
Spins and spin-orbit coupling in
semiconductors, metals, and

nanostructures

Behavior of non-equilibrium spin populations.

Spin relaxation and spin transport.

How does one produce and detect non-equilibrium spin
populations.  How can one manipulate non-equilibrium
spins?

Emphasis on the role of spin-orbit coupling in
semiconductor systems.
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Spin-subjects discussed by previous
speakers include:

Ferromagnetic-nonmagnetic metal hybrid structures. (Dan
Ralph) Use of electric currents to detect or alter the orientation
of magnetic domains.

Role of spin-orbit coupling in Random Matrix Theory and in
electrical resistance at low temperatures: weak antilocalization
and reduced conductance fluctuations in two-dimensional
systems and quantum dots (Altshuler, Marcus,Birge)



Motivations for study of non-equilibrium
electron spins include possibilities of

practical applications.
Systems based on ferromagnets are very important for data
storage and retrieval-magnetic memory devices including hard
discs and magnetic random access memories  GMR read heads.

Reversal of magnetic domains is currently accomplished by
applying magnetic fields. If one can control orientation directly
with electrical currents or electric fields, that could be useful:
they are much easier to apply locally in nanoscale geometries.

Magnetic information is typically converted to charge
information (variations in voltages, electrical currents) for
further data processing.Perhaps it could be useful to process
information with spins directly.



As discussed by Charlie Marcus:
Electron spins in semiconductor

nanostructures are one possibility for
qubits in a quantum computer.



How to produce a non-equilibrium spin
population

Injection from a ferromagnet to a normal metal or
semiconductor, through an interface;  via electrical
currents, or optical excitation.

Creation of electron-hole pairs by circularly polarized light
above the band gap of semiconductor.

Electrical transport through a quantum dot in an applied
magnetic field

Use of electrical currents to generate spin currents and
polarization without magnetic fields or ferromagnets, via
spin-orbit coupling.



How to detect a non-equilibrium (or
equilibrium) spin polarization

Electrical resistance at a ferromagnet-nonmagnetic interface can
depend on spin polarization in non-magnetic metal, as well as
orientation relative to ferromagnet..

Spin polarization can lead to Faraday rotation of light, in
transmission or reflection..

Transmission through a quantum dot or nanostructure in an
applied magnetic field can depend on spin of incident electrons.

Electrical resistivity of a bulk material can depend on degree of
spin polarization.

Electrical current in spin-polarized material can generate Hall
voltage due to Anomalous Hall Effect, arising from spin orbit
coupling.



How to manipulate (rotate) spin
polarizations

With applied magnetic fields:

Electron spin resonance.

With applied electric fields via spin-orbit coupling.

With time-dependent optical beams.

Via coupling to nuclei.



Sources of spin relaxation

Spin-orbit coupling.

Coupling to nuclear spins.



Origins of Spin-Orbit Coupling
Microscopic Hamiltonian, electron in potential V:

H = (p2/2m)   + V(r) + λ0 σ ⋅ (p×∇V)  ,

λ0 = -    /(4 m2c2) = -3.7 × 10-8 nm2 .

Comes from Dirac equation, first spin-dependent term in
relativistic  expansion.  (For heavy atoms, electron velocity can
approach c near nucleus, should use full Dirac equation).

In system with many electrons, replace V with self-consistent
potential.  Many body corrections to SO are relatively small.
Other relativistic effects which couple spin and orbital motion
include magnetic dipole-dipole interaction between spins and
interaction between spin of one electron with orbital magnetic
moments of others.
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Spin orbit effects in atoms or ions
Spin orbit effects are most important when they split a degeneracy
of the non-relativistic atom.  For light atoms (Z < 70) use Russel-
Saunders (LS) coupling.First:find non-relativistic ground state,
including electron-electron interactions, If total orbital angular
momentum L and total spin S are both non-zero, find states with
different total angular momentum J  (J = L + S) , have different
energies.

Hunds rule: If outer shell is more than half full, ground state has
J=L+S.  Magnetic moment M ∝ L + 2S, -> Lande g-factor
satisfies 1 <g < 2.

If outer shell is less than half full, J = |L-S|.  Lande g factor can be
bigger than 2.



Magnetic ion in a crystal

An ion embedded in an insulating crystal may have a
degenerate ground state, with broken time reversal symmetry,
and therefore may have a magnetic moment.

Orbital angular momentum is not a good quantum number,
but depending on symmetry of lattice site, ground state may
still have orbital degeneracy.Ion will have local magnetic
moment which is a combination of spin and orbital angular
momentum, g-factor may be far from 2, and may be strongly
anisotropic. (We still describe the ground state degeneracy
and the magnetic moment as due to a “spin”. If two-fold
degenerate, describe by Pauli spin matrices.)  If orbital
ground state is non-degenerate, magnetic moment will be
mostly spin, g-factor will be close to 2, close to isotropic.



Exchange
interactions in magnetic insulators.

In the absence of spin-orbit coupling, the exchange
interaction between spins must have  Heisenberg symmetry:

 Hspin = ∑i,j  Jij Si ⋅ Sj  .

Invariant under simultaneous rotations of the spins.

With spin orbit coupling, exchange may be anisotropic,
depending on orientation relative to the crystal axes, and the
line joining the spins. In simplest case may have Ising-like
or XY-like symmetry

 Hspin = ∑i,j  [Jij
z 

 Si
z Sj

z  + Jij
x 

 (Si
x Sj

x + Si
y Sj

y) ]



Spin-orbit effects on band-structure:
Non-interacting electrons in a self-consistent

periodic potential V(r)

H = (p2/2m)  + V(r) + λ0 σ ⋅ (p×∇V)

Bloch’s theorem: ψnkα(r,σ) = eik⋅r  unkα(r,σ)  , where u is
periodic. α = ± 1 is a (pseudo)spin index..

Without spin-orbit coupling: unkα(r,σ) = unk(r) δασ , and
energy εnkα = εnk

With spin orbit coupling ….



Symmetry considerations
Kramers Degeneracy.  Time reversal symmetry requires

εnkα = εn,-k,-α ,     unkα(r,σ)  = σ u*n,-k,-α(r,-σ) .

If crystal has inversion symmetry, εnkα = εn,-k α ,

               hence εnkα = εnk,-α

(2-fold degeneracy at each  k-point separately.)

If no center of inversion: energy levels at a given k are split
by an amount b(k), except at special symmetry points, where
b -> 0.

Splitting is generally small, but can have interesting effects



General size of spin-orbit effects on band
structure

Spin-orbit effects generally give small corrections to the
non-relativistic band structure, except near k-points where
bands are degenerate in the non-relativistic structure..

Important examples of this are:

At the hexagonal face of the Brillouin zone for an hcp
metal.

Near the valence-band maximum, at the zone center (Γ-
point) of a group IV or zincblende III-V semiconductor:
(Si, Ge, GaAs, etc).



GaAs near k=0



GaAs near k=0
Without spin orbit

ε

k
0

EF

Antribonding s orbitals

Bonding p orbitals.
3-fold degenerate at k=0

Also applies to Si and Ge, but in those cases the k=o minimum
is not the lowest point of the conduction band..



GaAs near k=0
With spin orbit

ε

k
0

EF

Antribonding s orbitals

Bonding p orbitals

  Valence band

Neglects broken inversion symmetry in GaAs.

Also applies to Si and Ge

E0

Δ0

Conduction band

j=3/2

j=1/2

j=1/2



effhGaAs near k=0
Effective Hamiltonian

ε

k
0

EF

  Valence band

H = -(k2/2mv)
+ C(k⋅J)2

Heavy and light hole masses are given by mH
-1= (mv

-1 -2C) and
mL

-1= (mv
-1 +2C) .

Neglects cubic anisotropy and broken inversion symmetry.

HH  Jk = ± 3/2

Conduction band

H= Eo +  k2/2m

LH  Jk = ± 1/2



2D hole gas in GaAs
Assume square confining well.   Neglect broken inversion
symmetry and cubic anisotropy.

H = -(k2/2mv)  + C(k⋅J)2   with kz
2 = (π/d)2 ,  <kz> = 0 .

4x4 matrix has 2 pairs of degenerate eigenvalues

Top of valence band has Jz = ± 3/2 at k=0. (Heavy holes in z-
direction).  Light hole band (Jz = ± 1/2 ) has higher energy by
amount 2C (π/d)2 .  Away from k=0, bands are mixed.  Perturbation
C(kxJx+kyJy)2 enters only in second order perturbation theory.  So
close to k=0, effective Hamiltonian is

Heff = -Ec -(k2/2mv) , where the confinement energy is

Ec= 9(π/d)2/8mH .



Effects of a magnetic field
Replace k by k - e A(r)/c .

Add Zeeman term HZ which splits spin degeneracy.

For electrons in conduction band, HZ = -(gµB/2) B⋅σ  , where
the Pauli spin matrices   σ =(σx,σy,σz) act on the
(pseudo)spin index  α. = ±1. (In GaAs, g=-0.41)

For holes in bulk GaAs, HZ ∝ B⋅J  (4x4) matrix.

For 2D holes gas in GaAs, we wish to consider only the two
states in the heavy hole band which are separated from the
light hole band by the difference in confinement energies.
Use pseudospin index ∝= ±1 to label states which have
JZ= ±1 at k=0.  Defining Pauli spin matrices σ to act on index
α, we find very anisotropic g-factor:  HZ ∝ Bz σz .  Coupling
to in-plane field is ∝ k2 .



Effects of Broken Inversion Symmetry

For band which is 2-fold degenerate in absence of broken
inversion symmetry, we write HSO = - b(k) ⋅σ /2 .

For conduction electrons in bulk GaAs, b has the form
(Dresselhaus coupling) :

              bx = γ kx(ky
2-kz

2)  + cyclic permutations.

For a 2DEG in a symmetric confining well, set kz
2 = (π/d)2 ,

<kz> = 0 , obtain

bx = - βkx +γ kxky
2 ,   by = βky -γ kykx

2 ,  with

β= γ (π/d)2 .

For a 2DEG in an asymmetric confining well, get additional
(Rashba) term:  b(k) = α  z × k .



Effects of Broken Inversion Symmetry
(continued)

For holes in bulk GaAs, lack of inversion symmetry leads to a
splitting of the four hole bands which is linear in k near k=0, but
is very small.. Similarly, intrinsic inversion asymmetry of GaAs
has small effect in 2D hole gas.

For 2D hole gas in an asymmetric confining well, we again find a
Rashba term, which we may write as

HSO = - b(k) ⋅σ /2 , with bz = 0, but now

                               (bx+iby)   = α (kx+iky)3 .



Scattering by impurities

Even if the host material has inversion symmetry, defects or
impurities add perturbations which can mix states of different
pseudospin.For an impurity potential V which varies slowly
on the scale of the lattice constant, within the effective mass
approximation, we may write:

H = (k2/2m*)   + V(r) + λ σ ⋅ (k ×∇V)  .

This is the same form as in vacuum but λ depends on the host
material.  For the conduction band of GaAs. λ= 0.053 nm2,
which is 106 times larger than the vacuum value

λ0 =  -3.7 × 10-8 nm2



Relaxation of spin
Elliott-Yafet mechanism

For a material with inversion symmetry, in the absence of
scattering, the psuedospin σ is a constant of the motion.
However, scattering by impurities or phonons can flip the
pseudospin.  For HSO= λ σ ⋅ (k ×∇V) , the scattering amplitude
in the first Born approximation has a contribution proportional to
iλ σ ⋅ (k × k′)V(k - k ′),  This leads to a spin relaxation rate

                               τsf
-1 ∝ (λ kF)2 τtr

-1 ,

where τtr
-1 is the transport scattering rate.

(λ kF)2 is of order 10-3  for electrons in GaAs.



Relaxation of Spin
Dyakonov-Perel Mechanism

In a system with broken inversion symmetry, the spin-orbit
field b(k) causes the components of pseudospin perpendicular
to b to precess at a frequency b. The component parallel to b is
conserved until the electron is scattered through an angle large
enough to change the direction of b.  If In the “clean limit”,
where bτtr >>1, spin memory will persist for times of order τtr

In the “dirty limit”, where bτtr <<1, the field direction seen by
an electron changes rapidly, and the spin direction diffuses
over the unit sphere, with a relaxation rate

                            τsf
-1 ∝ b2 τtr .



How do you understand structure and
parameters?

k ⋅ p  perturbation theory

4 x 4 Hamiltonian for valence band (Luttinger model)

8 x 8 Hamiltonian (Kane model)

14 x 14 Hamiltonian (includes antibonding p orbitals
in conduction band)

Reference: R. Winkler, “Spin-Orbit Coupling effects
in Two-Dimensional Electron and Hole Systems”,
(Springer, 2003)


