reactive endgroups (Fig. 1.3). When
two monomers merge, the resulting dimer has 2f −2 reactive endgroups, a trimer has 3f −4 endgroups, and
a k-mer has kf − 2(k − 1) = (f − 2)k + 2 endgroups. If all endgroups are equally reactive, the reaction rate
between two clusters equals the product of the number of endgroups:

Kij = [(f − 2)i + 2][(f − 2)j + 2] = (f − 2)2ij + 2(f − 2)(i + j) + 4. (1.19)

The case f = 2 corresponds to linear polymers, for which Kij is constant, while the product kernel arises
for f → ∞. For finite f > 2, the kernel is a linear combination of the constant, product, and sum kernels.

(a) (b) (c)

Figure 1.3: Small k-mers of 3-functional units. (a) Monomer. (b) Dimer. (c) Trimer.

Let us now focus on the pure product kernel, Kij = ij, for which the master equations are

dck

dt
=

1

2

∑

i+j=k

ij cicj − kck

∑

i

i ci =
1

2

∑

i+j=k

ij cicj − kck. (1.20)
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Notice that in the loss term, a k-mer disappears if it reacts with a cluster of any size, include an infinite-mass
gel, if it exists. Thus the sum in the loss term,

∑
ici, includes all finite clusters and the gel, so that

∑
ici = 1.

However, when we compute the rate equation for the first moment by summing the master equations, the
left-hand side,

∑
kċk, is not necessarily conserved because the term associated with the infinite-mass cluster

is not part of this sum. We will discuss the subtlety of more detail below. Finally, product kernel aggregation
is equivalent to the Erdös-Rényi random graph that will be discussed in section 4.1. Thus the solution to
product kernel aggregation also provides many fundamental properties of the Erdös-Rényi random graph for
free.

Moments

If we were unaware of the existence of a singularity, the quickest way to detect that something may be amiss
is from the behavior of the moments. Summing equations (1.20) we get

dN

dt
=

1

2

∑

i,j

ici jcj −
∑

k

kck =
1

2
− 1 = −1

2
(1.21)

The solution N(t) = 1 − t
2 vanishes at t = 2 and becomes negative when t > 2. This pathology is the sign

that a gel appears at some tg (that is less than 2), after which
∑

kck = 1 is no longer valid. Thus equation
(1.21) must be modified when t > tg; we will see that the right modification ensures that the cluster density
remains positive.

The above argument predict only the upper bound tg < 2, but the behavior of higher moments suggests
that the gelation time tg = 1. Consider the second moment M2, which evolves as

dM2

dt
=
∑

k

k2 ċk =
1

2

∑

i

∑

j

[
(i + j)2(ici)(jcj) − k3ck

]
(1.22)

=
1

2

∑

i

∑

j

[
(i3ci)(jcj) + (ici)(j

3cj) + 2(i2ci)(j
2cj) − k2ck

]
(1.23)

= M2
2 . (1.24)

Solving this equation subject to M2(0) = 1 we obtain M2(t) = (1− t)−1. (For a general initial condition, the
solution of (1.22) is singular when t = 1/M2(0).) The singularity is the sign of gelation, and suggests that
gelation occurs at tg = 1. However, is it possible that the third moment diverges earlier, so that gelation
must have occurred earlier? The answer is no. Indeed, writing the rate equation for the third moment:

dM3

dt
=

1

2

∑

i,j

(i + j)3ici jcj −
∑

k

k4ck = 3M3M2 (1.25)

and solving subject to M3(0) = 1 we obtain M3(t) = (1 − t)−3. Similarly,

dM4

dt
=

1

2

∑

i,j

(i + j)4ici jcj −
∑

k

k5ck = 4M4M2 + 3M2
3 , (1.26)

whose solution is M4(t) = (1 + 2t)(1 − t)−5. Using induction one may verify that all moments diverge at
tg = 1. However, the moment method does not allow one to probe the moments (and the mass distribution)
beyond the gel point. For this more complete analysis we need the generating function technique.

Generating function approach

To solve Eqs. (1.20), it is convenient to use the exponential generating function E(y, t) ≡∑k k ck(t) eyk. This
generating function encodes the sequence kck instead of the sequence ck and makes the ensuing analysis
slightly simpler. To determine the governing equation for E we multiply the master equation for each ċk by
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k eyk and sum over k to obtain

∂E

∂t
=

1

2

∑

i,j

(i + j)ij ci cj eyk −
∑

k

k2ck eyk

=
1

2

∑

i

i2ci eyi
∑

j

jcj eyj +
1

2

∑

i

ci eyi
∑

j

j2cj eyj −
∑

k

k2ck eyk

= (E − 1)
∂E

∂y
. (1.27)

This is the Burgers equation — the simplest non-linear hyperbolic equation. The salient feature of the
Burgers equation is that it describes the development of shock waves. The appearance of a gel in product-
kernel aggregation is closely related to this appearance of a shock wave.

Equations such as (1.27) can be transformed into a linear equation by the hodograph transformation2

that interchanges the role of the dependent and independent variables. We first write partial derivatives in
terms of the Jacobian:

∂E

∂t
=

∂(E, y)

∂(t, y)
.

Then Eq. (1.27) for the generating function can be re-written as:

∂E

∂t
=

∂(E, y)

∂(t, y)
= (E − 1)

∂E

∂y
= (E − 1)

∂(E, t)

∂(y, t)
.

Now we cancel the common factor in the denominator to obtain the implicit, but linear equation for the
generating function

∂(E, y)

∂(E, t)
=

∂y

∂t

∣
∣
∣
E

= 1 − E. (1.28)

The solution is simply y = (1 − E)t + f(E), where f(E) is determined from the initial condition. For
the monomer-only initial condition, the initial generating function is E(t = 0) =

∑
kck eyk|t=0 = ey, or

y(t = 0) = f(E) = ln E. Hence we arrive at the implicit solution

E e−Et = ey−t. (1.29)

The generating function itself is obtained by the Lagrange inversion formula (see highlight below). Iden-
tifying y = Et and x = tey−t in Eq. (1.32) immediately gives

Et =
∑

k≥1

kk−1

k!
tk e−kt eyk .

Since the density ck equals the kth term in the series expansion of E divided by k, we obtain the remarkable
result

ck(t) =
kk−2

k!
tk−1 e−kt . (1.30)

2An alternative is to write y = y(h, t), compute dy = yhdh + ytdt and then relate the derivatives when dy = 0.



CHAPTER 1. AGGREGATION 10

Lagrange inversion

Given a function x = f(y), with x ∼ y for small y, what is the power-series representation of
the inverse function y(x) =

P

n≥1
Anxn? The coefficients An are given by the Lagrange inversion

formula. Formally, the coefficients An may be obtained by a contour integration around a small
circle centered at the origin:

An =
1

2πi

I

y

xn+1
dx =

1

2πi

I

y

xn+1

dx

dy
dy =

1

2πi

I

y

f(y)n+1
f ′(y) dy. (1.31)

The crucial step is to transform from integrating over x to integrating over y. The transformed
contour is also a small circle about the origin since y and x are proportional to each other near the
origin.

Let’s apply this inversion formula to f(y) = y e−y = x. From Eq. (1.31) and using dx
dy

= (1−y) e−y,
we have

An =
1

2πi

I

y

(y e−y)n+1
(1− y) e−y dy =

1

2πi

I

1− y

yn
eny dy

To find the residue we simply expand the exponential in a power series and then read off the
coefficient of 1

y
in the integral. Thus

An =
1

2πi

I ∞
X

k=0

nk

k!

“

yk−n − yk+1−n
”

dy =
nn−1

(n− 1)!
− nn−2

(n− 2)!
=

nn−1

n!
,

so that the series representation of the inverse function y(x) is

y =
X

n≥1

nn−1

n!
xn. (1.32)
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Figure 1.4: Left: Cluster concentrations ck(t) versus time for the product kernel for k = 1, 2, 3, 4 (top to
bottom, with c1 divided by 5). Right: ck(t) versus k for t = 0.1, 0.4, 0.8, and 0.9 on a double logarithmic
scale (upper left to lower right). The dashed line has slope −5/2.

For the asymptotic behavior of this distribution, Stirling’s approximation gives

ck(t) ≃ kk−2

√
2πk

( e

k

)k

tk−1 e−kt −→
t↑1

e−k(1−t)2/2

√
2π k5/2

, (1.33)

where we have approximated e−k(t−ln t−1) by e−k(1−t)2/2 for t → 1 from below. For t 6= 1, the mass
distribution ck decreases exponentially with k. At the gelation time t = tg = 1, however, the mass distribution
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has a power-law tail that is a precursor of the singularity where an infinite-mass cluster first appears. Beyond
tg, the cluster population naturally divides into the sol and the gel phases. Near the gelation time, (1.33)
gives the scaling form for the mass distribution

ck(t) ≃ s−5/2Φ(k/s) with Φ(z) =
1√
2π

e−z/2

z5/2
, (1.34)

in which the characteristic mass is s = (1 − t)−2.
The behavior of the moments Mn =

∑

k≥1 knck of the mass distribution cleanly illustrates what is
happening near the gelation transition. The most dramatic behavior occurs for the first moment M1 =

∑
kck

— ostensibly the total mass — which is conserved only for t ≤ tg. Beyond tg, the sum in M1 accounts for the
mass of finite clusters only, while the contribution of an infinite-mass cluster is excluded. Thus g ≡ 1 − M1

gives the fraction of the total mass that belongs to the infinite cluster or the gel. To find g, we substitute
y = 0 in the implicit equation (1.29) for the generating function and then use g ≡ 1 − M1 to give

g = 1 − e−gt . (1.35)

This equation always admits a trivial solution g = 0. For t > 1, however, there is an additional non-trivial
solution in which the gel has a non-zero mass. While Eq. (1.35) is not analytically soluble, the limiting
behaviors of Eq. (1.35) can be obtained perturbatively. Just past the gelation time, we write t = 1 + δ and
expand (1.35) for small δ, while for t → ∞, we write g = 1 − ǫ and expand for small ǫ. These give

g =







0 for t < 1

2(t − 1) − 8(t − 1)2/3 + . . . for t ↓ 1

1 − e−t − te−2t + . . . for t → ∞.

(1.36)

0 1 2 3 4 5
t

0

1

2

3

G(t)

M2(t)

Figure 1.5: Time dependence of the mass of gel phase and the mean mass of the finite clusters.

Similarly we may obtain rate equations for all moments that are valid in the post-gel regime. For example,
the zeroth moment, or the density of finite clusters, 3 M0 ≡ N =

∑
ck, obeys

dM0

dt
=

1

2

∑

i,j

ici jcj −
∑

k

kck

=
1

2
(1 − g)2 − (1 − g) =

g2 − 1

2
. (1.37)

3For the zeroth moment, the distinction between the density of all clusters and finite clusters is immaterial since there is
only a single infinite cluster.
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This equation confirms our expectation that (1.21) is correct only in the pre-gel regime. Using the results
of (1.36) for g, we obtain

M0 =







1 − t/2 for t ≤ 1;

1 − t/2 + 2(t − 1)3/3 + . . . for t ↓ 1;

e−t + (t/2) e−2t + . . . for t → ∞.

(1.38)

Similarly, the rate equation for M2 is

Ṁ2 =
1

2

∑

i,j

(i + j)2 i j ci cj −
∑

i,k

k3 ck =
∑

i,j

(i3 ci jcj + i2 ci j2 cj) −
∑

i,k

k3 ck

= M2
2 − M3g

Before the gel point we recover the already known solution M2(t) = (1 − t)−1. For t > tg the equation for
M2 involves g and M3 which are not known explicitly. Therefore there is no explicit expression for M2 and
indeed for higher moments, in the post-gel regime.

Interestingly, the higher moments can be expressed in terms of g. First, we note that the moments for
the population of finite clusters are just the derivatives of the generating function E:

Mn =
∂n−1E

∂yn−1

∣
∣
∣
∣
∣
y=0

.

Let us consider the second moment. We take the logarithm of Eq. (1.29), differentiate with respect to y, and
set y = 0 to give

M2(t) =

[
1

E(y=0, t)
− t

]−1

, (1.39)

with E(y = 0, t) = 1 in the sol phase and E(y = 0, t) = 1 − g = e−gt [see Eq. (1.35)] in the gel phase.
Therefore,

M2(t) =

{

(1 − t)−1 for t < 1;

(egt − t)−1 for t > 1.
(1.40)

For t → tg from below, the second moment grows rapidly with time, while for large t, M2 → 0 as finite
clusters are progressively engulfed by the gel (Fig. 1.5).

1.2 Scaling

Scaling exploits the observation that the typical cluster mass changes systematically with time so that a
change in time scale corresponds to a change in mass scale. This equivalence is embodied by the scaling
ansatz, which may be written as

c(x, t) =
1

s2
f
(x

s

)

.

Here s = s(t) is the typical cluster mass, x/s is the scaled mass, and f(x/s) is the scaling function. Thus
the fundamental system variables are not the mass and time, but rather, the scaled mass x/s and the time.
The prefactor s−2 in front of the scaling function enforces mass conservation:

∫
x c(x, t) dx = 1 reduces to

the manifestly time-independent relation
∫

u f(u) du = 1.
There are several reasons why scaling plays a central role in numerous non-equilibrium phenomena. The

chief reason, of course, is that it tremendously simplifies and condenses the description — a function of one
variable is infinitely simpler than a function of two variables. On a more technical level, scaling provides
the simplest route to the asymptotic solution of the master equations, especially for problems where exact
solutions are difficult or impossible to obtain. This simplification arises because the scaling ansatz separates
a two-variable master equation into two single-variable systems that can be analyzed individually. Further,
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a scaling solution is independent of the initial conditions and thus is automatically constructed to focus on
the interesting asymptotic behavior. Finally, scaling gives universal information aspects of the asymptotic
mass distribution in terms of generic features of the reaction kernel and it provides a robust classification
of the solutions to the master equations for many non-equilibrium processes; we will see this approach in
action in many of the later chapters.

Before we can apply scaling, we need to settle on the “right” definition for the typical mass. From the
scaling ansatz, the nth moment of the mass distribution is

Mn =

∫

xn 1

s2
f(x/s) dx ∼ sn−1.

Hence for any value of n, the ratio Mn+1/Mn is proportional to s. Consequently, either 1/M0 or M2 (where
we set M1 = 1) are good measures of the typical mass, as long as the cluster mass distribution itself is not
too singular. When scaling holds, we can define the typical mass to best suit the situation.

We also need basic information about the matrix of reaction rates Kij to determine the consequences of
scaling. It turns out that only two features of this matrix determine the asymptotic properties of the mass
distribution. The first is the homogeneity index λ, defined by

Kai,aj ∼ aλKij ,

that gives the overall mass dependence of the reaction rate. The second is the index ν, defined by

K1,j = Kj,1 ∼ jν ,

that characterizes the relative importance of reactions between clusters of similar masses and disparate
masses. For example, the constant kernel is characterized by (λ, ν) = (0, 0) and the product kernel by (λ, ν) =
(2, 1). An important example is the “Brownian” kernel (1.4), the reaction rate for spherical aggregates that
undergo Brownian motion. For this kernel, (λ, ν) = (0, 1/3).

The role of the indices λ and ν may be best appreciated by considering the following pictorial represen-
tation of the reaction matrix

Kij =










SS · · · SL · · ·
...

. . . · · · · · ·
LS

... LL
. . .

...
...

. . .
. . .










The meta-entries SS, SL(= LS), and LL denote the reaction rates of small clusters with other small clusters,
large-small interactions, and large-large interactions, respectively. The exactly-soluble examples discussed
above are archetypes of three distinct universality classes with the following general behavior:

• Type I: LL ≫ LS, SS, corresponding to λ > ν. Because of the high reactivity of large clusters they
quickly disappear, while small clusters tend to persist. The result is a cluster mass distribution that
decays monotonically with mass. The product kernel typifies this type of system.

• Type II: all three reactions are of the same order. This marginal class contains the constant kernel
Kij = 1. However the asymptotic behavior of this class is sensitive to details of the reaction rates.

• Type III: LS ≫ LL, SS, or λ < ν. As the reaction develops, small clusters are quickly removed from
the system because of the dominance of large-small interactions. Thus the system has a dearth of small
clusters, leading to a peaked mass distribution.

Let’s now apply scaling to determine basic features of the cluster mass distribution. In the continuum
limit, the master equations for aggregation are

ċ(x, t) =
1

2

∫ x

0

dy K(y, x − y) c(y, t) c(x − y, t) −
∫ ∞

0

dy K(x, y) c(x, t) c(y, t) (1.41)
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Using homogeneity, K(ax, ay) = aλK(x, y), and substituting the scaling form c(x, t) = s−2 f(x/s) into the
master equation (1.41), the left-hand side becomes

ċ(x, t) = − ṡ

s3
[2f(u) + uf ′(u)] ,

where u = x/s, while the right hand side is sλ−3K(u), where

K(u) =
1

2

∫ u

0

dv K(v, u − v) f(v) f(u − v) −
∫ ∞

0

dv K(u, v) f(u) f(v) , (1.42)

with v = y/s. Equating and re-arranging, the dependences on time and on the scaled mass u separate as

ṡ(t)

s(t)λ
= − K(u)

2f(u) + uf ′(u)
≡ Λ. (1.43)

The left-hand side is a function of time only while the right-hand side is a function of u only, so that they
are both separately equal to a constant — the separation constant Λ. (Actually, there is a hidden time
dependence in Eq. (1.42) that disappears as long as the integrals converge at their lower limits.) This
variable separation is a primary simplifying feature of the scaling ansatz.

The time dependence of the typical mass is determined from ṡ = Λsλ and gives three different behaviors:

s(t) ∼







t1/(1−λ) ≡ tz λ < 1;

eΛt λ = 1;

(tg − t)−1 1 < λ ≤ 2.

(1.44)

For non-gelling systems the time dependence of the typical mass is primarily determined by the homogeneity
index λ; other features of the reaction rate such as the second homogeneity index ν affect only details. For
instance, in the growth law s(t) ≃ At1/(1−λ), the amplitude A depends on details of the reaction kernel while
the growth exponent 1/(1 − λ) depends only on λ.

The time dependence (1.44) can also be obtained from the following heuristic argument. Assuming scaling
with a typical cluster mass s at time t, the corresponding cluster density is of the order of 1/s. Consider a
time increment ∆t during which all clusters react, so that the typical mass increases by ∆s ≈ s. This time
increment is the inverse of an overall reaction rate. In turn, this rate is proportional to the reaction kernel
K(s, s) ∼ sλ and the concentration 1/s. Hence ∆s

∆t ∼ s × (sλ/s) which then reproduces (1.44).
We see that non-gelling systems correspond to λ ≤ 1, while for gelling systems 1 < λ ≤ 2. We should

keep in mind, of course, that the master equations are ill-posed if ν > 1, as instantaneous gelation occurs in
this case; our consideration of (homogeneous) aggregation kernels tacitly assumes that ν ≤ 1.

The dependence of the scaling function f on the scaled mass u is governed by the u-dependent part of
(1.43),

2f(u) + uf ′(u) + Λ−1
K(u) = 0 (1.45)

with K(u) given by (1.42). The non-linear integro-differential equation (1.45) is complicated, and the full
understanding of the behavior of the scaling function f(u) is still lacking. It is certainly impossible to
solve (1.45) for an arbitrary kernel, so ‘understanding’ refers to qualitative features: asymptotic behaviors,
justifying the classification to type I, II, and III kernels, etc. For instance, it has been shown that when the
scaled mass is large, u ≫ 1, the scaling function has an exponential dependence f(u) ∼ e−au; the detailed
behavior of the kernel affects only the prefactors. The behavior of the scaling function when the scaled mass
is small is less robust. Many empirical results indicate that f(u) ∼ u−τ for u ≪ 1. As a corollary, the time
dependence of the density of small-mass clusters is given by

ck ∼ 1

s2

(
k

s

)−τ

∼ k−τ t−(2−τ)z (1.46)

The exponent τ apparently depends on the detailed properties of the reaction kernel. A heuristic approach is
to assume that the behavior of monomers represents the u → 0 limit. The master equation for the monomer
density is

ċ1 = −c1

∑

j≥1

K1j cj (1.47)
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Since K1j ∼ jν and cj ∼ j−τ , the sum on the right-hand side of (1.47) converges if ν − τ +1 < 0, and in this
case the first first term provides a good estimate for the sum. Therefore ċ1 ≈ −K11 c2

1, leading to c1 ∼ 1/t.
Matching this time dependence with that given in Eq. (1.46), we deduce the exponent relation τ = 1 + λ.
This power-law tail applies for ν − τ + 1 = ν − λ < 0, that is, for Type I kernels.

1.3 Constant-Kernel Aggregation with Input

Many physical realizations of aggregation do not occur in a closed system, but instead a steady input helps
drive the reaction. Examples of aggregation with input are diverse, and range from chemical processing in
continuously-stirred tank reactor, to the distribution of star masses in the galaxy. In all cases, the interplay
between input and aggregation leads to many new phenomena. Here we consider a constant input that begins
at t = 0 and we limit ourselves to the situation of monomer input. Because the asymptotic behavior is again
independent of initial conditions, we also consider only the case of an initially empty system, ck(0) = 0.

The evolution of the mass distribution is now described by the master equation

ċk =
∑

i+j=k

cicj − 2ckN + δk,1 . (1.48)

The total density satisfies Ṅ = −N2 + 1 whose solution is, for an initially empty system,

N(t) = tanh t. (1.49)

Hence the total density initially grows linearly with time but eventually saturates to 1.
The individual densities can be in principle found by solving the master equations one by one. However,

again the generating function approach is a more potent tool. We introduce the generating function C(z, t) =
∑

k≥1 ck(t)zk to recast the master equations (1.48) into the differential equation [compare with Eq. (1.16)]

Ċ(z, t) = C(z, t)2 − 2C(z, t)N(t) + z . (1.50)

As in Eq. (1.16), it is convenient to define C− = C−N that then satisfies the closed equation Ċ− = C2
−+(z−1).

Solving for C−, we obtain

C(z, t) = N(t) −
√

1 − z tanh
(
t
√

1 − z
)
−→ 1 −

√
1 − z t → ∞. (1.51)

The generating function at infinite time can be inverted by expanding
√

1 − z in a power series in z

√
1 − z = 1 + 1

2 (−z) + 1
2

(
− 1

2

) (−z)2

2!
+ 1

2

(
− 1

2

) (
− 3

2

) (−z)3

3!
+ 1

2

(
− 1

2

) (
− 3

2

) (
− 5

2

) (−z)4

4!
+ . . .

= 1 − Γ(k − 1
2 )

2Γ(1
2 )

zk

Γ(k + 1)
,

In deriving of this expression we use the identity

a(a + 1) . . . (a + k − 1) =
Γ(a + k)

Γ(a)
,

that follows from the basic gamma function identity aΓ(a) = Γ(a+1). Finally, using Γ(1
2 ) =

√
π, we obtain4

ck =
1√
4π

Γ(k − 1
2 )

Γ(k + 1)
. (1.52)

For the asymptotic behavior, we use the handy asymptotic relation for k ≫ 1,

Γ(k + a)

Γ(k + b)
≃ ka−b ,

4In this section we write ck instead of ck(∞); whenever we treat a non-steady mass distribution, we write ck(t).
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to obtain the tail of the steady-state mass distribution

ck ≃ 1√
4π

1

k3/2
k ≫ 1 . (1.53)

The steady-state mass distribution is heavy-tailed, as it must to produce a divergent mass density. At
finite time, however, mass conservation requires that

∑
kck(t) = t, so that the tail of the mass distribution

must deviate from (1.53). However, we can give a qualitative argument that determines the time-dependent
behavior: for sufficiently small masses k ≪ k∗ the mass distribution ck(t) is very close to stationary form
(1.53), while for k ≫ k∗ the mass distribution is essentially zero. We determine the crossover mass k∗ by
requiring that the total mass in the system equals the elapsed time. Thus

t =

∞∑

k=1

kck(t) ≈
k∗∑

k=1

kck ∼
k∗∑

k=1

k−1/2 ∼ k
1/2
∗ , (1.54)

leading to k∗ ∼ t2. Thus the bulk of the population follows the steady-state power-law distribution (1.52)
whose leading edge is cut off at k∗ ∼ t2.

This qualitative picture can be sharpened by an exact analysis. To extract the densities from the gener-
ating function (1.51) we substitute the series representation

π tanh(πx) =

∞∑

n=−∞

x

x2 +
(
n + 1

2

)2

into (1.51) and expand in powers of z to yield

ck(t) =
1

t3

∞∑

n=−∞

(

n +
1

2

)2

π2

[

1 +

(

n +
1

2

)2
π2

t2

]−k−1

. (1.55)

In the long-time limit, we replace the sum on the right-hand side of (1.55) by the integral over the variable
x =

(
1
2 + n

)
π
t . When k ≪ t2, we obtain

ck ≃ 1

π

∫ ∞

−∞

x2 dx

(1 + x2)k+1
,

and computing the integral recovers (1.52). On the other hand, when k and t → ∞ such that κ = k/t2

remains finite, (1.55) simplifies to

ck(t) =
1

t3

∞∑

n=−∞

(

n +
1

2

)2

π2 exp

[

−
(

n +
1

2

)2

π2 κ

]

. (1.56)

When the mass k ≫ k∗, we may keep only the first term in (1.56) to give the leading asymptotic behavior
of the mass density

ck(t) =
π2

4 t3
e−π2κ/4 , (1.57)

so that large-mass clusters are exceedingly rare.




