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I. OVERVIEW: ELASTIC AND VIBRATIONAL PROPERTIES OF MAXWELL LATTICES

These lectures will treat a particular class of marginally stable lattices. In 1864, James Clerk Maxwell wrote a
paper entitled “On the calculation of the equilibrium properties of frames” in which he outline the conditions under
which frames (lattices) of rigid rods (connections) connected at sites (points) by frictionless pins are mechanically
stable. He was interested in the number, N0, of independent distortions of the frame that do not change the length of
any of rods. These are the zero modes of the frame. He reasoned that each point in d dimensions has d translations
degrees of freedom that cost no energy if there are no bonds. Each bond introduces one constraint and reduces the
number of zero modes by one. Thus, if there are NB bonds and N sites, there are

N0 = dN −NB (1.1)

zero modes so long as dN −NB is greater than or equal to the number of trivial zero modes of rigid translation and
rotation [d(d + 1)/2 for free frames and d for frames under periodic boundary conditions]. Equation (1.1). is often
called the Maxwell relation Since each bond is shared by 2 sites, NB = (1/2)zN , where z is the average coordination
number or average number of neighbors per site. Thus a good estimate of the minimun condition for a lattice or
frame to be stable is for NB − dN = 1

2 (z− 2d)N > 0. This type or reasoning has proven useful in analysis of systems
as varied a bridge, glasses, as jamming, rigidity percolation.

Show figures of lattices near z = 2d - Slides 1-7

The Maxwell relation ignores what are called redundant bonds or, equivalently, what are called States of Self Stress.
These are configurations in which bonds can be put under stress while leaving the total forces as all sites equal to
zero. Consider The configurations shown in Figs. 1 (b), (c), and (d), which show how a frame with six sites and either
eight or nine bonds. With eight bonds, the Maxwell relation give N0 = 2 × 6 − 8 = 4 corresponding to two rigid
translations, one rigid rotation, and one internal floppy mode that involves internal displacement of sites without
changing the lengths of any bonds. In (c), there are nine bonds, and Maxwell would say there are three zero modes,
as there are. In (d), however, there are also nine bonds and Maxwell would say again that there are three zero modes,
but there are clearly four: the same four as (c) with only eight bonds. So the Maxwell relation appears to break
down. But (d) has a special feature: the left hand square with the two diagonal bonds can exist in a state in which
its for sides are under tension and its two diagonal are under compression or vice versa. This is a state of self stress.
So we can modify the Maxwell relation to read,

N0 −NS = dN −NB , (1.2)

where NS is the number of states of self-stress. It turns out that this relation is rigorous at least for linearized
displacements. We will have a closer look at this in the second lecture.
We will call lattices in which dN = NB Maxwell lattices. These lattices include the familiar square, kagome,

cubic, and pyrochlore and lattices under periodic boundary at the jamming transition studied numerically also under
periodic boundary conditions. These periodic lattices both under periodic boundary conditions in which case N0 = NS

free boundary conditions in form cut from those under periodic boundary conditions are the primary subject of these
lectures. They have a remarkably rich phenomenology with complex elastic and vibrational behavior, and their surface
or edge modes with topological characterizations similar to those found in quantum systems like polyacetylene and
topological insulators.
We begin with a review of classical Lagrangian elasticity, which we present in its full nonlinear form. Then in

lecture II, we will introduce lattice models and formalisms for describing phonon behavior, and we look at some
specific examples of Maxwell lattices with different degrees of self stress. Finally in Lecture III, we will consider
topological lattices and their protect zero-energy edge modes.
Parts of lecture II and all of lecture III follow a recent review coauthored by me that will be made available to you.

The relevant sections of this review are signaled in this text by RA -sec. There is a separate set of figures in Power
point, labeled P.1, P.2, etc.
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(a) (b) (c) (d)

FIG. 1: (a) to (c) Frames satisfying the Maxwell rule. (a) has 6 sites, 7 bonds, 5 zero modes, and two mechanisms indicated by
the dotted bonds. (b) has 6 sites, 8 bonds, 4 zero modes, and one mechanism. (c) and (d) are constructed from (b) by adding
an additional diagonal bond. (c) satisfies the Maxwell rule with only the three trivial zero modes. (d) has 4 zero modes and
one state of self stress indicated by the arrows on the bonds in the left square.

II. LECTURE I: NON-LINEAR ELASTICITY AND LINEAR PHONON MODES

Elastic materials resist changes of state. If they are stretched, compressed, or sheared, they will return to their
original shape when external forces causing these deformations are removed. The distorted state has higher energy
than the original undistorted one. Crystalline solids, glasses, and rubbers and elastomers are all elastic solids, at least
at small enough shape or size distortions. Many solids will undergo irreversible plastic shape changes if deformations
are large enough. Here we will consider only elastic media that return do to their original shape.

A. The deformation and nonlinear strain tensors

In the absence of external forces, an elastic material has an equilibrium preferred shape and size. In addition each
mass point has a preferred position relative to other mass points. We represent the positions of these mass points
by a vector x of dimension equal to the dimension d of the material. Thus x is of dimension d = 2 for an elastic
membrane, and of dimension d = 3 for a 3D solid. The set of points x = (x1, x2, ...) ≡ (x, y, ...) constitute what we
call the reference space. When the material is distorted, points x are mapped into points X(x) in what we will call
the target space of dimension D as depicted schematically in Fig. (P8). We will restrict our attention to situations in
which the dimensions of the reference and target spaces are the same, i.e., D = d. In an undistorted material, that
is neither translated or rotated, X(x) is identical to x. Deviations from this state are described by the displacement
vector u(x) defined through

X(x) = x+ u(x). (2.1)

Under uniform translation through x0, u(x) = x0. Under uniform rotation, Xi → Oijxj where Oij is a rotation
matrix and ui = (Oij − δij)xj , where as usual, the summation convention on repeated indices is understood.
Uniform translations produce no deformation and cost no energy. Deformations thus require that X(x) have non-

vanishing derivatives with respect to x. The elastic description of materials is usually understood to deal only with
slow spatial variations of X(x) and involves only the first derivatives of X(x) with respect to x [1] that constitute
what is called the deformation tensor :

Λij =
∂Xi

∂xj
= δij + ηij , (2.2)

where i and j are Cartesian indices (x, y, z) and ηij = ∂ui/∂xj . [2] Note that there is no requirement that Λij be
symmetric; it describes both rotations and deformations. In addition, the indices i and j transform under different
group operations: The right index i, associated with X, transforms under operations in the target space, whereas
the left index j, associated with x transforms under operations in the reference space. Thus, the j part of Λij is
invariant under the symmetry operations of the reference space, whereas the i part transforms with X. If Λij is
spatially uniform as is often the case, Xi(x) = Λijxj . A uniform orthogonal (thus anti-symmetric) Λij corresponds
to a pure rotations, whereas a symmetric Λij corresponds to a deformation. A Λij that is neither symmetric nor
anti-symmetric describes a deformation followed by a rotation or vice versa. The polar decomposition theorem of
matrix algebra says that any square real matrix can be written as a product of an orthogonal rotation matrix times
a symmetric deformation matrix (or vice versa). The jacobian of the transformation form x to X(x) is simply the
determinant of the deformation matrix. In three dimensions,

d3X = detΛ d3x, (2.3)
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where Λ is the matrix with components Λij , and the volume (in three dimensions) in the target space is V = detΛV 3
0 ,

where V0 is the volume in the reference space, and

δV

V0
= detΛ− 1 ≈ ηii, (2.4)

where δV = V − V0 and the final expression is valid in the small ηij limit. Deformations in which detΛ = 1 clearly
preserve volume.
Special names are given to certain simple deformations. A uniform compression or dilation is described by an

isotropic deformation tensor: Λij = Λδij , where Λ < 1 for compression and Λ > 1 for dilation. Deformations that
preserve volume are called shear, and two versions of shear deformations are given special names; pure shear in which

Λp =

Λ−1/2 0 0
0 Λ−1/2 0
0 0 Λ−1/2

 (2.5)

and simple shear in which

Λs =

1 0 Λxz

0 1 0
0 0 1

 . (2.6)

These two deformations are shown in Fig. (P9)
The uniform deformation matrix provides a complete description of uniform shape distortions of an elastic medium.

It does not, however, provide a description of the stretching between individual mass points under distortion from x
to X(x). It is this stretching that raises the elastic energy of the medium, just as increasing the distance between two
masses connected by a spring increases the energy of the spring. The distance between two nearby points, which is
determined by the metric tensor, determines the energy of a distortion. In the reference space, the distance between
a point x+ dx and x is dx2 = dxjdxj , and the distance between the same two points in the target space is

dX2 = dXidXi =
∂Xi

∂xj

∂Xi

∂xk
dxidxk ≡ gjkdxjdxk, (2.7)

where

gij = ΛkiΛkj = ΛT
ikΛkj (2.8)

is the metric tensor tensor (ΛT is the transpose of the deformation tensor). Note that the contraction with respect to
the target-space index k, leaving only the reference-space indices i and j, implies that gij is a tensor of the reference
space and is invariant under target-space rotations. This is as it should be – the distance between two target space
points does not change if the vectors in that space are rigidly rotated. The metric tensor of the reference space is
simple gRij = δij . Thus a measure of changes in distance between points in the deformed target space relative to those
in the undeformed reference space is provided by the Lagrangian nonlinear strain tensor,

εij =
1
2 (gij − δij) ≡ 1

2 (∂iuj + ∂jui + ∂iuk∂juk)

= 1
2 (ηij + ηji + ηkiηkj), (2.9)

which is a tensor in the reference space and which is invariant under rotations in the target space (∂if(x) ≡ ∂f(x)/∂xi

for any function f(x)). εij is symmetric tensor, and it has ad = d(d+ 1)/2 independent components in d dimensions.
In two dimensions, the three independent components are

εεεV = (εxx, εyy, εxy) (2.10)

and in three dimension, the six independent components are εεεV = (εxx, εyy, εzz, εyz, εxz, εxy). [3]
In the linearized limit in which ηij ≪ 1 = 1

2 (ηij + ηji), and

δV/V0 = εii ≡ Trεεε, (2.11)

where Trεεε is the trace of the linearized Lagrangian strain matrix, often called the Volumetric strain. The symmetric,
traceless part of of the strain tensor,

ε̃ij = εij − 1
3εkk, (2.12)

is called the deviatoric strain in the linearized limit. Because its trace is by definition zero, it represents deformations
that do not change volume in the linearized limit, i.e., it measures strain distortions.
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B. Elastic energy

The energy associated with small, slowly varying deformations of an elastic medium should be proportional to
the square of local distortions integrated over all points in the lattice, i.e., it should be a quadratic form in εij :
F [εij ] =

∫
ddxFel(εij), where

Fel(εij) =
1
2Kijklεijεkl (2.13)

is the elastic energy density, where Kijkl is the elastic tensor. In a purely mechanical, zero temperature system,
Fel is simply the energy density of elastic distortions; at nonzero temperature, Fel(εij , T ) is the elastic Helmholtz
free-energy density. Alternatively, it could be the energy density expressed as a function of εij and entropy S. The
elastic tensor is of fourth-rank, and it is invariant under the replacements {ij} → {ji} and {kl} → {lk} because εij is
symmetric and under {ijkl} → {klij} because interchanging εij and εkl does not change the energy. Because of these
symmetries, the off-diagonal components of εij (e.g. εxy) always appear with a factor of two rather than a factor of
one. Thus in two-dimensions,

Fel(εij) =
1
2 [Kxxxxε

2
xx +Kyyyyε

2
yy + 2Kxxyyεxxεyy

+ 4Kxxxyεxxεxy + 4Kyyxyεyyεxy + 4Kxyxyε
2
xy] (2.14)

A similar but longer expression applies in three dimensions. To see in more detail how this expression arises, consider
first the term in εxxεxy. The factor of 4 arises because of Kxxxy, Kxxyx, Kxyxx, and Kyxxx are all equal to Kxxxy

and contribute collectively a term (1/2) × 4Kxxxyεyyεxy to the energy density. Similarly, Kxyxy, Kyxxy, Kxyyx and
Kyxyx are all equal to Kxyxy, and they collectively contribute a term (1/2)× 4Kxyxyε

2
xy to the energy density.

The free energy simplifies considerably in media that have a high symmetry. The highest possible symmetry is that
of an isotropic fluid, in which all tensors must be composed of the Kronecker-δ, δij . There is no crystal with this
precise symmetry, but glasses and gels, which are homogenous at the macroscopic scale but random at microscopic
scales are effectively isotropic. In addition, in hexagonal lattices in two-dimensions, the lowest-rank tensor tensor not
constructed entirely from Kronecker-δs is of rank 6, and the 4th-rank elastic constant tensor is isotropic. There are
two 4th rank tensors with the symmetry of Kijkl that can be constructed from Kronecker-δs, and the elastic constant
tensor for an isotropic medium has two independent elastic constants:

Kijkl = λδijδkl + µ(δikδjl + δilδjk), (2.15)

where λ and µ are the Lamé coefficients. The elastic energy density is then

Fel =
1
2 [λε

2
ii + 2µεijεij ]

= 1
2 [Bε2ii +Gε̃ij ε̃ij ] (2.16)

where G ≡ µ sets the energy scale of strains in the linearized limit and is called the shear modulus and B = λ+2(µ/d)
sets the energy scale for volumetric deformations an is called the Bulk modulus.
Fel can be expressed in matrix bilinear form in terms of the independent components of the strain tensor:

Fel =
1

2
εεεαKα,βεεεβ (2.17)

where α and β run over the ad components of the strain tensor and Kα,β is an ad × ad matrix of elastic elastic
constants. In two dimensions,

K =

Kxxxx Kxxyy 2Kxxxy

Kxxyy Kyyyy 2Kyyxy

2Kxxxy 2Kyyxy 4Kxyxy


isotropic−−−−−→

B +G B −G 0
B −G B +G 0

0 0 4G

 , (2.18)

where the final form is the isotropic limit, where B = λ + µ is the bulk modulus and G = µ is the shear modulus
with λ and µ the standard Lamé coefficients. Thermodynamic stability requires that all of the eigenvalues of of K be
positive.
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C. Stress

Stress is defined to be a force per unit area. Since both the direction of surface normal and the direction of the force
relative to that normal can vary, stress described by a second-rank tensor. Physicists usually think of the Cauchy
Stress Tensor, σC

ij , which is the force in direction i across a surface oriented along j in normal Euclidean space, which

in the case of Lagrangian elasticity is the target space, e.g. σC
zx is the force per area in the z direction on a surface

with normal along the X direction. The force per unit volume fi exerted on a small volume element δD by the stresses
exerted by surrounding matter on the boundary ∂δD of δD is the divergence of the Cauchy stress tensor:

fi ==
∂σC

ij

∂Xj
, (2.19)

where Xi is the position in Euclidean space. In an elastic medium, the stress tensor represents forces exerted across
boundaries by matter within an elastic medium, and as a result, σC

ij is zero outside the medium. Internal forces,

measured by σC
ij generate no macroscopic net force Fi or torque τi on a sample. The absence of net force follows from

the fact σC
ij is zero outside the medium:

Fi =

∫
D

d3Xfi =

∫
D

d3X
∂σC

ij

∂Xj
=

∫
∂D

dSjσ
C
ij = 0, (2.20)

where the boundary ∂D lies entirely outside the medium in question. The final relation follows because σC
ij is zero on

∂D. The second constraint requires σC
ij to be symmetric:

τi =

∫
D

d3XϵijkXjfk =

∫
D

d3XϵijkXj
∂σC

kl

∂Xl
=∫

∂D

dSlϵijkXjσ
C
kl −

∫
D

d3xϵijkσ
C
kj = −

∫
D

d3xϵijkσ
C
kj = 0, (2.21)

where again the final relation, which sets the anti-symmetric part of σC
kj to zero, follows because σkl is zero on the

boundary ∂D.
In elasticity, there are as we have seen, two separate spaces: the references space coinciding with the undistorted

elastic medium and the target space coinciding with the space we live in. This leads to the possibility of different
stress tensors depending on whether forces are measured across surfaces in the reference or target space.
Forces exerted on an infinitesimal volume of mass in an elastic medium by the matter surrounding it are transmitted

across the surfaces of that volume. We can take the surfaces to be either those surrounding the volume in the
undeformed reference space or in the target space. The latter gives us the Cauchy stress tensor. The former give the
first Piola-Kirchhoff (PK) stress tensor, σI

ij , and a force density fi = ∂jσ
I
ij , where the force is what we measure in the

target space, and as before ∂i = ∂/∂xi. Unlike σC
ij , σ

I
ij does not have to be symmetric, and it in general is not so.

To see how σI
ij is related to the elastic free energy, we consider the work done on an elastic medium by internal

forces fi. The change in total (free) energy, δF is equal to minus the work done by internal forces. As before, we
consider a domain D′ whose boundary ∂D′ lies entirely outside the volume D occupied by the medium. Thus

δF = −
∫
D′

fiδXi = −
∫
D′

ddx∂jσ
I
ijδXi

=

∫
ddxσI

ijδΛij , (2.22)

where the surface term on ∂D′ vanishes because σI
ij is zero outside matter and δΛij = ∂jδRi. Recall that ∆xi = δui

so that the force density is

fi = − δF

δui(x)
. (2.23)

Equation (2.22) implies that

σI
ij =

δF

δΛij
=

∂F
∂Λij

=
∂F
∂εkl

∂εkl
∂Λij

≡ Λikσ
II
kj , (2.24)
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where

σII
kj =

∂F
∂εkj

(2.25)

is the second PK stress tensor which is symmetric because εkj is, invariant under rotations in the target space, and
a second-rank tensor with respect to rotations in the reference space. In deriving Eq. (2.24), we used ∂εkl/∂Λij =
1
2 (δjkΛil + Λikδjl) and the fact that σII

ij is symmetric. Finally, the Cauchy stress tensor is obtained by transforming
the volume integral over x in Eq. (2.22) to an integral over Xi = Λijxj and the derivative with respect to ξ in the
same equation to one with respect to Ri via ∂/∂xj = (∂Xl/∂xj)∂/∂Xl:

δF =

∫
ddX

1

detΛ
σI
ijΛlj

∂δXi

∂Xl
= −

∫
ddX

∂σC
ij

∂Xj
δXj , (2.26)

implying

σC
ij =

1

detΛ
σilΛjl =

1

detΛ
Λikσ

II
kl Λ

T
lj . (2.27)

As required σC
ij is symmetric.

The second PK stress tensor in terms of nonlinear strains is easily calculated from the elastic energy:

σII
ij =

∂F
∂εij

= Kijklεkl (2.28)

which reduces in the isotropic limit to

σII
ij = λδijεkk + 2µεij

= Bδijεkk + 2µ
(
εij − 1

dδijεkk
)
. (2.29)

In the linearized limit, all of the three stress tensors are equal, and we will denote them all as σij .
Under isotropic pressure, σij = −δij (linearized)

ϵkk =
δV

V
= −p/B. (2.30)

Under uniaxial tension T along x in two dimensions, σij = Tδixδiy and

T = λ(εxx + εyy) + 2µεxx

0 = λ(εxx + εyy) + 2µεyy (2.31)

and

ϵyy = − λ

λ+ 2µ
εxx = −B − µ

B + µ
≡ −σpεxx, (2.32)

where σp = λ/(λ+µ) is The Poisson ratio. If σp is positive, the sample stretches in the x direction and contracts in the
y direction. But if σp is negative, the sample will expand in the y direction when stretched along the x direction. This
unusual behavior is called auxetic response. The compression modulus has to lie between 0 and ∞, implying that σp

lies between −1 and 1, reaching maximally auxetic response at B = 0. Similar behavior occurs in three-dimensional
systems.
Classical elasticity theory assumes that strains strains produced in response to uniform stress at surfaces will be

constant throughout the sample. In random materials and in periodic crystals with more than one site per unit cell,
the response is more complex. Sites generally under go displacements relative to uniform strain to minimize elastic
energy. If response is uniform, it is said to be affine; if it is not, it is nonaffine

D. Acoustic Modes

Dynamical properties of elastic media are determined by the continuum version of Newton’s equations. We have
already introduced the force density fi(x) = −δFel/δui(x). Newton’s equation for the acceleration of the mass ρddx,
where ρ is the mass density, in a volume ddx at point x is fi(x)d

dx, or after removal of the common factor of ddx,

ρüi = fi = ∂jσ
I
ij → ∂jσij

= Kijkl∂j∂kul (2.33)
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where the final form applies in the linearized limit, which is all that concerns us here. In an isotropic material,

fi = (λ+ µ)∂i∂juj + µ∇2ui (2.34)

These relations determine the frequencies of bulk normal modes in which ui(x, t) ∼ eiq·x−iωt where ω is the angular
frequency and q is the wavevector. The Fourier transform of fi(q) is

fi(q) = (λ+ 2µ)qiqjuj + µq2δTijuj , (2.35)

where q̂ = qi/q is the unit vector along q and qT
ij = δij − q̂iq̂j is the projection operator onto directions perpendicular

to q. u(q) can be decomposed into a longitudinal part uL with vanishing curl: q×uL = 0, and a transverse part uT

with vanishing divergence: q · uT = 0, which imply, uL = q̂uL and uTi = δTijuj . Then,

fi(q) = (λ+ 2µ)q2uLi + µq2uTi (2.36)

and

ρω2ui = (λ+ 2µ)q2uLi + µq2uTi, (2.37)

yielding longitudinal and transverse sound modes with respective frequencies,

ω2
L = c2Lq

2 ω2
T = c2T q

2, (2.38)

where c2L = (λ + 2µ)/ρ and c2T = µ/ρ. In two dimensions with q = (qx, qy), the longitudinal and transverse parts of
u can be represented at

uLx = q̂xuL, uLy = q̂yuL ⇒ uLy = (qy/qx)uLx

uTx = −q̂yuT , uTy = q̂xuT ⇒ uTy = −(qx/qy)uTx (2.39)

More generally,

ω2ui = Dij(q)uj , (2.40)

where Dij(q) = (1/ρ)Kikjlqkql. In two-dimensions,

Dij(q) =
1

ρ

(
(λ+ 2µ)q2x + µq2y (λ+ µ)qxqy

(λ+ µ)qxqy (λ+ 2µ)q2y + µq2x

)
(2.41)

in and isotropic system, and

Dij(q) =
1

ρ

(
K1q

2
x +K4q

2
y (K2 +K4)qxqy

(K2 +K4)qxqy K1q
2
y +K4q

2
x

)
(2.42)

in a system with square symmetry, where K1 = Kxxxx = Kyyyy, K2 = Kxxyy, and K4 = Kxyxy. The square of the
normal-model frequencies are the eigenvalues of od Dij and the normal-mode displacements are proportional to the
eigenvectors of Dij .

E. Surface Rayleigh Waves

In addition to bulk modes with ω ∼ q just discussed, there are also surface normal modes, also with a linear
dispersion in q, exponentially localized at free surfaces. The boundary condition at a free surface separating the
elastic material from the vacuum is that all stress on that surface be zero, i.e., that σijn̂j = 0 for all components
i, where n̂j is the unit vector normal to the surface. This relation is easily generalized to cases where the interface
separates the material from an isotropic fluid of from another elastic medium. These surface modes are called Surface
Rayleigh waves if mass motion occurs in planes perpendicular to the surface and parallel to the surface wavevector
and Rayleigh-Lamb waves if mass motion occurs in the planes perpendicular to both the surface and the surface
wavenumber.
To keep our discussion as simple as possible, we consider here only Rayleigh waves in an isotropic medium in two

dimensions, and we consider a surface parallel to the x-axis separating the vacuum in the half-plane y < 0 from the
elastic medium in the half-plane y > 0. In this case, the boundary conditions are

σyy = (λ+ 2µ)εyy + λεxx = 0 (2.43)

σxy = 2µεxy (2.44)
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The mode amplitude is expected to decay to zero exponentially with depth y > 0 into the elastic medium for each
wavenumber qx parallel to the surface, and we seek solutions of the form

ui(x, y) = Aeiqxx−κy, (2.45)

where κ > 0 is the inverse penetration (which in the most general of cases could be complex, but here it will turn out
to be purely real). Thus the form of ui(x) for surface modes has exactly the same form as that of bulk modes except
that eiqyy is replaced by e−κy, i.e., qy is replaced by iκ. Thus, we can obtain the eigenvectors and the dependence of
κ on ω directly from our solutions for the bulk modes.
Replacing q2x + q2y by q2x − κ2, we find that κ, which depends on ω, has two possible solutions arising from the

difference sound velocities of longitudinal and transverse sound:

κ2
L(ω) = q2x − ω2

c2L
and κ2

T (ω) = q2y −
ω2

c2T
. (2.46)

There are thus, two possible decay rates for a given frequency, and displacements associated with the surface mode
can be expressed as a sum of the the two decaying functions:

ux(x) = eiqxx
(
ALxe

−κLy +ATxe
−κT y

)
uy(x) = eiqxx

(
iκL

qx
ALxe

−κLy +
iqx
κT

ATxe
−κT y

)
(2.47)

where we used Eqs. (2.39) relating the x and y components of uL and uT . Inserting Eq. (2.47) into the stress boundary
conditions of Eq. (2.44) the yields

σyy =
eiqxx

qx

[(
−(λ+ 2µ)κ2

L + λq2x
)
ALx − 2µq2xALy

]
= 0

σxy = − µ

κT
eiqxx

[
2κLκTALx + (κ2

T q
2
x)ATy

]
= 0. (2.48)

These two equations can be written in matrix form (after removing common prefactors and dividing the first equation
by ρ) as (

c2Lκ
2
L − (c2L − 2c2T )q

2
x 2c2T q

2
x

2κLκT κ2
T + q2x

)(
ALx

ATx

)
=

(
0
0

)
. (2.49)

Recall that κL and κT depend on frequency through Eq. (2.46) so that the frequency of the surface mode is determined
by setting the determinant ∆ of the matrix in Eq. (2.49) to zero

c2T∆ = 0 (2.50)

= (2c2T q
2
x − ω2)2 − 4c4T q

2
x

√
[q2x − (ω2/c2L)][q

2
x − (ω2/c2T )].

Putting the square root on the right hand side of the equation and squaring leads to a fourth-order polynomial in ω2.
The determinant, however, is zero when ω2 = 0 because in this limit κ2

L = κ2
T = q2x, and the two boundary equations

for the stress are strictly proportional to each other in this case. Thus, when that mode is removed, the polynomial
is only third order in ω2. ∆ can be simplified by setting ω = cT qxs

2 producing a common factor of q4x. The resulting
equation for s is

s6 − 8s4 + 8s2[3− (c2T /c
2
L)]− 16[1− (c2T /c

2
L)] = 0. (2.51)

There are three solution to this equation for s2. The physical solutions must be greater than zero to ensure that
ω is real and less than 1 to ensure that κ2

T is positive. Only one of the three solutions to Eq. (2.51) satisfies both
of the criteria producing a unique solution for the surface mode velocity cS = cT g(c

2
T /c

2
L). This solution has some

interesting features: When the bulk modulus B = λ+ µ is zero, c2L = c2T , and cS = 0. This means that the Rayleigh
mode has zero frequency for all qx (or course the continuum approximation breaks down at as qx increases, but we
will find that this result holds for all qx in lattice models. In the opposite limit in which either µ → 0 or λ → ∞,
cS = 0.955cT .
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III. LATTICE MODELS

A. Defining the model

For our purposes a lattice (or in engineering language, a frame) is a collection of mass points l at positions X(l)
connected pairwise by bonds β. Each bond β connects two sites sβ and s′β at respective positions X(sβ) and X(s′β).

In mechanical equilibrium (no net force at any site), site l is at positions R(l), and

X(l) = R(l) + u(l), (3.1)

where u(l) is the displacement for equilibrium. The bond vector connecting sites s′β and sβ is

Xβ = X(s′β)−X(sβ) = Rβ +∆uβ , (3.2)

where Rβ = R(sβ′)−R(sβ) is the equilibrium vector and ∆uβ = u(s′β)− u(sβ). Deviations of the length of bond β
from its rest length Rβ are conveniently measured by the scalar quantity vβ defined via

vβ = 1
2 (X

2
β −R2

β) = Rβ ·∆uβ + 1
2 (uβ · uβ). (3.3)

By construction, vβ , like εij in the continuum limit, is invariant with under rotation of Xβ . Changes δXβ in the
length of bond β are easily expressed in terms of vβ :

δRβ =
vβ
Rβ

− 1

2

v2β
R3

β

+O(v2β) → b̂β ·∆uβ , (3.4)

where the final form is the linearized limit and b̂β = Rβ/Rβ is the unit vector along bond β.
We now associate with each bond a central-force, rotationally invariant potential energy Vβ(Xβ), where Xβ =

|Xβ ·Xβ |, which can be expanded in powers of δXβ . The total potential energy Vel[{Xβ}] is simply the sum over all
bonds of Vβ(Xβ), and the energy associated with bond deformations as

Vel ≡ Vel[{Xβ}]− Vel[{Rβ}]

=
∑
β

[V ′
β(Rβ)δXβ + 1

2V
′′
β (Rβ)δX

2
β + · · · ] (3.5)

→ 1

2

∑
β

[V ′′
β ∆u2

β|| +R−1
β V ′

β(Rβ)(∆uβ⊥)
2]. (3.6)

where the final form is the linearized harmonic limit where

∆uβ|| = b̂ ·∆uβ ≡ eβ (3.7)

is the linearized bond stretch, eβ , and

∆uβ⊥,i = (δij − b̂βib̂βj)uβ,j (3.8)

is the relative displacement of sites s′β and sβ perpendicular to b̂β . We left out the contribution from terms V ′
β∆uβ||

because they give zero when summed over β because the net force at each site is zero when Xβ = Rβ for all β. The
first term in Eq. (3.6) is the familiar term arising from stretching or compressing springs away from their equilibrium.
The second term reflects the fact that springs under tension will resist motion perpendicular their axes; it be present
in networks whose bonds are not at their rest length in their equilibrium configuration as often occurs in random
systems for example. In what follows, we will assume that V ′

β(Rβ) is zero for all β, in which case, the elastic energy
is simply

Vel =
1
2

∑
β

kβe
2
β , (3.9)

a result that follows directly from a network connected Hooke’s-law springs with individual spring constants kβ = V ′′
β .
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B. Compatibility and Equilibrium Matrices

Dealing with zero modes and states of self-stress is facilitated by the introduction of a more compact vector-matrix
notation. To this end, we first introduce the NB-dimensional vector of bond displacements ET = (e1, e2, · · · ), where
the T superscipt refers the row vector that is the transposes of E, and the NB × NB diagonal matrix k of spring
constants. Then

Vel =
1

2
ET kE, (3.10)

where k is the diagonal NB × NB matrix of spring constants. The bond stretches are linearly proportional to site
displacements via Eq. refeq:bond-stretch), which can be written as a matrix equation,

E = CU, (3.11)

where U is the dN dimensional vector of site displacements and C is theNB×NB compatibility matrix with components

Cβ,li = b̂βi(δl,s′β − δl,sβ ), (3.12)

where l specifies the site and i the Cartesian coordinates (x, y, z). These relations provide us with an expression for
the elastic energy in terms of displacements U rather than bond-stretches E:

Vel =
1

2
UTKU, (3.13)

where

K = QkQT = CT kC (3.14)

is the dN × dN stiffness matrix.
When bonds are stretched or compressed, they are under positive or negative tension and exert forces on sites they

connect. In our harmonic theory, the tension of bond β is simply

tβ = kβeβ , (3.15)

which can be expressed in matrix form with the introduction of the NB dimensional vector of bond tensions TT =
{t1, t2, · · · }:

T = kE. (3.16)

The force fi(l) at site l is simply

fi(l) = − ∂Vel

∂ui(l)
= −Kij(l, l

′)uj(l
′), (3.17)

which, with the introduction of the dN dimensional force vector F, can be written as

F = −KU = −CT kCU = −CT kE = −CTT. (3.18)

This defines the compatibility matrix Q = CT relating forces at exerted by internal bonds ont sites via

F = −QT = −L, (3.19)

where L ≡ −F is the vector of loads, which are the external forces needed to balance the internal forces F. If all
of the masses are the same, then the dynamical matrix is D = mK. If there are different masses at each site,
D = m−1/2Km−1/2 where m is the dN × dN diagonal matrix of masses (with the same entry for each of the d
directions of displacement for a give site).

C. The Rank-Nullity Theorem and The Generalized Maxwell Relation

Sec. 2.2 of RA
The compatibility matrix C gives bond stretches in terms of lattice displacements. The set of displacements U that

satisfy CU = 0 constitute the Null Space or kernel, ker(C), of C. These are displacements that leave all bonds at their
rest length and, therefore, cost no energy. The dimension of this space, referred to as Nullity(C) or as dim ker(C) is
simply the number of independent zero modes, N0. Similarly the the null space of Q is the set of tensions than leave
the forces at all sites equal to zero, i.e., the states of self stress, and Nullity(Q) is the number NS of states of self
stress. The Rank-Nullity theorem of linear algebra then yields the Generalized Maxwell relation N0−NS = dN −NB .
Calculation of C and Q for sample lattice: Sec. 2.2 of RA
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D. Elastic limit and States of Self Stress

Sec. 3.2 and Appendices A and B of RA
Important result: The elastic free energy density depends on states of self-stress. This stands to reason: under

external stress, sites are in mechanical equilibrium but bonds are under stress. The free energy density is

fel =
1

2V
ET
aff,s[(k

−1)ss)]
−1Eaff,s

k→k I−−−→ k

2V

∑
α

(Eaff · t̂α)2 (3.20)

where Eaff is the vector of affine bond stretches, Eaff,s and (k−1)ss are the projections of Eaff and k−1 onto ker(Q),
and t̂α is the αth orthonormal basis vector of ker(Q). Thus, only the projections of the affine displacement vectors
onto states of self-stress contribute to the elastic energy.
Important consequence: because fel it is a sum of squares of linear combinations of strain, one for each state os

self-stress, it shows that there must be at least ad = d(d + 1)/2 load-bearing SSSs to produce an elastically stable
system with an elastic matrix with ad positive eigenvalues. If number of load-bearing states of SSSs is less than ad,
there will be zero-energy macroscopic elastic strains that cost zero energy. These distortions are called Guest Modes.

E. Periodic Lattices

Sec. 4 of RA
Site and bond variables in lattices of periodically repeated unit cells can be expressed in terms of Fourier transforms:

uµ(ℓ) =
1

Nc

∑
q

eiq·(Rℓ+rµ)uµ(q), (3.21)

uµ(q) =
∑
ℓ

e−iq·(Rℓ+rµ)uµ(ℓ) (3.22)

tβ(ℓ) =
1

Nc

∑
q

eiq·(Rℓ+rβ)tβ(q) (3.23)

tβ(q) =
∑
ℓ

e−iq·(Rℓ+rβ)tβ(ℓ), (3.24)

Qσβ(q) =
∑
ℓ

e−iq·(Rℓ,σ−R0,β)Qσβ(ℓ, 0), (3.25)

where σ = (ℓ, µ, i).
There are a separate equilibrium and compatibility relations for each wavenumber q:

Q(q) t (q) = −f(q) C (q)u(q) = e(q), (3.26)

Q(q) is a dn × nb- matrix and C(q) is an nb × dn matrix, where n is the number of sites pand nb is the number of
bonds per unit cell. There are separate generalized Maxwell relations for each q:

n0(q)− ns(q) = dn− nb, (3.27)

where n the number of sites per unit cell and nb.
The harmonic energy is

Vel =
1

2Nc

∑
q

e†(q)ke(q) =
1

2Nc

∑
q

u†(q)K(q)u(q), (3.28)

where k is the nb × nb diagonal matrix of spring constants, and

K(q) = Q(q)kQ†(q) ≡ mD(q) (3.29)

is the stiffness matrix. We will usually set m = 1 so that the stiffness matrix K and the dynamical matrix D
are the same. In periodic systems, nearest-neighbor (NN), next-nearest neighbor (NNN), and further-neighbor
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bonds are well defined, and bond vectors can be expressed as the direct sum of NN and NNN components, e.g.
e = eNN ⊕ eNNN , and elastic constant matrix and dynamical matrices can be decomposed into NN and NNN :

D(q) = DNN (q) +DNNN (q). (3.30)

Under affine strain, the strain of equivalent bonds in different unit cells are identical, and we can describe affine
strain in terms of the nb dimensional vector eaff,s. As a result, the elastic energy depends only on the projection of
the affine strain onto the q = 0 SSSs:

fel =
1

2vc
eTaff,s(k

−1
ss )

−1eaff,s →
1

2vc
k
∑
α

(eaff · t̂α)2, (3.31)

F. Important of Properties of Periodic Maxwell Lattices

In periodic Maxwell lattices under periodic boundary conditions, nb = dn, and n0(q) = ns(q) for every q in the
BZ. Under periodic boundary conditions.

1. There are zero modes at any q ̸= 0 only if there are states of self-stress at that q. This means that the phonon
spectrum has no zero modes, i.e., it is fully gapped if and only if there are not states of self stress at any q ̸= 0.

2. Under periodic boundary conditions, there are at least d q = 0 zero modes in d-dimensions corresponding to
uniform rigid translations of the lattice. This requires at least d q = 0 SSSs implying that there are at least d
load-bearing states of self-stress. If there are no q = 0 modes and thus no q = 0 SSSs beyond the d required
ones, there are d positive eigenvalues of the Voigt elastic-constant matrix and d(d + 1)/2 − d = d(d − 1)/2
zero-energy Guest modes, i.e., one Guest mode in two dimensions and three in three dimensions.

G. Examples of Periodic Maxwell Lattices: 5 of RA

1. Square Lattice: RA Sec. 5.1 -Fig. P10

1. Nx columns and Ny rows of straight lines of bonds, each carries a state of self-stress: There are therefore Nx+Ny

zero modes, which correspond to independent uniform displacements of each row and column. This translates
upon Fourier transformation to zero modes along the lines qx = 0 and qy = 0 in the BZ. Since there are Nx

values of qx and Ny values of qy, these modes exhaust the generalized Maxwell relation. Phonon frequencies
rise linearly from the two lines creating a sort of “knife-edge”.

2. There are two q = 0 SSSs and, thus, two stable elastic distortions and one Guest mode. The latter is clearly a
simple shear. The elastic energy density is

fel =
1
2k (ε

2
xx + ε2yy). (3.32)

There are two independent lattice distortions, εxx and εyy, that cost energy and one εxy that does not.

3. The addition of next-nearest-neighbor (NNN) bonds adds more constraints and gaps the phonon spectrum
(except of course at q = 0.

4. Lattices of finite width (or height) can be constructed from ones under periodic boundary conditions on a torus
by cutting bonds. A strip with finite width along y but periodic along x involves cutting Nx vertical bonds
(one per surface unit cell) thereby removing Nx states of self-stress in the y direction. Thus, the number of
bonds and the number of states of self stress are diminished by the same abound and the number of zero modes
remains unchanged. In fact the zero modes of the finite lattice are identical to those of the periodic lattice in
that they correspond to displacements of individual lines of bonds in the y direction; in effect, they are surface
modes with infinite penetration depth in that the influence of distortions of one surface are transmitted all of
the way to the opposite surface. There are no zero modes corresponding to surface Rayleigh waves.
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2. Kagome lattice: RA Sec. 5.2 - Figs. P11, P12

1. There are now sets of straight lines of bonds oriented along the three directions of an equilateral triangle, implying
one state of self stress per line and associated zero modes that occur along the qy axis and two symmetry related
directions of the BZ. Show zero modes.

2. There are now three states of self-stress at q = 0. The result is that the Voigt elastic matrix now has three
stable eigenvalues, and the elastic energy density is that of an isotropic 2D solid with λ = µ =

√
3k/8.

3. Again, the addition of NNN bonds fully gaps the phonon spectrum.

4. As in the square lattice, the zero modes of the cut lattice are identical those of the uncut lattice, and there are
not surface modes.

3. The twisted kagome lattice: RA 5.3 - Figs. P13, P14, P15

The kagome lattice can be distorted so as to keep all bond lengths unchanged by counter rotating corner sharing
triangles through an angle α as shown in the Figure. This process removes all load-bearing straight lines of bonds
and all states of self-stress except the two trivial ones at q = 0.

1. There are no SSSs at q ̸= 0. As a result there are no zero modes at q ̸= 0 in the BZ: The spectrum is fully
gapped!. The simple geometric ”twisting” operation completely changes the spectrum. The gap at the zone
edge is proportional to | sinα|.

2. There are now only the two states of self-stress at q = 0 required by translational invariance, and there is one
Guest mode. The elastic energy is stable with respect to shear but the bulk modulus vanishes. This leads to a
maximally auxetic lattice in which the Poisson ratio is equal to -1! (Show movie of experimental system)

3. Cutting a strip from aa periodic torus now has a new effect. Because there are no (q ̸= 0) SSSs under period
BCs, no states of self stress are removed upon cutting to produce a finite strip. This means that the number
of zero modes at q ̸= 0 must equal the number of bonds cut: two per surface unit cell for strips along periodic
along the x-axis and 4 per unit cell for strips periodic along the y-axis. These modes are Rayleigh surface waves,
not present in the bulk spectrum.

IV. LECTURE III: SURFACE MODES AND TOPOLOGICAL LATTICES

A. Surface Modes in the Twisted kagome Lattice: 5.3 of RA Fig. P15

1. Choice of unit cells: There are many different ways of collecting the three sites and six bonds together to create
a periodically repeated unit cell. In some sense the most obvious choice of cells is a symmetric one such as
those in fig. P18. But to fully treat surface states, it is necessary to choose cells whose boundaries match the
boundaries of the particular free surface as shown in Fig. 19.

2. Gauge choice: in taking Fourier transforms, the position vector of a given site (or bond) can either include the
basis vectors relative to the unit-cell origin or not. Changes of gauge lead to changes in the phase of C(q) and
Q(q).

3. Once a surface-compatible unit cell has been chosen, the compatibility matrix takes the form,

C =


C11 C12 0 . . . 0 0
0 C11 C12 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . C11 CN−1,N

0 0 0 . . . 0 CNN

 , (4.1)

which only connects unit cells in the “forward” direction perpendicularly into the sample, where C11 is that par
of the C that only connects bonds in s single cell to sites in a single cell and C12 connects bonds in one cell to
sites in the next cell deeper in the sample. Both C11 and C12 are nb × nb matrices, and both depend on the
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wavenumber q|| parallel to the surface. Since we expect displacement amplitudes to decay into the bulk, we set
u(q||, n+ 1) = λu(q||, n). Then the eigenvalue equation for λ becomes

C11un +C12un+1 = 0, (4.2)

for n = 1, ...N − 2. These equations are solved by un+1 = λun and

det(C11 + λC12) = 0 (4.3)

subject to the boundary conditions that C11uN−1 +CN−1,NuN = 0 and CNNuN = 0.

4. Fig P19 shows the results of these calculations for various surfaces. Note that there is always one zero mode per
wavenumber on each surface. The Maxwell rule gives the total number of zero modes per wavenumber in a strip
cut from a lattice under periodic BC but not where they are. In the twisted kagome lattice, the surface zero
modes are always equally distributed on the two surfaces. But is it possible to change that? Experience with
quantum systems such as the Su-Schrieffer-Heeger (SSS) model for polyacetlylene and topological insulators
suggest that it is possible to do so. The phonon spectrum of the twisted kagome lattice has a gap that vanishes
as the twist angle goes to zero, much as the electron spectra of topological quantum systems does. As we shall
see, is is possible to create lattice with topological properties that can move zero surface modes from one side
of the lattice to the other.

B. A one-dimensional model: 6.1 of RA P.16

The one-dimensional Su-Schrieffer-Heeger model is the simplest quantum system that has topological surface zero-
energy surface and boundary states. It is depicted in Fig. P16. Rather than review the properties of that system
directly, we will instead look at a one-dimensional classical model that is essentially identical to the (SSS) model. In
this model depicted in Fig. P16, rigid rods of length r are anchored on frictionless pivots a distance a apart on a
rigid beam. The orientation of rods alternate in direction, making angles, θs relative to the normal to the beam. The
ends of the rods are then connected via central force springs. Thus each site s has one degree of freedom θs, and in a
system of finite length, there are N sites and NB = N + 1 bonds. In a free system, there are no states of self stress
and NS = N −NB = 1zero mode. The rods are anchored so that free translation is not a zero mode.
The compatibility matrix is easily calculated: We proceed now to a more detailed analysis of the our model. The

components of the compatibility matrix at rest angle θ̄ are

Cβs(θ̄) = −c1(θ̄)δβ,s + c2(θ̄)δβ+1,s, (4.4)

where it is understood that rotations of “upward” (“downward”) pointing rods are clockwise (clockwise) and

c1(2) =
(a± 2r sin θ̄)r cos θ̄√

a2 + 4r2 cos2 θ̄
. (4.5)

Thus |c1| > |c2| for all 0 < θ̄ < π, and |c1| < |c2| for all −π < θ̄ < 0. The energy of the system (contained entirely in
the stretching of the springs) is then

E = 1
2k

∑
β

(δlβ)
2 = 1

2k
∑
s

(c1δθs − c2δθs+1)
2. (4.6)

The Fourier transform of Cβ,s is

C(q) = −c1 + eiqac2, (4.7)

and bulk phonon modes have frequency

ω(q) = ±|C(q)| = ±
√
(c1 − c2)2 + 4c1c2 sin

2(qa/2), (4.8)

(for unit mass), where −π/a < q ≤ π/a . When θ̄ = 0 (vertical rods), c1 = c2, the energy becomes invariant with
respect of δθs → δθs + δ for every s, and there is necessarily a bulk zero mode at q = 0 - this in spite of the fact that
the bases of the rods are anchored, breaking translational invariance. For other values of θ̄, the phonon spectrum is
fully gapped.
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1. There is a zero surface mode when C(q) = 0, i.e., when λ = eiqa = c1/c2. Thus if |c1| < |c2|, λ < 1 and θn
decays with increasing n. In other words, there is a surface modes localized on the left end. But if |c1| > |c2|,
λ > 1, and there is a surface mode localized on the right surface because λn = λ−|n| < 1 for n < 0. |c1| < |c2|
(|c1| > |c2|) when θ̄ < 0 (θ̄ > 0). Thus the zero mode is a left surface mode when θ̄ < 0 and a right surface
modes when θ̄ > 0. We now have an example of how zero modes can be moved from one side of the system to
the other. Note when θ̄ = 0, λ = 1 and there is a bulk zero mode extending across the sample. This is analogous
to what happens in the untwisted kagome lattice.

2. There is a topological characterization of the two states. This can be seen using what is sometimes called the
Cauchy argument principle provides a relative count of the number of zeros and poles of any meromorphic
function F (z) of a complex number z in the interior of a contour C:

1

2πi

∮
C

F ′(z)

F (z)
dz =

1

2πi

∮
C

d lnF (z)

dz
dz = n− p, (4.9)

where n is the number of zeros and p the number of poles counted with their order (e.g., if F (z) = z−2, p = 2)
in the region bounded by C. If the contour C is the unit circle, the magnitude of z at any zero of F (z) is less
than unity. Thus, the argument principle applied to z = eiqa, which has no poles, will count the number of
zeros with |z| < 1. Thus the number of zeros within the unit contour of C(z)

n =
1

2πi

∮
C

d lnC(z)

dz
=

1

2πi

∫ 2π/a

0

dq
d

dq
Im lnC(q) (4.10)

provides a topological invariant that does not change so long as θ̄ does not change sign. n = 1 (n = 0) for θ̄ < 0
(θ̄ > 0). n is often referred to as a winding number.

3. There is a zero mode localized at a boundary between a n = 0 lattice on the left and a n = 1 on the right as
shown in Fig. P 16. There are formal ways of proving this, but a brute-force procedure gives the general idea:
we have surface zero modes that decay to the right for n = 1 and to the left for n < 1, Each comes with an
independent amplitude, one of which can be chosen arbitrarily because we are dealing with a linearized theory.
Figure P16(f) shows a odmain wall consisting of a site connected by two bonds. The site carries one degree of
freedom, so the amplitudes of the surface modes on either side of the wall along with the displacement of the
site in the wall gives three independent amplitudes to accommodate the constraint that the two bond lengths do
not change. Since the overall amplitude of the zero modes is not fixed, there are in effect only two independent
amplitudes, which is enough go guarantee that neither bond changes its length. Alternatively, we can look at
the effective 2× 3 dimensional compatibility linking the elongations of the two bonds to the displacement of the
central site and the two zero-mode amplitudes. Since this configuration of bonds has no states of self stress,
there is 3− 2 =!1 zero mode localized at the domain wall. Alternatively, the two sites terminating the left and
right sides of the domain wall could be connected by a single bond, and again there is a single zero mode. (HW
- can derive this single condition?)

C. Topological lattices: 6.2 of BA

We have seen that unlike electron systems, the strips of the fully gapped Maxwell lattice we are considering have a
number of edge states equal to the number of bonds that are cut to produce the strip from the lattice under periodic
boundary conditions. We have also seen in a one-dimensional example without acoustic phonons that different
topological states, characterized by different winding numbers of the compatibility matrix, can be constructed and
that the two topological lattices have zero edge modes on different sides of the lattice. The question then is, can we
construct lattices that both obey the Maxwell count of zero edge modes and that have topological characterizations
that upon change can move zero modes from one free surface to another. The answer is of course yes. Fig P17 shows
three lattices constructed from the kagome lattice. The center lattice (b) has one set of straight segments parallel to
the x-axis. These give rise to states of self-stress and associated bulk zero modes along qx = 0 in the Brillouin zone.
This lattice is the analog of the state with θ̄ = 0 in the one-dimensional example. Figure (a) shows the three-fold
symmetric twisted kagome lattice and (c) shows a new lattice that has a different topological characterization from
the twisted kagome lattice. Both lattices (a) and (c) have a fully gapped spectrum, though lattice (c) has phonon
modes with frequency proportional along certain directions to q2 rather than q, and both can be obtained from lattice
(b) by continuous distortion. Thus (a) and (c) are the analogs of the θ = ±θ̄. They have gaps that continuously
approach zero as lattice (b) is approached.
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1. Let νS = N0 − NS be the number of zero modes minus the number of states of self stress in a subsystem,
which could include a free surface or a buried interface. If the bulk modes are gapped, the the zero modes are
necessarily at at free surfaces or buried surfaces. It a particular surface has zero modes, it will not have states
of self stress and vice-versa. νL can be decomposed into a local part and νSL and a topological part νST :

νS = νSL + νST (4.11)

To evaluate these quantities, it is useful to introduce a kind of dipole moment. Associate with each site a charge
2 (charge d in d dimensions) and with each bond a charge −1. Because there are three sites and six bonds
in each unit cell, the total charge of each unit cell is zero. There can, however, be a nonzero dipole moment,
depending both on the shape of the unit cell and on the gauge (recall - assignment of positions to bonds and
sites).

2. Symmetric unit cells (Fig. P18) in the kagome lattice have a dipole moment of zero. The dipole moment is

RL = d
∑

sitesµ

r̃µ −
∑

bonds β

r̃β . (4.12)

Because the dipole moment of the symmetric cell is zero, the moments of surface compatible cells can be
calculated by calculating the change in moment brought about by moving bonds an sites from the symmetric
cell to the surface cell yielding displacements ∆r̃µ and ∆r̃β so that

RL = d
∑

sitesµ

∆r̃µ −
∑

bonds β

∆r̃β . (4.13)

Note, because the shifts ∆r̃µ and ∆r̃β are necessarily multiples of lattice vectorsRL is a lattice vector. Examples
of shifted cells are shown in the figure. The local count per site is

ν̃L ≡ νSL/Ncell = G ·RL/2π, (4.14)

where G is the reciprocal lattice vector associated with the surface cut point away from the surface (Fig. P 19).

3. The topological count is similar to the index for the one-dimensional system. It too can be expressed in terms
of a lattice vector RT , which can be viewed as a topological polarization.

ν̃ST = νS/Ncell = G ·RT /(2π), (4.15)

where Ncell is the number of surface unit cells and RT , a generalization of the one-dimensional winding number,
is a lattice vector

RT =
∑
i

niai, (4.16)

where ai are the primitive translation vectors and

ni =
1

2πi

∮
Ci

dq · Tr[Q(q)−1∇qQ(q)]. =
1

2π

∮
Ci

dq · ∇qϕ(q), (4.17)

where ϕ(q) is the phase of detQ(q) (Q(q) = |Q(q)|iϕ(q)). Here Ci is a cycle of the BZ connecting q and
q + Bi, where Bi is a primitive reciprocal vector satisfying ai · Bj = 2πδij (B1 = −G2 and B2 = G1. The
ni are winding numbers of the phase of detQ(q) around the cycles of the BZ, where Q(q) is the equilibrium
matrix in a Bloch basis.

Examples from Fig. P19

4. The derivation of theses results, which is fairly technical, provided in the supplementary material for the Nature
Phys. article.

5. On domain walls, separating regions with different polarizations, the local count is zero because there are no
broken bonds, and the total count is due only to the polarization charge.

ν̃T = G · (R1
T −R2

T )/2π. (4.18)
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If this is positive, there are zero modes. If it is negative, there are states of self stress. Under periodic
boundary conditions, N0 = NS , and if there is a domain wall with N0 zero modes, there must be one
with NS = N0 states of self-stress. If there is a domain wall connecting two finite strips, the number
of zero modes per cell must still equal the number of bonds that were cut. Thus for example, there could
be one zero mode on the bottom surface, one zero mode at the domain wall, and no zero modes on the top surface.

Fig. P20

6. Alternative domain wall count: There are cases (e.g., when there are Weyl mode (see later)) when it is not
possible to cleanly define a polarization, but it is always possible to determine the number of zero modes for
each free surface at each q. From this information and the number of bonds per cell that have to be cut to break
up the domain wall that joins two topologically distinct lattices, it is always possible to calculate the number
of zero modes at the domain wall. Let n0R and n0L be the number of zero modes per unit cell (or equivalently
per surface wavenumber) of the right and left free surfaces that are joined by nB bonds per cell. There is a
zero mode at the domain wall whenever the zero modes of the free surfaces can be joined without stretching
the added bonds creating the domain wall. There is a kind of compatibility matrix relating the stretches of the
nB bonds to the n0R + n0L amplitudes of the surfaces modes on the two sides. The dimension of the null space
of this matrix is the number of zero modes (per wavenumber) at the domain wall. Since there are no states of
self-stress, the dimension of the range of this matrix is equal to nB implying that the number of zero modes at
the domain wall is

n0D = n0R + n0L − nB. (4.19)

Thus in the example of Fig. 23, n0L = 2, n0R = 1, nB = 2 and n0D = 2 + 1− 2 = 1. On the other hand if the
lattice in fig. 23 (a) were joined with its mirror image, n0R = n0l = 4, nB = 4 and n0D = 8− 4 = 4.

7. Elastic properties of topological Maxwell lattices: Each of fully gapped two-dimensional Maxwell lattice has one
Guest mode. In the twisted kagome lattice, the mode is simply isotropic compression. It is more complicated
in the family of distorted kagome lattices. Those with zero polarization generally have a negative and those
with nonzero polarization have a positive Poisson ratio. See figure and Mathematic animation. The different in
Guest modes lead to different long-wavelength phonon behavior with zero polarization having a linear dispersion
and positive polarization having lines with quadratic dispersion. See Fig. 21 of RA.
Fig. P21

D. Other systems

1. Quasicrystal - RA Fig. 17 - like jammed system

2. Square lattices - Weyl modes

3. Pyrocholore - Weyl lines.

[1] An exception is two-dimensional sheets in three dimensions that require second derivatives to describe bending and twisting
of the sheet.

[2] λij is sometimes called the strain tensor in the engineering literature. As we shall see below, we will define a slightly different
quantity to be the strain tensor.

[3] This is a variation of the Voigt notation in which the off-diagonal components of εij appear doubled in εεεV , i.e., in two-
dimensions, εεεV = (εxx, εyy, 2εxy).


