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Exercise 2.68: Prove that |¢/) # |a)|b) for all single qubit states \a) and |b).

We say that a state of a composite system having this property (that it can’t be written
as a product of states of its component systems) is an entangled state. For reasons which
nobody fully understands, entangled states play a crucial role in quantum computation
and quantum information, and arise repeatedly through the remainder of this book. We
have already seen entanglement play a crucial role in quantum teleportation, as described
in Section 1.3.7. In this chapter we give two examples of the strange effects enabled by
entangled quantum states, superdense coding (Section 2.3), and the violation of Bell’s
inequality (Section 2.6).

2.29 Quantum mechanics: a global view
We have now explained all the fundamental postulates of quantum mechanics. Most of
the rest of the book is taken up with deriving consequences of these postulates. Let’s
quickly review the postulates and try to place them in some kind of global perspective.

Postulate 1 sets the arena for quantum mechanics, by specifying how the state of an
isolated quantum system is to be described. Postulate 2 tells us that the dynamics of
closed quantum systems are described by the Schrodinger equation, and thus by unitary
evolution. Postulate 3 tells us how to extract information from our quantum systems by
giving a prescription for the description of measurement. Postulate 4 tells us how the
state spaces of different quantum systems may be combined to give a description of the
composite system.

What’s odd about quantum mechanics, at least by our classical lights, is that we can’t
directly observe the state vector. It's a little bit like a game of chess where you can
never find out exactly where each piece is, but only know the rank of the board they
are on. Classical physics — and our intuition — tells us that the fundamental properties
of an object, like energy, position, and velocity, are directly accessible to observation. In
quantum mechanics these quantities no longer appear as fundamental, being replaced by
the state vector, which can’t be directly observed. It is as though there is a hidden world
in quantum mechanics, which we can only indirectly and imperfectly access. Moreover,
merely observing a classical system does not necessarily change the state of the system.
Imagine how difficult it would be to play tennis if each time you looked at the ball its
position changed! But according to Postulate 3, observation in quantum mechanics is an
invasive procedure that typically changes the state of the system.

What conclusions should we draw from these strange features of quantum mechanics?
Might it be possible to reformulate quantum mechanics in a mathematically equivalent
way so that it had a structure more like classical physics? In Section 2.6 we'll prove
Bell’s inequality, a surprising result that shows any attempt at such a reformulation is
doomed to failure. We're stuck with the counter-intuitive nature of quantum mechanics.
Of course, the proper reaction to this is glee, not sorrow! It gives us an opportunity
to develop tools of thought that make quantum mechanics intuitive. Moreover, we can
exploit the hidden nature of the state vector to do information processing tasks beyond
what is possible in the classical world. Without this counter-intuitive behavior, quantum
computation and quantum information would be a lot less interesting.

We can also turn this discussion about, and ask ourselves: ‘If quantum mechanics 18
so different from classical physics, then how come the everyday world looks so classical?’
Why do we see no evidence of a hidden state vector in our everyday lives? It turns out
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ghat t.he .classu:al world we see can be derived from quantum mechanics as an approximate
escription of the world that will be valid « i ‘
on the sort of time g o7

et i be valid o ki ¢ , length and mass scales

monly encounter in our everyday lives. Explaining the details of how quantum

mechanics gives rise to classical physics is beyond the scope of this book, but the interested

reader sht{uld check out the discussion of this topic in ‘History and further reading’at

the end of Chapter 8. ' :

2.3 Application: superdense coding

TS’rq.bem’eme coding is a simple yet surprising application of elementary quantum mechan-
ics. It c:(l)mbincs in a concrete, non-trivial way all the basic ideas of e-jcmcntar\’ quantum
%nechamgl‘s, as covered in the previous sections, and 1s thercefore an ideal cxm{lple of the
1nfo‘rmatmn processing tasks that can be accomplished using quantum mechanics

Superdense coding involves two parties, conventionally known as ‘Alice’ zmd. ‘Bob’
_who are a long way away from one another. Their goalv is to transmit some claqs‘ic-li
Tnf_ormal‘ion from Alice to Bob. Suppose Alice is in possession of two classical bi‘;s* (;f
information which she wishes to send Bob, but is only allowed to send a single ub:t t
Bob. Can she achieve her goal? ) e

Sl{pcrdense coding tells us that the answer to this question is yes. Suppose Alice and
Bob initially share a pair of qubits in the entangled state ) ‘

_{00) + [11)
== (2.133)

ﬁ\lle: is initially in possession of the first qubit, while Bob has possession of the second
qubit, as illustrated in Figure 2.3. Note that |10} is a fixed state; there is no neea for Alice
to have sent Bob any qubits in order to prepare this state. Instead, some third party may
prepare the entangled state ahead of time, sending one of the qubits to Alice ‘U;d th~e
other to Bob. ‘ N

| ?t":})
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Fieure 2.1 R =~ ; . .
g ]-,.:. The initial setup for superdense coding, with Alice and Bob each in possession of one half of an
entangled pair of its. Alice can use T i i s l
i g : pair of ,qub,m' Alice can use superdense coding to transmit two classical bits of information to Bob, using
Wy a single qubit of communication and this preshared entanglement. .

By sm.*lding the single qubit in her possession to Bob, it turns out that Alice can
Comm.umcate two bits of classical information to Bob. Here is the procedure she uses. If
s-;he Wl.ShCS to send the bit string ‘00’ to Bob then she does nothing at all to her qubit. If
she wishes to send ‘01” then she applies the phase flip Z to her qubit. If she wishes to
?En‘d ‘107 then she applies the quantum NOT gate, X, to her qubit. If she wishes to send
11" then she applies the 7Y gate to her qubit. The four resulting states are easily seen
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to be:
00 : |¢p) — E(E%“—) (2.134)
01: |) — |0—0>T;_2“—1> (2:133)
10: |¢) — “—0%@ (2.136)
11: j¢) — M (2.137)

V2

As we noted in Section 1.3.6, these four states are known as the Rell basis, Bell states,
or EPR pairs, in honor of several of the pioneers who first appreciated the novelty of
entanglement. Notice that the Bell states form an orthonormal basis, and can therefore
be distinguished by an appropriate quantum measurement. If Alice sends her qubit to
Bob, giving Bob possession of both qubits, then by doing a measurement in the Bell basis
Bob can determine which of the four possible bit strings Alice sent.

Summarizing, Alice, interacting with only a single qubit, is able to transmit two bits
of information to Bob. Of course, two qubits are involved in the protocol, but Alice
never need interact with the second qubit. Classically, the task Alice accomplishes would
have been impossible had she only transmitted a single classical bit, as we will show
in Chapter 12. Furthermore, this remarkable superdense coding protocol has received
partial verification in the laboratory. (See ‘History and further reading’ for references to
the experimental verification.) In later chapters we will see many other examples, some
of them much more spectacular than superdense coding, of quantum mechanics being
harnessed to perform information processing tasks. However, a key point can already be
seen in this beautiful example: information is physical, and surprising physical theories
such as quantum mechanics may predict surprising information processing abilities.

Exercise 2.69: Verify that the Bell basis forms an orthonormal basis for the two qubit

state space.

Exercise 2.70: Suppose £ is any positive operator acting on Alice’s qubit. Show that
(Q|E @ I|W) takes the same value when |} is any of the four Bell states.
Suppose some malevolent third party (‘Eve’) intercepts Alice’s qubit on the way
to Bob in the superdense coding protocol. Can Eve infer anything about which
of the four possible bit strings 00,01, 10, 11 Alice is trying to send? If so, how, or
if not, why not?

2.4 The density operator

We have formulated quantum mechanics using the language of state vectors. An alternate
formulation is possible using a tool known as the density operator or density matrix.
This alternate formulation is mathematically equivalent to the state vector approach,
but it provides a much more convenient language for thinking about some commonly
encountered scenarios in quantum mechanics. The next three sections describe the density

operator formulation of quantum mechanics. Section 2.4.1 introduces the density operator

using the concept of an ensemble of quantum states. Section 2.4.2 develops some general

The density operator 99

properties of the density operator. Finally, Section 2.4.3 describes an application where
the density operator really shines — as a tool for the description of individual subsystems
of a composite quantum system.

2.4.1 Ensembles of quantum states
The density operator language provides a convenient means for describing quantum
systems whose state is not completely known. More precisely, suppose a quantum system
is in one of a number of states i
We shall call {p,, |12} } an ensemble of pure states. The density operator for the system
is defined by the equation

t);), where i 1s an index, with respective probabilities p,.

pP= pili) (Wil (2.138)

The density operator is often known as the density matrix; we will use the two terms
interchangeably. It turns out that all the postulates of quantum mechanics can be re-
formulated in terms of the density operator language. The purpose of this section and
the next is to explain how to perform this reformulation, and explain when it is useful.
Whether one uses the density operator language or the state vector language is a matter of
taste, since both give the same results; however it is sometimes much easier to approach
problems from one point of view rather than the other.

Suppose, for example, that the evolution of a closed quantum system is described by
the unitary operator U . If the system was initially in the state |¢,) with probability p; Eh{:l-l
after the evolution has occurred the system will be in the state Uy} with probability
p,. Thus, the evolution of the density operator is described by the equation

p= Y mlva) (il == Y Ul (iU = UpU™. (2.139)

Measurements are also easily described in the density operator language. Suppose we
perform a measurement described by measurement operators M., . If the initial state was
|1}, then the probability of getting result m is

plmli) = (| M} M|y = te(M], Mo |ti) (i), (2.140)

where we have used Equation (2.61) to obtain the last equality. By the law of total
probability (see Appendix 1 for an explanation of this and other elementary notions of
probability theory) the probability of obtaining result 77 is

pm) = p(mli)p; (2.141)
=3 pite(M, M [3) (i) (2.142)
= tr(M] M, p). (2.143)

What is the density operator of the system after obtaining the measurement result m? If
the initial state was |¢;) then the state after obtaining the result m is

A Im. | wi >
M M |ebs)

[y = (2.144)

{ifr;
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m

Thus, after a measurement which yields the result m we have an ensemble of states |¢]")
with respective probabilities p(ilm). The corresponding density operator p,, is therefore

i ; ] . j"df:m ﬁ"z) (TJ)tlj“irT -
o = 37 pEImIT (] = Y plalm) (2.143)

But by elementary probability theory, p(i|m) = p(m, i)/p(m) = p(mli)p; /p(m). Substi-
tuting from (2.143) and (2.140) we obtain

A:fm |'U’)i> (d)f | A[T
- ; i . MU e 2.1 46)
# Z U'( I‘-Ijn M, P) (

ﬂ’ ITY L nO ﬂ'ir-j?-l

o o SRR, 2.147
tr( MM p) &

What we have shown is that the basic postulates of quantum mechanics related to
unitary evolution and measurement ¢an be rephrased in the language of density operators.
In the next section we complete this rephrasing by giving an intrinsic characterization of
the density operator that does not rely on the idea of a state vector.

Before doing so, however, it is useful to introduce some more language, and one more
fact about the density operator. First, the language. A quantum system whose state |1)
is known exactly is said to be in a pure state. In this case the density operator is simply
p = 1) ()| Otherwise, p ‘s in a mived state; it is said to be a mixture of the different
pure states in the ensemble for p. In the exercises you will be asked to demonstratc a
simple criterion for determining whether a state is pure or mixed: a pure state satisfies
tr(p?) = 1, while a mixed state satisfies tr(p?) < 1. A few words of warning about the
nomenclature: sometimes people use the term ‘mixed state’ as a catch-all to include both
pure and mixed quantum states. The origin for this usage seems o be that it implies that
the writer is not necessarily assuming that a state is pure. Second, the term ‘pure state’
is often used in reference to a state vector |4}, to distinguish it from a density operator
p.

Finally, imagine a quantum system is prepared in the state p; with probability p;. Itis
not difficult to convince vourself that the system may be described by the density matrix
S, pipi- A proof of this is to suppose that p; arises from some ensemble {pij, Vi) }
(note that i is fixed) of pure states, so the probability for being in the state |1;;) 18 PiDij-
The density matrix for the system is thus

p="Y pipil i) (V] (2.148)

=Y pins, (2.149)

where we have used the definition p; = >, iz} (| We say that p is a mixture
of the states p; with probabilities p;. This concept of a mixture comes up repeatedly in
the analysis of problems like quantum noise, where the effect of the noise is to introduce
ignorance into our knowledge of the quantum state. A simple example is provided by the
measurement scenario described above. Imagine that, for some reason, our record of the
result m of the measurement was lost. We would have a quantum system in the state
Pm with probability p(m), but would no longer know the actual value of m. The state of
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such a quantum system would therefore be described by the density operator

p= pm)pn

M, pM]
(M M, p)

=Y MnpM], (2.152)

=" (M} M) (2.151)

a nice compact formula which may be used as the starting point for analysis of further
operations on the system.

2.4.2 General properties of the density operator
The density operator was introduced as a means of describing ensembles of quantum
states. In this section we move away from this description to develop an intrinsic char-
acterization of density operators that does not rely on an ensemble interpretation. This
allows us to complete the program of giving a description of quantum mechanics that
does not take as its foundation the state vector. We also take the opportunity to develop
numerous other elementary properties of the density operator. )

The class of operators that are density operators are characterized by the following
useful theorem:

Theorem 2.5: (Characterization of density operators) An operator p is the density
operator associated to some ensemble {p;, [¢;)} if and only if it satisfies the '
conditions:

(1) (Trace condition) p has trace equal to one.
(2) (Positivity condition) p is a positive operator.

Proof
Suppose p = >, pi|ti) (1| is a density operator. Then

(o) = D puer(lya) (iD= 3 _pi =1, (2.153)

so the trace condition tr(p) = 1 is satisfied. Suppose |@) is an arbitrary vector in state
space. Then

(plple) = > Pl (vile) (2.154)
=2 pillelva)l (2.155)

>0, (2.156)
so the positivity condition is satisfied.
Conversely, suppose p is any operator satisfying the trace and positivity conditions.

Since p is positive, it must have a spectral decomposition

p=2 Ml (2157)

where the vectors |7) : ; i i
here the vectors |j) are orthogonal, and \; are real, non-negative cigenvalues of p.
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From the trace condition we see that 3~ A; = 1. Therefore, a system in state |j) with
probability A; will have density operator p. That is, the ensemble { A, |7)} is an ensemble
of states giving rise to the density operator p. ]

This theorem provides a characterization of density operators that is intrinsic to the
operator itself: we can define a density operator to be a positive operator p which has
trace equal to one. Making this definition allows us to reformulate the postulates of
quantum mechanics in the density operator picture. For ease of reference we state all the
reformulated postulates here:

Postulate 1: Associated to any isolated physical system is a complex vector space
with inner product (that is, a Hilbert space) known as the state space of the
system. The system is completely described by its density operator, which is a
positive operator p with trace one, acting on the state space of the system. If a
quantum system is in the state p; with probability p;, then the density operator tor
the system is Y, p;pi.

Postulate 2: The evolution of a closed quantum system is described by a wnitary
transformation. That is, the state p of the system at time {, is related to the state
o' of the system at time ¢ by a unitary operator 7 which depends only on the

times ¢ and £,

g =UpUt. (2.158)

Postulate 3: Quantum measurements are described by a collection { M, } of
measurement operators. These are operators acting on the state space of the
system being measured. The index m refers to the measurement outcomes that
may occur in the experiment. If the state of the quantum system is p immediately
before the measurement then the probability that result m occurs is given by
p(m) = (M M, p). (2.159)
and the state of the system after the measurement is
M, pM]
P (2.160)
tr( M M, p)

The measurement operators satisfy the completeness equation,

> MIM, =1 (2.161)

m

Postulate 4: The state space of a composite physical system is the tensor product
of the state spaces of the component physical systems. Moreover, if we have
systems numbered 1 through 7, and system number is prepared in the state p;,
then the joint state of the total system is p1 @ p2 @ ... P

These reformulations of the fundamental postulates of quantum mechanics in terms of
the density operator are, of course, mathematically equivalent to the description in terms
of the state vector. Nevertheless, as a way of thinking about quantum mechanics, the
density operator approach really shines for two applications: the description of quantum
systems whose state is not known, and the description of subsystems of a composite
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quantum system, as will be described in the next section. For the remainder of this
section we flesh out the properties of the density matrix in more detail.

Exercise 2.71: (Criterion to decide if a state is mixed or pure) let p bea
density operator. Show that tr(p?) < 1, with equality if and only if p is a pure
state.

It is a tempting (and surprisingly common) fallacy to suppose that the eigenvalues
and eigenvectors of a density matrix have some special significance with regard to the
ensemble of quantum states represented by that density matrix. For example, one might
suppose that a quantum system with density matrix

3 1
p = Z10){0] + 211} (2.162)

must be in the state |0} with probability 3/4 and in the state |1) with probability 1/4.
However, this is not necessarily the case. Suppose we define

3 1

=0+ 2169
3 1

|b) \/;I0> — \/le). (2.164)

and the quantum system is prepared in the state |a) with probability 1/2 and in the state
by with probability 1/2. Then it is easily checked that the corresponding density matrix
15

= Lo S e :
p = la)al + 310)(bl = 10} 0] + 5111 (2.165)

That is, these two differeni ensembles of quantum states give rise to the same density
matrix. In general, the cigenvectors and eigenvalues of a density matrix just indicate one
of many possible ensembles that may give rise to a specific density matrix, and there is
no reason to suppose it is an especially privileged ensemble.

A natural question to ask in the light of this discussion is what class of ensembles does
give rise to a particular density matrix? The solution to this problem, which we now give,
has surprisingly many applications in quantum computation and quantum information,
notably in the understanding of quantum noise and quantum error-correction (Chapters 8
and 10). For the solution it is convenient to make use of vectors 17,) which may not be
normalized to unit length. We say the set [1),) generates the operator p = 3, [4,) (¢4,
and thus the cum}cction to the usual ensemble picture of density operators is expressed
by the equation |4} = \/p;|1;). When do two sets of vectors, \l;u) and |@;) generate the
same operator p? The solution to this problem will enable us to answer the question of
what ensembles give rise to a given density matrix,

Theorem 2.6: (Unitary freedom in the ensemble for density matrices) The sets
[t;) and |@;) generate the same density matrix if and only if

) =D uislds) (2.166)

J

where w;; is a unitary matrix of complex numbers, with indices 7 and j, and we
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G193 o P o =, N n S 5 " ® .
pad’ whichever set of vectors |¢;) or |@;) is smaller with additional vectors 0 so
that the two sets have the same number of elements.
Asa consequence of the theorem, note that p = 37, [y} (Vi| = 37, q5le;) (5] for
normalized states |1;), |¢;) and probability distributions p; and g; if and only if

VBl =D i /G 1es), (2.167)
J

for some unitary matrix u;;, and we may pad the smaller ensemble with entries having
probability zero in order to make the two ensembles the same size. Thus, Theorem 2.6
characterizes the freedom in ensembles {p;. [1;)} giving rise to a given density matrix p.
Indeed, it is easily checked that our carlier example of a density matrix with two different
decompositions, (2.162), arises as a special case of this general result. Let’s turn now to
the proof of the theorem.

Proof
Suppose [;) =37, u.i_j-|§9j) for some unitary w;;. Then

(| = Z“u”m'»"; Y (2.168)

ik

—Z Z”A:”u [P35} (P (2.169)

= Zak1|¢j)(¢k| (2.170)
Jk

=3 el (2.171)
i

which shows that [¢);) and |@;) generate the same operator.
Conversely, suppose

A=D1l = 3 18:)(@5l- 2.172)

Let A= 57, Aplk) (k| be a decomposition for A such that the states | k) are orthonormal,
and the A, are strictly positive. Our strategy is to relate the states [4;) to the states
) VA Ik) and s:mliarl\ relate the states |@;) to the states [£). Combining the two

1) be any vector orthonormal to the space spanned by
the ]A) so (¢ Ik}{Hz, )= (J fot all &, and thus we see that

= (Y|Alp) = Z(w]g; (i) = ZI (V]| (2.173)

It follows that each [¢;) can be expressed as a linear combination of the &), |a;)

S ciklk). Since A =3, |V (k| = 375 D) (] we see that

Thus (4|;) = 0 for all i and all [¥)) orthonormal to the space spanned by the |k).

DORE =SS ey | R (2.174)
k kl i

The operators |k)(I| are easily seen to be linearly independent, and thus it must be that
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S, carcy = Ok This ensures that we may append extra columns to ¢ to obtain a unitary
matrix v such that [¢;) = 3, vig|k), where we have appended zero vectors to the list
of |k). Similarly, we can find a unitary matrix w such that |@;) = >, wsk k). Thus
‘L-Tri_) = Z; ui;|@;), where u = vw' is unitary. O

Exercise 2.72: (Bloch sphere for mixed states) The Bloch sphere picture for pure
states of a single qubit was introduced in Section 1.2. This description has an
important generalization to mixed states as follows.

(1) Show that an arbitrary density matrix for a mixed state qubit may be written
as

I+7-a

2
where 7 is a real three-dimensional vector such that ||#']] < 1. This vector is
known as the Bloch vector for the state p.

(2) What is the Bloch vector representation for the state p = [/2?

(3) Show that a state p is pure if and only if ||7]| = 1.

(4) Show that for pure states the description of the Bloch vector we have given

coincides with that in Section 1.2.

)= (2.175)

Exercise 2.73: Let p be a density operator. A minimal ensemble for p is an ensemble
{ps,|1P:)} containing a number of clements equal to the rank of p. Let [¢)) be
any state in the support of p. (The support of a Hermitian operator A is the
vector space spanned by the eigenvectors of A with non-zero cigenvalues.) Show
that there is a minimal ensemble for p that contains |¢7), and moreover that in
any such ensemble [¢0) must appear with probability

1 -
P = T T (2] f())
(Wil o)
where p~! is defined to be the inverse of p, when p is considered as an operator
acting only on the support of p. (This definition removes the problem that p may
not have an inverse.)

243 The reduced density operator
Perhaps the deepest application of the density operator is as a descriptive tool for sub-
systems of a composite quantum system. Such a description is provided by the reduced
density operator, which is the subject of this section. The reduced density operator 1s S0
useful as to be virtually indispensable in the analysis of composite quantum systems.
Suppose we have physical systems A and B, whose state is described by a density
operator p™*?. The reduced density operator for system A is defined by

o2 = we(pt?), (2.177)
where trp; is a map of operators known as the partial trace over system B. The partial
trace is defined by

trp UG.] ) (Clg ® b[ ) <b2]) = ‘(.L] } ((Lzl t]‘(“‘»‘ﬁ(hz‘)z (2]78)

where |a1) and |a;) are any two vectors in the state space of A, and |b) and [by) are any
two vectors in the state space of B. The trace operation appearing on the right hand side
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s the usual trace operation for system B, so tr(|bi){b2]) = (by|by). We have d‘cﬁne.d th.e
partial trace operation only on a special subclass of operators on AB; the spec1ﬁclat10n L
completed by requiring in addition to Equation (2.178) that the partial trace be linear in
its input.

It is not obvious that the reduced density operator for system A is in any sense a
description for the state of system A. The physical justification for making this identifi-
cation is that the reduced density operator provides the correct measurement statistics for
measurements made on system A, This is explained in more detail in Box 2.6 on page 107.
The following simple example calculations may also help understand the reduced density
operator. First, suppose a quantum systcm is in the product state p?E = p® o, where
p is a density operator for system A, and o is a density operator for system B. Then

pt =up(p® o) = ptr(o) = p, (2.184)

which is the result we intuitively expect. Similarly, pB = o for this state. A less trivial
example is the Bell state (|00) + |11})/+/2. This has density operator

/100y + [11)Y £ (00] + (11] s
( 72 )( 72 ) G120
_[00y{00] + [11){00] + |00} {11] + [11) (11|
_ : :

Tracing out the second qubit, we find the reduced density operator of the first qubit,

p' = trap) (2.187)
~ tra(00)(00]) + tra(|11){00]) + tra[00)(1L) + era(| 1) (1) (2.188)
2
_10)(0]{0J0) + [1}{(0[(O[1) + [0){1[{1]0) + [1)(X[{T]D)
2
_ 00+ 4l I

2
= L : (2.191)
2

Notice that this state is a mixed state, since w((I/2¥) = 1/2 < 1. This is quite a
remarkable result. The state of the joint system of two qubits is a pure state, that is,
it is known exactly; however, the first qubit is in a mixed state, that is, a state about
which we apparently do not have maximal knowledge. This strange property, that the
joint state of a system can be completely known, vet a subsystem be in mixed states, 1S
another hallmark of quantum entanglement.

(2.186)

(2.189)

Exercise 2.74: Suppose a composite of systems A and B is in the state |a)|b), where
a) is a pure state of system A, and |b) is a pure state of system . Show that
the reduced density operator of system A alone is a pure state.

Exercise 2.75: For each of the four Bell states, find the reduced density operator for
each qubit.

Quantum teleportation and the reduced density operator
A useful application of the reduced density operator is to the analysis of quantum telepor-
tation. Recall from Section 1.3.7 that quantum teleportation is a procedure for sending
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Box 2.6: Why the partial trace?

Why is the partial trace used to describe part of a larger quantum system? The
reason for doing this is because the partial trace operation is the unique operation
which gives rise to the correct description of observable quantities for subsystems
of a composite system, in the following sense.

Suppose M is any observable on system A, and we have some measuring device
which is capable of realizing measurements of M. Let M denote the corresponding
observable for the same measurement, performed on the composite system AB.
Our immediate goal is to argue that M is necessarily equal to M @ I5. Note that
if the system AJ is prepared in the state [m)|17), where |m) is an eigenstate of A
with eigenvalue m, and |10} is any state of I3, then the measuring device must yield
the result m for the measurement, with probability one. Thus, if P, is the projector
onto the m eigenspace of the observable M, then the corresponding projector for
M is P, @ I;;. We therefore have

M=y mP,@Ip=M®Ip. (2.179)

m
The next step is to show that the partial trace procedure gives the correct mea-
surement statistics for observations on part of a system. Suppose we perform a
measurement on system A described by the observable M. Physical consistency
requires that any prescription for associating a ‘state’, p”, to system A, must have
the property that measurement averages be the same whether computed via ptor

[):1!3’

(M p™y = te(M p?P) = (M @ Ip)p™P). (2.180)

This equation is certainly satisfied if we choose p = trg(p™?). In fact, the partial
trace turns out to be the unigue function having this property. To see this unique-
ness property, let f(-) be any map of density operators on AB to density operators

on A such that

(M f(p*P)) = (M @ Ip)p™?), (2.181)
for all observables M. Let A4; be an orthonormal basis of operators for the space of
Hermitian operators with respect to the Hilbert-Schmidt inner product (X.Y) =

tr(XY) (compare Exercise 2.39 on page 76). Then expanding f(p"") in this basis
gives

fp*Py =Y Mu(M, f(p"") (2.182)

¢

=Y Mu((M,; @ Ip)p™?). (2.183)

It follows that f is uniquely determined by Equation (2.180). Moreover, the partial

trace satisfies (2.180), so it is the unique function having this property.

quantum information from Alice to Bob, given that Alice and Bob share an EPR pair,
and have a classical communications channel.
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At first sight it appears as though teleportation can be used to do faster than light
communication, a big no-no according to the theory of relativity. We surmised in Sec-
tion 1.3.7 that what prevents faster than light communication is the need for Alice to
communicate her measurement result to Bob. The reduced density operator allows us to

make this rigorous.
Recall that immediately before Alice makes her measurement the quantum state of the

three qubits is (Equation (1.32)):

42 = 3 [100) (al0) + 811)) + 01 alt) + 5/0})
+[10) (f0) — BI1)) + [11) (af1) —,@|0>)}. (2.192)

Measuring in Alice’s computational basis, the state of the system after the measurement
is:

[00) |«[0) + 3|1} with probability - (2.193)

)|
01) [au) +mn>] with probability (2.194)
10} [al0) - 511

]
)} with probability (2.195)
)

I11) [am = 5/0)] with probability . (2.196)

The density operator of the system is thus

p= 3 [100){001al0) + 1) {01 + 8 (1) + [01)(01 al1) + B0}y (1] + 0]

+110) (10](a{0) ~ B11))@" 0] = B (1)) + [11)(11](al1) - Bl0)xa*{1] - 57(0))]
(2.197)

Tracing out Alice’s system, we see that the reduced density operator of Bob’s system is
o7 = 5 [(@l0) + B (0] + 5 (1) + al1) + B0 1]+ (0]

+al0) = B1)a" (0] = F(1) + (al1) ~ BO))a” (1] - 5*(0]  (2.198)

_ 2af® +18AI0)0] + 2(la’ + |8 1)(1]

(2.199)
4

= 1001 + 1)1

3 (2.200)

(2.201)

where we have used the completeness relation in the last line. Thus, the state of Bob’s
system after Alice has performed the measurement but before Bob has learned the mea-
surement result is / /2. This state has no dependence upon the state |1) being teleported,
and thus any measurements performed by Bob will contain no information about WY,
thus preventing Alice from using teleportation to transmit information to Bob faster than
light.

The Schmidt decomposition and purifications

2.5 The Schmidt decomposition and purifications

Density operators and the partial trace are just the beginning of a wide array of tools
useful for the study of composite quantum systems, which are at the heart of quan-
tum computation and quantum information. Two additional tools of great value are the
Schmidt decomposition and purifications. In this section we present both these tools,
and try to give the flavor of their power.

Theorem 2.7: (Schmidt decomposition) Suppose [v) is a pure state of a composite
system, AB. Then there exist orthonormal states lia) for system A, and
orthonormal states |ig) of system B such that

) = ZAi!u)IiB), (2.202)

where \; are non-negative real numbers satisfying 3>°. A? = 1 known as Schmidt
co-efficients.

"This result is very useful. As a taste of its power, consider the following consequence:
let |1/) be a pure state of a composite system, AB. Then by the Schmidt decomposition
P = 3, N ia) (il and pB = > Alli){ig|, so the eigenvalues of p? and p® are
identical, namely A? for both density operators. Many important properties of quantum
systems are completely determined by the eigenvalues of the reduced density operator of
the system, so for a pure state of a composite system such properties will be the same for
both systems. As an example, consider the state of two qubits, (]00) + [01) + [11))/+/3.
This has no obvious symmetry property, yet if you calculate tr ((pA)z) and tr ((pB)z)
you will discover that they have the same value, 7/9 in each case. This is but one small
consequence of the Schmidt decomposition.

Proof

We give the proof for the case where systems A and B have state spaces of the same
dimension, and leave the general case to Exercise 2.76, Let |j) and |k) be any fixed
orthonormal bases for systems A and B, respectively. Then [1)) can be written

) = Zamm&). (2.203)

for some matrix a of complex numbers a k- By the singular value decomposition, @ = udy,

where d is a diagonal matrix with non-negative elements, and u and v are unitary matrices.
Thus

[0) = " wjidiva)|k). (2.204)

ijk

Defining |i4) = 2 uild), lig) = 2ok Viklk), and \; = d;;, we see that this gives
[9) =" Ailia)lin). (2.205)

It is easy to check that lia) forms an orthonormal set, from the unitarity of u and the
orthonormality of [5), and similarly that the lig) form an orthonormal set. O
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Exercise 2.76: Extend the proof of the Schmidt decomposition to the case where A
and B may have state spaces of different dimensionality.

Exercise 2.77:  Suppose ABC'is a three component quantum system. Show by
example that there are quantum states |1)) of such systems which can not be
written in the form

[0y =D Nlia)lis)lic), (2.206)

where A; are real numbers, and [i4), |ig). |ic) are orthonormal bases of the
respective systems.

The bases [i4) and |ip) are called the Schmidt bases for A and B, respectively, and
the number of non-zero values \; is called the Schmidt number for the state ). The
Schmidt number is an important property of a composite quantum system, which in
some sense quantifies the ‘amount’ of entanglement between systems A and 3. To get
some idea of why this is the case, consider the following obvious but important property:
the Schmidt number is preserved under unitary transformations on system A or system
B alone. To see this, notice that if 3. A;[i4)|iz) is the Schmidr decomposition for [40)
then > A(U7]iq))ip) is the Schmidt decomposition for Ulip), where U is a unitary
operator acting on system A alone. Algebraic invariance properties of this type make the
Schmidt number a very useful tool.

Exercise 2.78:  Prove that a state [¢/) of a composite system AR is a product state if
and only if it has Schmidt number 1. Prove that ¢} is a product state if and only
if p (and thus p?) are pure states.

A second, related technique for quantum computation and quantum information is
purification. Suppose we are given a state p of a quantum system A. It is possible to
introduce another system, which we denote R, and define a pure state AR} for the joint
system AR such that p* = tr(|AR)(AR|). That is, the pure state | AR) reduces to p
when we look at system A alone. This is a purely mathematical procedure, known as
purification, which allows us to associate pure states with mixed states. For this reason
we call system R a reference system: it is a fictitious system, without a direct physical
significance.

To prove that purification can be done for any state, we explain how to construct
a system {2 and purification |AR) for p?. Suppose p”' has orthonormal decomposition
pt =Y i) (i, To purify p* we introduce a system {7 which has the same state
space as system A, with orthonormal basis states [i'"), and define a pure state for the
combined system

[AR) =) /pili")|i). (2.207)

1
We now calculate the reduced density operator for system A corresponding to the state

|AR):

wr(ARNARD = 3 oips i) G (1) (7)) (2.208)

=3 /Pl (7 6 (2.209)
i
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= Zpali‘4><iA[ (2.210)

= p#, (2.211)

Thus |AR) is a purification of p*.

Notice the close relationship of the Schmidt decomposition to purification: the proce-
dure used to purify a mixed state of system A is to define a pure state whose Schmidt
basis for system A is just the basis in which the mixed state is diagonal, with the Schmidt
coefficients being the square root of the eigenvalues of the density operator being purified.

In this section we've explained two tools for studying composite quantum systems, the
Schmidt decomposition and purifications. These tools will be indispensable to the study of
quantum computation and quantum information, especially quantum information, which
is the subject of Part I1I of this book.

Exercise 2.79:  Consider a composite system consisting of two qubits. Find the
Schmidt decompositions of the states
00) +[11) |00} + |01} + |10) + [11) |00) + |01) + |10)
< ; and ——————©
V2 2 V3
Exercise 2.80:  Suppose [¢) and |) are two pure states of a composite quantum
system with components A and B, with identical Schmidt coefficients. Show

that there are unitary transformations {7 on system A and V on system 3 such
that |[¢) = (U ® V)|e).

(2.212)

Exercise 2.81: (Freedom in purifications) Let |[AR,) and |AR,) be two
purifications of a state p”* to a composite system ARR. Prove that there exists a
unitary transformation Up acting on system R such that

|AR]> = ([A ® [“f)'Af{g)

Exercise 2.82: Suppose {p;, [);)} is an ensemble of states generating a density matrix
p =3, pilti) (1| for a quantum system A. Introduce a system £ with
orthonormal basis |7).

(1) Show that 3~ \/p:|¢;)|4) is a purification of p.

(2) Suppose we measure R in the basis |7), obtaining outcome i. With what
probability do we obtain the result i, and what is the corresponding state of
system A?

(3) Let [AR) be any purification of p to the system AR. Show that there exists
an orthonormal basis |i} in which R can be measured such that the
corresponding post-measurement state for system A is |1);) with probability
Ps.

2.6  EPR and the Bell inequality

Anybody who is not shocked by quantum theory has not understood it.
— Niels Bohr
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[ recall that during one walk Einstein suddenly stopped, turned to me and asked
whether I really believed that the moon exists only when [ look at it. The rest
of this walk was devoted to a discussion of what a physicist should mean by the
term ‘to exist’.
— Abraham Pais

..quantum phenomena do not occur in a Hilbert space, they occur in a labora-
tory.
— Asher Peres

awhat is proved by impossibility proofs is lack of imagination.
— John Bell

This chapter has focused on introducing the tools and mathematics of quantum mechan-
ics. As these techniques are applied in the following chapters of this book, an important
recurring theme 1s the unusual, non-classical properties of quantum mechanics. But
what exactly is the difference between quantum mechanics and the classical world? Un-
derstanding this difference is vital in learning how to perform information processing
tasks that are difficult or impossible with classical physics. This section concludes the
chapter with a discussion of the Bell inequality, a compelling example of an essential
difference between quantum and classical physics.

When we speak of an object such as a person or a book, we assume that the physical
properties of that object have an existence independent of observation. That is, measure-
ments merely act to reveal such physical properties. For example, a tennis ball has as one
of its physical properties its position, which we typically measure using light scattered
from the surface of the ball. As quantum mechanics was being developed in the 1920s
and 1930s a strange point of view arose that differs markedly from the classical view. As
described carlier in the chapter, according to quantum mechanics, an unobserved particle
does not possess physical properties that exist independent of observation. Rather, such
physical properties arise as a consequence of measurements performed upon the system.
For example, according to quantum mechanics a qubit does not possess definite proper-
ties of ‘spin in the 2 direction, ¢.’, and ‘spin in the x direction, ., each of which can
be revealed by performing the appropriate measurement. Rather, quantum mechanics
gives a set of rules which specify, given the state vector, the probabilities for the possible
measurement outcomes when the observable o. is measured, or when the observable o,
is measured.

Many physicists rejected this new view of Nature. The most prominent objector was
Albert Einstein. In the famous ‘EPR paper’, co-authored with Nathan Rosen and Boris
Podolsky, Einstein proposed a thought experiment which, he believed, demonstrated that
quantum mechanics is not a complete theory of Nature.

The essence of the EPR argument is as follows. EPR were interested in what they
termed ‘elements of reality’. Their belief was that any such element of reality must be
represented in any complete physical theory. The goal of the argument was to show that
quantum mechanics is not a complete physical theory, by identifying elements of reality
that were not included in quantum mechanics. The way they attempted to do this was
by introducing what they claimed was a sufficient condition for a physical property to
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be an element of reality, namely, that it be possible to predict with certainty the value
that property will have, immediately before measurement.

—

Box 2.7: Anti-correlations in the EPR experiment

Suppose we prepare the two qubit state

= 101 — [10)
¥y = ———,
V2
a state sometimes known as the spin singlet for historical reasons, It is not difficult
to show that this state is an entangled state of the two qubit system. Suppose we
perform a measurement of spin along the 7 axis on both qubits, that is, we mecasure
the observable 7' & (defined in Equation (2.1 16) on page 90) on each qubit, getting
a result of +1 or —1 for each qubit. It turns out that no matter what choice of v
we make, the results of the two measurements are always opposite to one another,
That is, if the measurement on the first qubit vields +1, then the measurement on
the sccond qubit will yield —1, and vice versa. It is as though the second qubit
knows the result of the measurement on the first, no matter how the first qubit is
measured. To see why this is true, suppose |a) and |b) are the eigenstates of @ - 7.
Then there exist complex numbers o, 3,4, § such that

(2.213)

0) = ala) + 3]b) (2.214)
[1) = vyla) + 4]b). (2.215)
Substituting we obtain
[01) — |10}
V2

—f}(r).

= (ad — By) |ab) — |ba)

v (2.216)

« oz . . : o 3 .
But avd — 3+ is the determinant of the unitary matrix [ ks } , and thus is equal
v

to a phase factor ¢ for some real . Thus

[01) — [10) _ |ab) — |ba)
= , (2.217)
V2 V2
up to an unobservable global phase factor. As a result, if a measurement of 7 - &

is performed on both qubits, then we can see that a result of +1 (—1) on the first
qubit implies a result of —1 (+1) on the second qubit.

Consider, for example, an entangled pair of qubits belonging to Alice and Bob, re-
spectively:

lon) - J10)
—ju

Suppose Alice and Bob are a long way away from one another. Alice performs a mea-
surement of spin along the ¥ axis, that is, she measures the observable 7 - & (defined in
Equation (2.116) on page 90). Suppose Alice receives the result +1. Then a simple quan-
tum mechanical calculation, given in Box 2.7, shows that she can predict with certainty

(2.218)
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that Bob will measure —1 on his qubit if he also measures spin along the 7 axis. Similarly,
if Alice measured —1, then she can predict with certainty that Bob will measure +1 on
his qubit. Because it is always possible for Alice to predict the value of the measurement
result recorded when Bob’s qubit is measured in the 7 direction, that physical property
must correspond to an element of reality, by the EPR criterion, and should be repre-
sented in any complete physical theory. However, standard quantum mechanics, as we
have presented it, merely tells one how to calculate the probabilities of the respective
measurement outcomes if ¢ & is measured. Standard quantum mechanics certainly does
not include any fundamental element intended to represent the value of @'+ &, for all unit
vectors U,

The goal of EPR was to show that quantum mechanics is incomplete, by demonstrating
that quantum mechanics lacked some essential ‘element of reality’, by their criterion. They
hoped to force a return to a more classical view of the world, one in which systems could
be ascribed properties which existed independently of measurements performed on those
systems. Unfortunately for EPR, most physicists did not accept the above reasoning as
convincing. The attempt to impose on Nature by fiat properties which she must obey
seems a most peculiar way of studying her laws.

Indeed, Nature has had the last laugh on EPR. Nearly thirty years after the EPR paper
was published, an experimental test was proposed that could be used to check whether
or not the picture of the world which EPR were hoping to force a return to is valid or not.
It turns out that Nature experimentally invalidates that point of view, while agreeing
with quantum mechanics.

The key to this experimental invalidation is a result known as Bell’s inequality. Bell’s
inequality is not a result about quantum mechanics, so the first thing we need to do is
momentarily forget all our knowledge of quantum mechanics. To obtain Bell’s incquality,
we’re going to do a thought experiment, which we will analyze using our common sense
notions of how the world works — the sort of notions Finstein and his collaborators thought
Nature ought to obey. After we have done the common sense analysis, we will perform a
quantum mechanical analysis which we can show 7s not consistent with the COMIMON sense
analysis. Nature can then be asked, by means of a real experiment, to decide between
our common sense notions of how the world works, and quantum mechanics.

Imagine we perform the following experiment, illustrated in Figure 2.4. Charlie pre-
pares two particles. It doesn’t matter how he prepares the particles, just that he is capable
of repeating the experimental procedure which he uses. Once he has performed the prepa-
ration, he sends one particle to Alice, and the second particle to Bob.

Once Alice receives her particle, she performs a measurement on it. Imagine that she
has available two different measurement apparatuses, so she could choose to do one of
two different measurements. These measurements are of physical properties which we
shall label P, and Py, respectively. Alice doesn’t know in advance which measurement
she will choose to perform. Rather, when she receives the particle she flips a coin or
uses some other random method to decide which measurement to perform. We suppose
for simplicity that the measurements can each have one of two outcomes, +1 or —1.
Suppose Alice’s particle has a value @ for the property Py. @ is assumed to be an
objective property of Alice’s particle, which is merely revealed by the measurement,
much as we imagine the position of a tennis ball to be revealed by the particles of light
being scattered off it. Similarly, let ? denote the value revealed by a measurement of the
property Pp.
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Similarly, suppose that Bob is capable of measuring one of two properties, Py or Py,
once again revealing an objectively existing value S or T for the property, each taking
\'al}lc +1 or —1. Bob does not decide beforchand which property he will measure but;
waits until he has received the particle and then chooses randomly. The timing 0;“ the
experiment is arranged so that Alice and Bob do their measurcmei-lts at the mfne time
(or, to use the more precise language of relati vity, in a causally disconnected manner).
Therefore, the measurement which Alice performs cannot disturb the result of Bob’s
measurement (or vice versa), since physical influences cannot propagate faster than light.

Figure 2.4. Schematic experimental setup for the Bell mequalities. Alice can choose to measure either Q or 12, and

Bob chooses ro measure cither S or T They perform their measurements simultancously. Alice and Bob are

assumed to be far enough apart that performing a measurement on one system can not have any cffect on the result
of measurements on the other, -

We are going to do some simple algebra with the quantity (}S + RS + RT — QT.
Notice that

@S+ RS+RT - QT = (Q+ R)S + (R — Q)T (2.219)

Because R, Q = 41 it follows that either (Q + R)S = 0 or (R—@Q)T = 0. In cither
Case, 1L1s easy to see from (2.219) that QS + RS + RT — &T = 2. Suppose next that
{u(q\ 7, 5.1) 1s the probability that, before the measurements are performed, the system iy
n a state where () = ¢, R = 78 = s,and T =4, These probabilities may de};cnd on
how Charlie performs his preparation, and on experimental noise, Letting& E(-) denote
the mean value of g quantity, we have

E(QS+ RS + RT — QT) = Zp(q. ry s gs +rs +rt — gt) (2.220)

grst
<D opa. s 1) x 2 (2.221)
qrst

=9 (2.222)

E(QS+ RS+ RT — QT) = Z})(q, 7.8, t)gs + Zp(q, T, 5, )rs

qrst qist
+ Zp(q. T, 8, thrt — Zp(q. TS, gt (2.223)
grst qrst

=E(QS)+ E(RS)+ E(RT) - EQT).  (2.224)

Comparing (2.222) and (2.224) we obtain the Bell inequality,

E(QS)+ E(RS) + E(RT) — E(QT) < 2. (2.225)
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This result is also often known as the CHSH inequality after the initials of its four
discoverers. It is part of a larger set of inequalities known generically as Bell inequalities,
since the first was found by John Bell.

By repeating the experiment many times, Alice and Bob can determine each quantity on
the left hand side of the Bell inequality. For example, after finishing a set of experiments,
Alice and Bob get together to analyze their data. They look at all the experiments where
Alice measured Py and Bob measured Ps. By multiplying the results of their experiments
together, they get a sample of values for )S. By averaging over this sample, they can
estimate E(Q)S) to an accuracy only limited by the number of experiments which they
perform. Similarly, they can estimate all the other quantities on the left hand side of the
Bell inequality, and thus check to see whether it is obeyed in a real experiment,

It’s time to put some quantum mechanics back in the picture. Imagine we perform the
following quantum mechanical experiment. Charlie prepares a quantum system of two
qubits in the state

_ o1} —10)
=S,

He passes the first qubit to Alice, and the second qubit to Bob. They perform measure-
ments of the following observables:

) (2.226)

. ¢
= _72_
Z; — X,
5
Simple calculations show that the average values for these observables, written in the
quantum mechanical (-) notation, are:

055 s (2.227)

X T= (2.228)

=L on-=- (2.229)

(QS) = —; (RS) = 5

e (RT)

1
ﬁ.

1
ﬁa

Thus,
(QS) + (RS) + (RT) — (QT) = 2v/2. (2.230)

Hold on! We learned back in (2.225) that the average value of Q.S plus the average value
of XS plus the average value of RT minus the average value of Q1" can never exceed
two. Yet here, quantum mechanics predicts that this sum of averages yields 24/2!

Fortunately, we can ask Nature to resolve the apparent paradox for us. Clever experi-
ments using photons — particles of light — have been done to check the prediction (2.230)
of quantum mechanics versus the Bell inequality (2.225) which we were led to by our
common sense reasoning. The details of the experiments are outside the scope of the
book, but the results were resoundingly in favor of the quantum mechanical prediction.
The Bell inequality (2.225) is not obeved by Nature.

What does this mean? It means that one or more of the assumptions that went into
the derivation of the Bell inequality must be incorrect. Vast tomes have been written
analyzing the various forms in which this type of argument can be made, and analyzing
the subtly different assumptions which must be made to reach Bell-like inequalities. Here
we merely summarize the main points.

There are two assumptions made in the proof of (2.225) which are questionable:
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(1) The assumption that the physical properties Py, Pr, Ps, Pr have definite values
Q. R, S, T which exist independent of observation. This is sometimes known as the
assumption of realism.

(2) The assumption that Alice performing her measurement does not influence the
result of Bob’s measurement. This is sometimes known as the assumption of
locality.

These two assumptions together are known as the assumptions of local realism. They are
certainly intuitively plausible assumptions about how the world works, and they fit our
everyday experience. Yet the Bell inequalities show that at least one of these assumptions
1s not correct,

What can we learn from Bell’s inequality? For physicists, the most important lesson
is that their deeply held commonsense intuitions about how the world works are wrong.
The world is not locally realistic. Most physicists take the point of view that it is the
assumption of realism which needs to be dropped from our worldview in quantum me-
chanics, although others have argued that the assumption of locality should be dropped
instead. Regardless, Bell’s inequality together with substantial experimental evidence now
points to the conclusion that either or both of locality and realism must be dropped from
our view of the world if we are to develop a good intuitive understanding of quantum
mechanics.

What lessons can the fields of quantum computation and quantum information learn
from Bell’s inequality? Historically the most useful lesson has perhaps also been the most
vague: there is something profoundly ‘up’ with entangled states like the EPR state. A lot
of mileage in quantum computation and, especially, quantum information, has come from
asking the simple question: ‘what would some entanglement buy me in this problem?’
As we saw in teleportation and superdense coding, and as we will see repeatedly later
in the book, by throwing some entanglement into a problem we open up a new world
of possibilities unimaginable with classical information. T he bigger picture is that Bell’s
inequality teaches us that entanglement is a fundamentally new resource in the world that
goes essentially beyond classical resources; iron to the classical world’s bronze age. A major
task of quantum computation and quantum information is to exploit this new resource to
do information processing tasks impossible or much more difficult with classical resources.

Problem 2.1: (Functions of the Pauli matrices) Let f(-) be any function from
complex numbers to complex numbers. Let 7 be a normalized vector in three
dimensions, and let  be real. Show that

(07 5= 19 +2f(_9)1 + 1O _zf(* )i 5. (2.231)

Problem 2.2: (Properties of the Schmidt number) Suppose [¢) is a pure state of
a composite system with components A and B.

(1) Prove that the Schmidt number of [¥)) is equal to the rank of the reduced
density matrix p4 = trp(|v) (¥]). (Note that the rank of a Hermitian
operator is equal to the dimension of its support.)

(2) Suppose [¢) = >, la;)18;) is a representation for |1}, where |e;) and |3,)
are (un-normalized) states for systems A and B, respectively. Prove that the
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number of terms in such a decomposition is greater than or equal to the
Schmidt number of |10}, Sch(i)).
(3) Suppose [} = alp) + B|7). Prove that

Sch(y)) > |Sch(p) — Sch(¥)| . (2.232)

Problem 2.3: (Tsirelson’s inequality) Suppose
Q=g-¢,R=7a,8=§:8T=t-3, where ¢, 7, § and f are real unit vectors
in three dimensions. Show that

Q®S+R@S+ReT - QaTY =4+[Q RI®[ST]. (2233

Use this result to prove that

Q®8)+{ReS)+(RaT)— (Q®T) <2V2, (2.234)

so the violation of the Bell inequality found in Equation (2.230) is the maximum

possible in quantum mechanics.

History and further reading

There are an enormous number of books on linear algebra at levels ranging from IHigh
School through to Graduate School. Perhaps our favorites are the two volume sct by
Horn and Johnson(HI85. 19 “which cover an extensive range of topics in an accessible
manner. Other useful references include Marcus and MindMM92] and BhatialBh97), Good
introductions to linear algebra include HalmoslTa158], Perlis!Per52] and Strang!St70l.

There are many excellent books on guantum mechanics. Unfortunately, most of
these books focus on topics of tangential interest to quantum information and computa-
tion. Perhaps the most relevant in the existing literature is Peres’ superb book!Per?3],
Beside an extremely clear exposition of elementary quantum mechanics, Peres gives
an extensive discussion of the Bell inequalities and related results. Good introductory
level texts include Sakurai’s book!S3k951 Volume 11T of the superb series by Feynman,
Leighton, and Sands!!'-56%, and the two volume work by Cohen-Tannoudji, Diu and
IaloglCTDLT7a, CTDLT7b] - Al three of these works are somewhat closer in spirit to quan-
tum computation and guantum information than are most other quantum mechanics
texts, although the great bulk of each is still taken up by applications far removed from
quantum computation and quantum information. As a result, none of these texts need
be read in detail by someone interested in learning about quantum computation and
quantum information. However, any one of these texts may prove handy as a reference,
especially when reading articles by physicists. References for the history of quantum
mechanics may be found at the end of Chapter 1.

Many texts on quantum mechanics deal only with projective measurements. For ap-
plications to quantum computing and quantum information it is more convenient — and,
we believe, easier for novices — to start with the general description of measurements,
of which projective measurements can be regarded as a special case. Of course, ulti-
mately, as we have shown, the two approaches are equivalent. The theory of generalized
measurements which we have employed was developed between the 1940s and 1970s.
Much of the history can be distilled from the book of Kraus(®a%3l. Interesting discus-
sion of quantum measurements may be found in Section 2.2 of Gardiner(G211 and in
the book by Braginsky and KhahililB&2l, The POVM measurement for distinguishing
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non-orthogonal states described in Section 2.2.6 is due to Peres!Pr38]. The extension
described in Exercise 2.64 appeared in Duan and GuolPG%],

Superdense coding was invented by Bennett and WiesnerBW92l, An experiment im-
plementing a variant of superdense coding using entangled photon pairs was performed
by Mattle, Weinfurter, Kwiat, and ZeilingerMWKZ96]

The density operator formalism was introduced independently by Landaul'#"?7] and
by von Neumann!¥°127]_ The unitary freedom in the ensemble for dervlsit\; matrices, The-
orem 2.6, was first pointed out by Schrodinger!Sh30l and was later I:Cdiscovered and
extended by Jaynesl#37l and by Hughston, Jozsa and WootterstHIW931 The result of Ex-
ercise 2.73 is from the paper by Jaynes, and the results of Exercises 2.81 and 2.82 appear
in the paper by Hughston, Jozsa and Wootters. The class of probability distributions
which may appear in a density matrix decomposition for a given density matrix has been
studied by UhlmanntUh70] and by Nielsen!™Ne9%] Schmidt’s eponymous decomposition
appeared inlS¢h061 The result of Exercise 2.77 was noted by Peres/Per?>].

The EPR thought experiment is due to Einstein, Podolsky and Rosen!PPR331 - and
was recast in essentially the form we have given here by Bohml!Boh31l Tt is sometimes
misleadingly referred to as the EPR ‘paradox’. The Bell inequality is named in honour
of BelllBeo4] who first derived inequalitics of this type. The form we have presented is
due to Clauser, Horne, Shimony, and Holt!CHSH] " and is often known as the CHSH
inequality. This inequality was derived independently by Bell, who did not publish the
result.

Part 3 of Problem 2.2 is due to Thaplival (private communication). Tsirelson’s in-
equality is due to Tsirelsonl T51801,




