
UNC 2005, R. Cortez 1

Numerical methods based on regularized δ-distributions

1 Blobs in one dimension

Let φ(x) : R → R be a smooth even function satisfying
∫∞
−∞ φ(x)dx = 1. Examples of

these functions are

φ(x) =
1√
π
e−x

2

and φ(x) =
1

2(x2 + 1)3/2 .

A blob φδ in one dimension is defined as a scaled version of one of these functions,

φδ(x) =
1

δ
φ(x/δ)

where the scaling parameter δ is small. Notice that for any value δ > 0, the blob satisfies∫ ∞
−∞

φδ(x)dx =

∫ ∞
−∞

1

δ
φ(x/δ)dx =

∫ ∞
−∞

φ(z)dz = 1 (let z = x/δ)

while at the same time φδ(0) = φ(0)/δ. This indicates that for small values of δ, the
value of φδ(0) is large but the blob is very narrow, and for large values of δ, the blob is
smaller but wider (see Figure 1).

Figure 1: Sample blob for two different values of δ.
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Consider a smooth function f(x) and the convolution function

(f ? φδ)(x) =

∫ ∞
−∞

f(y)φδ(x− y) dy.

One can imagine that if δ is very small, the blob is concentrated near y = x, and so
the integral will have contributions mostly from values of y near x, and therefore the
convolution should not be too different from f(x).

More precisely, let f(x) have n continuous derivatives. Since

(f ? φδ)(x) =

∫ ∞
−∞

f(y)φδ(x− y) dy

we can let δz = x− y and and use the fact that φδ(x− y) = 1
δφ(z) we have that

(f ? φδ)(x) = δ

∫ ∞
−∞

f(x− δz)φδ(δz) dz =

∫ ∞
−∞

f(x− δz)φ(z) dz.

Now, Taylor’s theorem with remainder gives

f(x− δz) = f(x) +
n−1∑
k=1

1

k!
(−δ)kzkf (k)(x) +

1

n!
(−δ)nznf (n)(ξ).

Then the convolution is

(f ? φδ)(x) = f(x)

∫ ∞
−∞

φ(z) dz +
n−1∑
k=1

1

k!
(−δ)kf (k)(x)

∫ ∞
−∞

zkφ(z) dz

+
1

n!
(−δ)n

∫ ∞
−∞

f (n)(ξ)znφ(z) dz

Let Mk(φ) =
∫∞
−∞ z

kφ(z) dz (known as the k-th moment of the function φ), then

(f ? φδ)(x) = f(x)M0(φ) +
n−1∑
k=1

1

k!
(−δ)kf (k)(x)Mk(φ) +O(δn)

or

(f ?φδ)(x) = f(x)M0(φ)−δf ′(x)M1(φ)+
1

2!
δ2f

′′
(x)M2(φ)− 1

3!
δ3f

′′′
(x)M3(φ)+· · ·+O(δn).

This formula tells us how to make the difference between (f ? φδ)(x) and f(x) small.

• If we make a blob φ such that M0(φ) = 1, then (f ? φδ)− f = O(δ).
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• If we make a blob φ such that M0(φ) = 1 and M1(φ) = 0, then (f ? φδ)− f = O(δ2).

• If we make a blob φ such that M0(φ) = 1 and Mk(φ) = 0 for k = 1, ..., p − 1, then
(f ? φδ)− f = O(δp).

1.1 Numerical approximation of convolutions

Assume that f(x) is zero outside the interval [a, b]. In a numerical method, whenever we
use the convolution (f ? φδ)(x) to approximate f(x), we must approximate the integral

(f ? φδ)(x) =

∫ b

a

f(y)φδ(x− y) dy.

To do this, let’s suppose we know the values of the function f at N points on the interval
[a, b]. So we have the data (yk, fk) for k = 1, 2, · · · , N and we require that y1 = a and
yN = b. In this case, the spacing between points does not have to be uniform.

Now the integral can be approximated with the trapezoid rule

(f ? φδ)(x) ≈ (y2 − y1)

2
f1φδ(x− y1) +

(yN − yN−1)

2
fNφδ(x− yN)

+
N−1∑
k=2

(yk+1 − yk−1)

2
fkφδ(x− yk)

=
N∑
k=1

hkfkφδ(x− yk) (1)

where, as before, h1 = (y2− y1)/2, hN = (yN − yN−1)/2, and hk = (yk+1− yk−1)/2 for all
others.

Example 1.1 Consider the two blobs:

φ1(x) =
1√
π
e−x

2

, φ2(x) =
1

2
√
π

(3− 2x2) e−x
2

,

which satisfy M0 = 1 and M1 = 0 but M2(φ1) = 1/2 and M2(φ2) = 0, M4(φ2) = −3/4.
Suppose we want to use these to approximate the function f(x) = [1 + cos(2πx)]2 for
−1/2 ≤ x ≤ 1/2 and we use δ = 0.01. The results are

‖(f ? φδ1)− f‖∞ = 3.943× 10−3 and ‖(f ? φδ2)− f‖∞ = 4.860× 10−6

which shows how much better the results are with the blob derived from φ2.
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Based on our results, the error in φ1 is estimated by max|f ′′(x)M2(φ1)/2| ≈ 80(1/2)δ2 =
4 × 10−3. For φ2, the error is estimated by max|f (4)(x)M4(φ2)/24| ≈ 650(3/4)δ4 =
4.875 × 10−6. We can see that the errors in our numerical solution are consistent with
the estimates.

Example 1.2 Suppose N = 21, [a, b] = [−1, 1] and h = (b− a)/(N − 1) = 0.1, and that
the data (yk, fk) are given in the table below.

yk fk yk fk
-1.0000 0.0000 0.0000 0.7071
-0.9000 0.0785 0.1000 0.7604
-0.8000 0.1564 0.2000 0.8090
-0.7000 0.2334 0.3000 0.8526
-0.6000 0.3090 0.4000 0.8910
-0.5000 0.3827 0.5000 0.9239
-0.4000 0.4540 0.6000 0.9511
-0.3000 0.5225 0.7000 0.9724
-0.2000 0.5878 0.8000 0.9877
-0.1000 0.6494 0.9000 0.9969

1.0000 1.0000

Then the function f(x) that the data represent is approx-
imated by the function g(x) =

∑N
k=1 hkfkφδ(x− yk), with

the spacing hk given as in the previous discussion. Any
choice of blob φδ will give a slightly different approxima-
tion, however, the errors should be comparable when using
blobs that satisfy the same moment conditions. Once we
choose a blob, we must choose the value of the parameter
δ. This must be of similar size as the particle spacing hk
(or the maximum spacing).

In this example, since hk = h = 0.1 for all k, we might decide to set δ = Ch and use the
two blobs of the previous example. Figures 2-3 show the results.

Figure 2: Blob approximation of the data in example 1.2 with φ1.

The solid curve is the approximation given by the blob; the dots represent the given data.
Notice that the approximation is very good away from the endpoints of the interval.
Near the endpoints there is a larger error. Note that the data represent a function that
is discontinuous at the right end of the interval (at x = b); this is because we assume
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Figure 3: Blob approximation of the data in example 1.2 with φ2.

that the function is zero outside the interval. But the blob approximation will always be
continuous because it is a sum of smooth, continuous functions. So, it is not surprising
that there is some difficulty approximating a discontinuous function. At the left endpoint
(x = a), the function is continuous but the derivative is discontinuous (the function has
a corner). This also causes the error to be somewhat larger there.

A natural question is then, how can δ be chosen relative to the particle spacing, so that
the errors are as small as possible?

To attempt to answer this question, let’s make a set of experiments. The function that
we will try to approximate is f(x) = cos(π(x− 1)/4) for 0 ≤ x ≤ 2 and f(x) = 0 outside
this interval. This is the same function of the previous example, which has a discontinuity
at x = 1 and a corner at x = −1.

The results are shown in Figure 4-5.

The final experiment is one in which we set δ = Ch as we use more and more data
points. This way, both h and δ are reduced together. The plots in Figure 6 show that
the approximation gets better since h is decreasing and that the discontinuity is also
better approximated because δ is also decreasing leading to less smearing.

Since the convolution approximates the function f withO(δ) (because f is discontinuous),
then the trapezoid rule in Eq. (1) converges to the function f as h, δ → 0 together. For
a smoother function f , the convergence would be faster.

MATLAB example
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Figure 4: Blob approximations for various values of h and δ = 0.2.
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Figure 5: Blob approximations for h = 0.2 and various values of δ.
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Figure 6: Blob approximations for various values of h and δ.
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1.2 Blobs and regularized Green’s functions in 1D

In 1D, Laplace’s equation is simply G′′δ(x) = φδ(x). Suppose we choose the blob

φδ(x) =
δ2

2(x2 + δ2)3/2 (2)

then the general solution of G′′δ(x) = φδ(x) is

Gδ(x) =
1

2

√
x2 + δ2 +

1

2
x+ Ax+B.

For a function that is symmetric about the the y-axis, we choose B = 0 (arbitrary) and
A = −1/2. This gives

Gδ(x) =
1

2

√
x2 + δ2. (3)

Note that in the limit as δ vanishes we get the well-known result

lim
δ→0

Gδ(x) =
1

2
|x|.

In fact, the regularized Green’s function in Eq. (3) satisfies for δ/|x| � 1

Gδ(x) =
1

2
|x|+O(δ2/x2).

A second choice of blob

φδ(x) =
3δ4

4(x2 + δ2)5/2 (4)

yields the regularized Green’s function

Gδ(x) =
1

2

√
x2 + δ2 − δ2

4
√
x2 + δ2

. (5)

Note that this regularized Green’s function also has the same limit as δ → 0. However,
the function shown in Eq. (5) satisfies for δ/|x| � 1

Gδ(x) =
1

2
|x|+O(δ4/x4).

The difference is easily seen in Figure 7. The dashed curve deviates from |x|/2 by a much
smaller amount than the dash-dot curve. Notice that the second blob has a faster decay
rate at infinity.
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Figure 7: Green’s functions in Eq. (3) and Eq. (5) for δ = 1.
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It is also possible to derive Green’s functions from blobs with compact support and even
discontinuous blobs. As an example, consider the step blob

φδ(x) =

{
1
2δ , |x| < δ

0, |x| ≥ δ.
(6)

Since we are required to solve G′′δ(x) = φδ(x), after integrating once, we find

G′δ(x) =


(A− 1/2), x < −δ
x
2δ + A, |x| ≤ δ

(A+ 1/2), x > δ

and after integrating once more, we have

Gδ(x) =


(A− 1/2)x+ (B − δ/4), x < −δ
x2

4δ + Ax+B, |x| ≤ δ

(A+ 1/2)x+ (B − δ/4), x > δ.

In order to match the Green’s function |x|/2 for |x| > δ, we can choose A = 0 and
B = δ/4, so that

Gδ(x) =

 |x|/2, |x| ≥ δ

δ
4

(
x2

δ2 + 1
)
, |x| < δ

which is a C1(R) function. We emphasize that this regularized Green’s function differs
from |x|/2 only in the support of the blob.

2 Blobs in two dimensions

In two dimensions we require that a blob φ(x, y) have total integral
∫
R

2 φ = 1. One
possibility is to define radially symmetric blobs φ(r) so that 2π

∫∞
0 rφ(r)dr = 1. Examples

of these functions are

φ(r) =
1

π
e−r

2

and φ(r) =
3

2π(r2 + 1)5/2 .

In two dimensions a blob φδ is scaled by area:

φδ(x) =
1

δ2φ(x/δ)

where the scaling parameter δ is small.



UNC 2005, R. Cortez 12

Figure 8: Sample blob in two dimensions.

In this case, the convolution of a function f(~x) with a blob is

(f ? φδ)(~x) =

∫ ∞
−∞

∫ ∞
−∞

f(~y)φδ(~x− ~y)d~y

The moments for radially symmetric blobs are

Mk(φ) = C(k)

∫ ∞
0

rk+1 φ(r) dr

and if we design a blob with M0 = 1 and Mk = 0 for k = 1, . . . , p− 1 then (f ? φδ)− f =
O(δp).

NOTE: The odd moments are automatically zero due to symmetry.

The numerical approximation of this double integral is done in a similar way as in the
one-dimensional case. Suppose first that the function f : R2 → R is zero outside some
bounded set Ω ∈ R2. We then subdivide the set Ω into small areas Ak for k = 1, 2, · · · , N
(for example, Ak = h2 if we use a grid) and we let ~yk denote the center of area Ak. Then
we can write

(f ? φδ)(~x) ≈
N∑
k=1

f(~yk)φδ(~x− ~yk)Ak
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2.1 Regularized Green’s functions in two dimensions

In general, given the blob φδ(r), we must solve ∆Gδ = φδ. In polar coordinates we write

∆Gδ =
∂2Gδ

∂r2 +
1

r

∂Gδ

∂r
+

1

r2

∂2Gδ

∂θ2 .

We assume that the diffusion of any quantity is symmetric with respect to r, that is, Gδ

does not depend on θ. Then we only need to solve the ODE

G′′δ(r) +
1

r
G′δ(r) =

1

r
[rG′δ(r)]

′
= φδ(r)

For example, suppose the blob is given by

φδ(r) =
δ2

π(r2 + δ2)2 (7)

and we integrate the above equation once to get

rG′δ(r) =
r2

2π(r2 + δ2)

and integrating once more, we get

Gδ(r) = Gδ(0) +
1

2π
ln(
√
r2 + δ2)− 1

2π
ln(δ).

The constant Gδ(0) is arbitrary. Here we choose it to eliminate the last term so that

Gδ(r) =
1

2π
ln(
√
r2 + δ2). (8)

Notice that

lim
δ→0

Gδ(r) =
1

2π
ln(r)

which is the well-known Green’s function for the Laplacian in two dimensions. The
function Gδ is called a regularized Green’s function, and it depends on the blob used to
derive it. For example, we might use instead of Eq. (7) the blob

φδ(r) =
δ

2π(r2 + δ2)3/2 (9)

and this leads to another regularized Green’s function

Gδ(r) =
1

2π
ln(
√
r2 + δ2 + δ). (10)
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Although the specific form of the regularized Green’s function depends on the choice of
blob, they all share the properties that

lim
δ→0

Gδ(r) =
1

2π
ln(r) and

lim
r→∞
|Gδ(r)−

1

2π
ln(r)| = 0 for fixed δ.

One can check that the regularized Green’s function in Eq. (8) satisfiesGδ(r) = 1/2π ln(r)+
O(δ2/r2) for δ/r � 1 while the function in Eq. (10) satisfies Gδ(r) = 1/2π ln(r) +O(δ/r)
for δ/r � 1. This shows that different blobs of the same order can yield regularized
Green’s functions that approximate 1

2π ln(r) to different orders of accuracy in δ for large
values of r. This property seems to come from the decay rate of the blob as r →∞.

Figure 9: Singular and regularized Green’s functions.
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2.2 Application to vortex methods in 2D

In 2D incompressible flow, the fluid velocity (u, v) and the vorticity are related by∇·u = 0
and ∇× u =vorticity.

Let a function ψ(x, y, t) be such that

u = ψy and v = −ψx.
With this assumption, we can then determine the relationship between vorticity and ψ.
We have that

ω = vx − uy = −ψxx − ψyy = −∆ψ.

So, given the vorticity, we can solve for ψ and then obtain the velocity created by the
vorticity by differentiating ψ. The vorticity is advected by the fluid flow.

Example 2.1 Consider the vorticity given by a single point vortex at x0:

ω(x) = ω0δ(x− x0).

Then
∆ψ = −ω0δ(x− x0), ⇒ ψ = −ω0G(x− x0) = − ω

2π
ln(r)

and the flow is u = −ωGy = −ω y−y0

2πr2 , v = ωGx = ωx−x0

2πr2 .

The singularity can be removed if we assume the vorticity is given by a blob

ω(x) = ω0φδ(x− x0).

Then
∆ψ = −ω0φδ(x− x0), ⇒ ψ = −ω0Gδ(x− x0)

and the flow is u = −ω∂Gδ/∂y = −ωG′δ(r)
y−y0

r , v = ω∂Gδ/∂x = ωG′δ(r)
x−x0

r .

As an example, the blob

φδ(r) =
δ2

π(r2 + δ2)2

yields a regularized Green’s function

Gδ(r) =
1

2π
ln(
√
r2 + δ2)

and therefore the particles move by

X ′(T ) = −ω Y

X2 + Y 2 + δ2 , X(0) = xo

Y ′(T ) = ω
X

X2 + Y 2 + δ2 , Y (0) = yo.
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Figure 10: Vortex flow.

3 Blobs in three dimensions

In three dimensions we require that a blob φ(x, y, z) have total integral
∫
R

3 φ = 1. One
possibility is to define radially symmetric blobs φ(r) so that 4π

∫∞
0 r2φ(r)dr = 1. Exam-

ples of these functions are

φ(r) =
15

8π(r2 + 1)7/2 . and φ(r) =
3

4π(r2 + 1)5/2 .

In three dimensions a blob φδ is scaled by volume:

φδ(x) =
1

δ3φ(x/δ)

where the scaling parameter δ is small.

The moments for radially symmetric blobs are

Mk(φ) = C(k)

∫ ∞
0

rk+2 φ(r) dr

and if we design a blob with M0 = 1 and Mk = 0 for k = 1, . . . , p− 1 then (f ? φδ)− f =
O(δp).

NOTE: Several moments are automatically zero due to symmetry.
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3.1 Regularized Green’s functions in three dimensions

In three dimensions, the Laplacian operator in spherical coordinates is

∆f(r, θ, ϕ) = frr +
2

r
fr +

1

r2 sin θ
(sin θfθ)θ +

1

r2 sin2 θ
fϕϕ.

But one can argue that since φδ(r) is independent of θ and ϕ and since ∆Gδ = φδ, then
the Green’s function must also be independent of θ and ϕ. So we consider the equation

G′′δ(r) +
2

r
G′δ(r) =

1

r2 [r2G′δ(r)]
′ = φδ(r).

We can proceed in the same way we did in two dimensions. For the blob

φδ(r) =
3

4π(r2 + δ2)5/2 (11)

we find that

r2G′δ(r) =

∫ r

0
s2φδ(s)ds =

r3

4π(r2 + δ2)3/2

so that

Gδ(r) = Gδ(0) +
1

4πδ
− 1

4π
√
r2 + δ2

.

If we choose Gδ(0) = −1/4πδ to eliminate the constant term, we have that

Gδ(r) =
−1

4π
√
r2 + δ2

. (12)

Note that

lim
δ→0

Gδ(r) =
−1

4πr
which is the familiar Green’s function for the Laplacian in three dimensions. In this case,
one can see that

Gδ(r) =
−1

4πr
+O(δ2/r2) for δ/r � 1

3.2 Application to Stokes flows in 3D

The Stokes equations for incompressible flow without boundaries are

µ∆u−∇p = −F, ∇ · u = 0

Suppose the external force is given by F(x) = f0φδ(x− x0).
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Define once and for all the functions Gδ and Bδ by

∆Gδ = φδ, ∆Bδ = Gδ

Take divergence of the first equation and get

∆p = f0 · ∇φδ ⇒ p = f0 · ∇Gδ

Now,
µ∆u = (f0 · ∇)∇Gδ − f0φδ

Yielding
µu = (f0 · ∇)∇Bδ − f0Gδ

This is called a Regularized Stokeslet. In general, the strategy to compute Stokes flows
is:

• choose a blob φδ and find Gδ and Bδ

• given forces fk located at xk, compute

µu(x) =
∑
k

(fk · ∇)∇Bδ(x− xk)− fkGδ(x− xk)

to show the velocity at any point x or compute dxj/dt = u(xj) to update particle
positions.

Example 3.1 Consider a body falling under it own weight in a Stokes flow. Every point
on the surface of the body exerts an equal force on the fluid. Thus, the velocity at any
point in the fluid is given by the regularized Stokeslet formula (see figures 11 and 12).

3.3 More about fluid flows

So far, we have an expression for the velocity of a Stokes flow generated by forces fk
applied at positions xk. What if we apply a torque instead of a force? What if we apply
pairs of forces?

There are other known solutions to the Stokes equations that are typically generated by
taking derivatives of the Stokeslet solution. For example, given the (singular) Stokeslet
expression:

S(x− x0) = (f0 · ∇)∇B(x− x0)− f0G(x− x0)
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Figure 11: Forces on a body falling in Stokes flow.
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Figure 12: Velocity around a body falling in Stokes flow.
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A Doublet is defined as

Doubi(x− x0) = − ∂

∂xi
S(x− x0).

A Dipole, given by
Dip(x− x0) = −∆S(x− x0)

represents the flow due to a pair of equal and opposite vortices near each other.

A Rotlet of strength L applied at x0 is given by

R(x− x0) = L×∇G(x− x0)

and represents the flow due to a torque L. There are others. Regularized versions of all
of these elements can be derived based on blobs.

What if the flow is not Stokes?

In other types of flows, like Euler flows, there are solutions like the vortex blob method
that are known in regularized form. Dipoles are also solutions of Euler flows.

4 Applications

4.1 Motion of a 2D swimming sheet in a viscous flow

We consider a “curve” in 2D where there is a defined force field. The curve may represent
a swimming organism. The time-dependent forces exerted on the fluid by the organism
generate the flow which interacts with the motion of the organism.

Go to eel site

4.2 Flow in a 2D channel with point obstacles

Consider a channel in two dimensions with a background flow U = (1, 0) (or parabolic).
Now imagine there are point obstacles which cannot move, therefore the flow must go
around them. This flow can be computed by allowing each obstacle and each boundary
point to exert a force on the fluid with the purpose of satisfying the conditions that the
velocity must equal zero at all the points shown in Figure 14.

In order to compute this flow, we note that in the regularized Stokeslet formula

u(x) =
N∑
k=1

(fk · ∇)∇B(x− xk)− fkG(x− xk)
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Figure 13: Forces along a curve are spread over the surrounding region.
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Figure 14: Channel with point obstacles.
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the velocity at any point x depends linearly on the forces fk. Therefore, if the velocity
at each of the points xk must equal zero, we can set up the system of equations

u(xj) = −U =
N∑
k=1

(fk · ∇)∇Bδ(xj − xk)− fkGδ(xj − xk)

for j = 1, 2, . . . , N . This is a linear system of 3N equations for the 3N components of
the forces. If the matrix is nonsingular, there is a unique solution for the forces. Once
the forces have been found, the velocity at points inside the channel can be computed by
superimposing the regularized Stokeslet formula and the background flow to display the
flow as in Figure 15.

u(x) = U +
N∑
k=1

(fk · ∇)∇B(x− xk)− fkG(x− xk)

Figure 15: Velocity field in the channel with point obstacles.

Go to matlab
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4.3 Motion of a 3D helical swimmer in Stokes flow

A helical swimmer here means an elastic tube in the shape of a helix that is rotated by
an external torque (or by external forces) and as it rotates, its shape forces it to translate
like a corkscrew.

Figure 16: Constructed helical swimmer.

In the following model, the tube is made of a series of rings that are centered and
perpendicular to a helical centerline. The points on the rings are connected by springs
and additional springs connect points on one ring to points on neighboring rings. The
motion is generated by either a torque at the nose of the organism or forces that make
it rotate. The rotation causes the springs to stretch and contract generating forces along
the entire organism. Each force contributes to the flow through a regularized Stokeslet
and the torque through a rotlet.

Go to animation of single helix.
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Figure 17: Instantaneous velocity field around the helical swimmer.

4.4 Flagellar bundling in a 3D Stokes flow

Some bacteria such as E. coli and Salmonella have a large cell body and many flagella
that are used to propel the cell as it consumes nutrient.

Figure 18: E. coli photo taken from http://www.le.ac.uk/biology/research/phyto/antibody.htm

At the point where each flagellum is attached to the cell body there is a motor that
rotates the flagellum in either direction. When all motors rotate in one direction, the
flagella tend to bundle into a single tail that helps propel the bacteria. When one or
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more motors rotate in the opposite direction, the flagella tend to come apart and the cell
moves erratically until the motors synchronize again and the flagella bundle, moving the
cell in a new direction.

A model of three flagella (without a body) was constructed in the same way as before
and each motor at the front of the flagella was modeled by a torque.

Figure 19: Schematic of the three-flagellum configuration.

Go to animation of bundling and tumbling

4.5 Flow due to moving objects near a wall (method of images)

So far, the solutions have been based on the free-space Green’s function. In the case of
the channel flow, the channel walls were discretized in order to satisfy the appropriate
boundary conditions. The walls must be of finite extent since we cannot tile an infinite
wall with points.

When there is an object moving close to an infinite wall, one approach to satisfying
boundary conditions at the wall is to use the method of images. In this method, one
places forces, dipoles, vortices or other elements at the mirror image points on the other
side of the wall and adjusts their strengths to satisfy the appropriate boundary conditions.

For example, a vortex in 2D Euler flow (zero viscosity) near a wall at y = 0 must satisfy
the conditions that the velocity at the wall must not contain a component normal to the
flow. The tangential component (slip velocity) may exist in the absence of viscosity. In
order to cancel the normal velocity at the wall due to one vortex, one may place an equal
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Figure 20: Flow around the three flagella.

and opposite vortex at the image point.

Something similar can be done in Stokes flows due to forces. At the image point, one
must place a regularized Stokeslet, doublet, dipole and rotlet in order to satisfy the
zero-velocity boundary condition.
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Figure 21: Flow due to a single vortex in free space (left) and next to an infinite wall (right).
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Figure 22: Ball falling near a wall.
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Figure 23: Power stroke of a cilium.
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Figure 24: Recovery stroke of a cilium.


