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Abstract

We discuss the technique of bosonization for studying systems of interacting fermions
in one dimension. After briefly reviewing the low-energy properties of Fermi and Lut-
tinger liquids, we present some of the relations between bosonic and fermionic operators
in one dimension. We use these relations to calculate the correlation functions and the
renormalization group properties of various operators for a system of spinless fermions.
We then apply the methods of bosonization to study the Heisenberg antiferromagnetic
spin 1/2 chain, the Hubbard model in one dimension, and transport in clean quantum

wires and in the presence of isolated impurities.
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1 Fermi and Luttinger liquids

In two and three dimensions, many systems of interacting fermions at low temperatures are
described by the Fermi liquid theory developed by Landau (see Ref. 1 for a brief review).
According to this theory, at zero temperature, the ground state of each species of fermions
has a Fermi surface in momentum space located at an energy called the Fermi energy Ep,
such that all the states within that surface (i.e., with energies less than Er) are occupied
while all the states outside it are unoccupied. An elementary low-energy excitation is one
in which a particle is added (annihilated) in a state just outside (inside) the Fermi surface;
these are called particle and hole excitations respectively. In an interacting system, these
one-particle excitations are accompanied by a cloud of particle-hole pairs, and they are more
commonly called quasiparticles; these carry the same charge as a single particle (or hole). If
the particle number is held fixed, the low-energy excitations of the system consist of particle-
hole pairs in which a certain number of particles are excited from states within the Fermi
surface to states outside it. A few of these excitations have both low wave numbers and
low energies with the energy being proportional to the wave number; such excitations can
be thought of as sound waves. But most of the particle-hole excitations do not have such
a linear relationship between energy and wave number; in fact, for most such excitations, a
given energy can correspond to many possible momenta.

Another interesting property of a Fermi liquid in two and three dimensions is that the
one-particle momentum distribution function n(E), obtained by Fourier transforming the
one-particle equal-time correlation function, has a finite discontinuity at the Fermi surface
as shown in Fig. 1 (a). This discontinuity is called the quasiparticle renormalization factor z;
it is also equal to the residue of the pole in the one-particle propagator. For non-interacting
fermions, z; = 1; but for interacting fermions, 0 < z; < 1 because a quasiparticle is a
superposition of many states, only some of which are one-particle excitations. To compute
2z, we consider the one-particle Green’s function G(Z,t) defined as the expectation value of
the time-ordered product of the fermion operator ¥ (%, t) in the ground state |0), namely,

G(Z,t) = (0] Ty(&,t)v'(0,0) |0) . (1)



(We will ignore the spin label here). The Fourier transform of this function can be written

as .
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where € is the dispersion relation for the non-interacting theory; we absorb the chemical

potential y in the definition of €;; so that e; = 0 for k lying on the Fermi surface. (We will

set h = 1). The self-energy Z(E, w) contains the effects of all the interactions as well as any
prescription necessary to shift the pole slightly off the real axis in w. For a Fermi liquid,
(](E, w) has a pole near the real axis of w for any value of k on the Fermi surface. In addition,
¥ is sufficiently analytic at all such points so that the derivative 0% /0w has a finite value.
The quasiparticle renormalization factor z; is then given by the residue at the pole, i.e.,

z,;:(l—g—i)_l. (3)

-

This gives the discontinuity in n(k) at the Fermi surface.

Finally, in a Fermi liquid, the various correlation functions decay asymptotically at long
distances as power laws, with the exponents being independent of the strength of the inter-
actions. Thus non-interacting and interacting systems have the same exponents and there
is a universality.

The discussion above does not apply if the ground state of the system spontaneously
breaks some symmetry, for instance, if it is superconducting, or forms a crystal or develops
charge or spin density ordering.

In contrast to a Fermi liquid, interacting fermion systems in one dimension behave quite
differently [, [, B; we will assume again that the ground state breaks no symmetry. Such
systems are called Luttinger liquids and they have the following general properties. First
of all, there are no single particle or quasiparticle excitations. Thus all the low-energy
excitations can be thought of as particle-hole excitations; further, all of these take the form
of sound waves with a linear dispersion relation. (As we will see below, there are also
excitations of another kind possible which correspond to adding a small number of particles
Ngi and Np, to the right and left Fermi points. However, these correspond to only two
oscillator degrees of freedom, and therefore do not contribute to thermodynamic properties
like the specific heat). Secondly, there is no discontinuity in the momentum distribution
function at the Fermi momentum, as indicated in Fig. 1 (b). Rather, there is a cusp there
whose form is determined by a certain exponent. Finally, this exponent depends on the
strength of the interactions in a non-universal manner, and it also governs the power-law
fall-offs of the correlation functions at large space-time distances [f].

Let us be more specific about the nature of the low-energy excitations in a one-dimensional
system of fermions. Assume that we have a system of length L with a boundary condition
to be specified later. The translation invariance and the finite length make the one-particle
momenta discrete. Suppose that the system has Ny particles with a ground state energy
Eo(Ny) and a ground state momentum Py = 0; we are assuming that the system conserves
parity. We will be interested in the thermodynamic limit Ny, L — oo keeping the particle



density pg = Ny/L fixed. Let us first consider a single species of non-interacting fermions
which have two possible directions of motion, right-moving with dey /dk = v and left-moving
with dey, /dk = —vp. Here ¢ is the energy of a low-lying one-particle excitation, k is its mo-
mentum measured with respect to a right Fermi momentum kg and a left Fermi momentum
—kp respectively, and vp is called the Fermi velocity. (See Fig. 2 for a typical picture
of the momentum states of a lattice model). The values of kr and vp are defined for the
non-interacting system; hence they depend on the density py but not on the strength of the
interaction. Then a low-lying excitation consists of two pieces [f],
(i) a set of bosonic excitations each of which can have either positive momentum ¢ or negative
momentum —g with an energy €, = vpq, where 0 < ¢ << kp, and
(ii) a certain number of particles Ng and N added to the right and left Fermi points
respectively, where Ng, N, << Ny. (Note that Ni and Ny can be positive, negative or zero.
It is convenient to assume that N+ Nj, are even integers; then the total number of particles
No+ Ngr+ Ny, is always even or always odd. We can choose the boundary condition (periodic
or antiperiodic) to ensure that the ground state is always non-degenerate).

It turns out that the Hamiltonian and momentum operators for a one-dimensional system
(which may have interactions) have the general form

H = Ey(No) + > vgq]| Bkgggg + 527q5L7q]
q>0
™ 9 T K _ 9
+ (Nr+ Np) + —2LK(NR—|-NL) + 5T (Nr — NL)* ,
- . T
P = > q[bhbrg — bhgbrg] + [kr + Z(NRJrNL)] (Ne—=Nz), (4
q>0

where v is the sound velocity, ¢ is the momentum of the low-energy bosonic excitations
created and annihilated by Z)j] and l~)q, K is a positive dimensionless number, and p is the
chemical potential of the system. We will see later that v and K are the two important
parameters which determine all the low-energy properties of a system. Their values generally
depend on both the strength of the interactions and the density. If the fermions are non-

interacting, we have
v =vp and K = 1. (5)

Note that one can numerically find the values of v and K by studying the 1/L dependence
of the low-energy excitations of finite size systems.

It is interesting that the expression for the momentum operator in Eq. () is independent
of the interaction strength. We can understand the last term in the momentum as follows.
For a continuum system, the Fermi momentum kp (V) is related to the density by the relation

I /kF(N ) dk

— = N. 6
—kp(N) 2T (6)

Thus a system of Ny particles has a Fermi momentum

TN
krp = TO = mpo , (7)
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while a system of N = Ny + Ny + Ny particles has a Fermi momentum equal to kg +
(m/L)(Ngr + Nyp). If the N particles occupy the momenta states symmetrically about zero
momentum, the total momentum of that state is zero; in this state, both the right and left
Fermi points have (N + Np)/2 particles more than the original ground state. Now let us
shift (Ng — Np)/2 particles from the left Fermi point to the right Fermi point, so that the
right Fermi point has Npi particles more and the left Fermi point has N particles more
than the original system. We then see that the total momentum has changed from zero to
lkp+ (m/L)(Ng+ N1)|(Ng — Np); this is the last term in the expression for the momentum
operator.

The form of the parameterization of the last two terms in the Hamiltonian in Eq. (f) can
be understood as follows. (Note that these two terms vanish in the thermodynamic limit
and do not contribute to the specific heat. However they are required for the completeness
of the theory up to terms of order 1/L, and for a comparison with conformal field theory).
Specifically, we will prove that if the coefficients of (7/2L)(Ng + Np)? and of (7/2L)(Ng —
Np)? in Eq. (f}) are denoted by A and B respectively, then

AB = v?. (8)

It will then follow that if A is equal to v/K, B must be equal to vK. Although the expressions
in Eq. (@) are valid for lattice models also, let us for simplicity consider a continuum model
which is invariant under Galilean transformations. First, let us set Ng = Np, so that we
have added AN = 2Ny particles to the system. The sound velocity v of a one-dimensional
system is related to the density of particles p = N/L (where N = No+ Nr+ Np,), the particle
mass m, and the pressure P as

mpvzz—L(g—?)N. 9)

The pressure is related to the ground state energy by P = —(0FEy/0L)y. Hence

mpv? =

() = T (3 a0

OL2 L \ QN2

where the second equality follows from the first because Fy depends on N and L only
through the combination N/L. Comparing Eqs. (f]) and ([[0)), we see that the coefficient of
(7/2L)(AN)? is given by
2
A =" (11)
TPo
(In certain expressions such as Eq. ([[I]), we have ignored the difference between p and pg
since AN < Ny). Next, let us take N = —Ng; this corresponds to moving Ng particles
from the left Fermi point —kpr to the right Fermi point kr keeping the total number of
particles equal to Ng. The change in momentum is therefore given by AP = 2wpyNg. Since
we can also view such an excitation as a center of mass excitation with momentum AP, the



change in energy is given by AE = (AP)?/(2mN) since the total mass of the system is mN.
It follows from this that the coefficient of (7 /2L)(Ng — N1 )? satisfies

B = (12)
m
We thus see that AB = v? independently of the nature of the interactions between the
particles.

We now consider the other important property of a Luttinger liquid, namely, the absence
of a discontinuity in n(k) at the Fermi momenta or, equivalently, the absence of a pole in
the one-particle propagator. Thus the effect of interactions is so drastic in one dimension
that the self-energy ¥ in Eq. (f) becomes non-analytic at the Fermi points. As a result,
n(k) becomes continuous at k = +kp with the form

n(k) = n(kp) + constant - sign(k — krp) |k — kp|® , (13)

where sign(z) = 1if 2 > 0, —1if 2 < 0 and 0 if 2 = 0. The exponent [ is a positive number
whose value depends on the strength of the interactions; for a non-interacting system, 5 =0
and we recover the discontinuity in n(k). Similarly, the density of states (DOS) is obtained
by integrating Eq. (B]) over all momenta; near zero energy it vanishes with a power-law form

aw) ~ |l (14)

which signals the absence of one-particle states in the low-energy spectrum. We will see
later how the exponent (3 can be calculated in an interacting system called the Tomonaga-
Luttinger model.

2 Bosonization

The basic idea of bosonization is that there are certain objects which can be calculated
either in a fermionic theory or in a bosonic theory, and the two calculations give the same
answer [B, [, B, B, @ B. Further, a particular quantity may seem very difficult to compute
in one theory and may be easily calculable in the other theory. Bosonization works best in
two space-time dimensions although there have been some attempts to extend it to higher
dimensions.

In two dimensions, bosonization can be studied in either real time (Minkowski space) or
in imaginary time (Euclidean space). In both cases, there is a one-to-one correspondence
between the correlation functions of some fermionic and bosonic operators. We will work in
real time here because bosonization has an added advantage in that case, namely, that there
is a direct relationship between the creation and annihilation operators for a boson in terms
of the corresponding operators for a fermion [§]. To show this, we just need to consider a
bosonic and a fermionic Fock space. A Hamiltonian is not needed at this stage; we need to
introduce a Hamiltonian only when discussing interactions and time-dependent correlation
functions.



2.1 Bosonization of a fermion with one chirality

Let us begin by considering just one component, say, right-moving, of a single species of
fermions on a circle of length L with the following boundary condition on the one-particle
wave functions (z),

D(L) = e P(0) . (15)

Thus ¢ = 0 and 1 correspond to periodic and antiperiodic boundary conditions, but any
value of o lying in the range 0 < o < 2 is allowed in principle. (If we assume that the
particles are charged, then mo can be identified with an Aharonov-Bohm phase and can be
varied by changing the magnetic flux through the circle). The normalized one-particle wave
functions are then given by

7 _ 1 ikx
wnk - \/Z € )
2
Eo= - ), (16)

L 2

where n = 0,41, +2, ... is an integer. We now introduce a second quantized Fermi field
1 0

'Q/JR(I’) = \/—Z k;oo CR,k 6““, (17)

where the subscript R stands for right-moving, and

{CR,k,CR,k’} =0 s and {CR71€,CJI[37,€/} = 5kk’ . (18)
Using the identity
dooe™ =21 > S(y—2mm), (19)

we obtain

{Yr(2), ¥r(z)} = 0,
and  {¢p(z),vh()}Y = dx—2') for 0<za' <L. (20)

We define the vacuum or Fermi sea of the system to be the state |0) satisfying

crr0) = 0 for k>0,
ckk 0) = 0 for £<0, (21)

as shown in Fig. 3. (Following this definition of the vacuum state, some people prefer to
write the particle annihilation operator cprj as a hole creation operator dk_k for k < 0).
Given any operator A which can be written as a product of a string of ¢’s and ¢'’s, we denote
its normal ordered form by the symbol : A :. This new operator is defined by moving all the
¢, with k > 0 and CL with £ < 0 to the right of all the ¢, with & < 0 and CL with £ > 0. This
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is achieved by transposing as many pairs of creation and annihilation operators as necessary,
remembering to multiply by a factor of —1 for each transposition. (It is sometimes claimed
that : A := A — (0|A|0). This is true if A is quadratic in the ¢’s and ¢'’s, but it is not true
in general).

Next we define the fermion number operator

e}

Np = Y ichpcre: = Y chicre — D cruchy, - (22)
k=00 k>0 k<0

Thus Nz|0) = 0. Now consider all possible states |¥) satisfying Np|¥) = 0. Clearly, any
such state can only differ from |0) by a certain number of particle-hole excitations, i.e., it
must be of the form

[U) = Ch CRACR iy CR I Chops CRbs - |0) (23)

where the k; are all different from each other, ki, ks,... > 0, and ks, ky,... < 0. Two such
excitations are shown in Fig. 4. We will now see that all such states can be written in terms
of certain bosonic creation operators acting on the vacuum. Let us define the operators

1 o
b}riq = ﬁ Z C;z,kJquR,k s
q k=—oc0
1 o
qu = —\/ﬁ Z Ckk_ch’k s
q k=—oc0
2w
q = f Ng (24)
where n, = 1,2, 3, .... Note that we have defined the boson momentum label g to be positive.

Also, the fermion boundary condition parameter ¢ does not appear in the definitions in Eq.
(B4). We can check that

[Nr,brg] = [Nabh, =0,
[bR,qa bR,q’] = 0 )
[bR,qabﬁz,q’] = 5qq’ . (25)

Checking the last identity for ¢ = ¢’ is slightly tricky due to the presence of an infinite number
of fermion momenta k. One way to derive the commutators is to multiply each ¢, and CL
by a factor of exp[—«|k|/2] in Eq. (B4)), and to let &« — 0 at the end of the calculation. We
should emphasize that the length scale « is not to be thought of as a short-distance cut-off
like a lattice spacing; if we had introduced a lattice, the number of fermion modes would
have been finite, and the bosonization formulas in Eq. (P4) would not have given the correct
commutation relations.

We see that the vacuum defined above satisfies bg 4|0) = 0 for all ¢. If we consider any
operator A consisting of a string of b’s and b'’s, we can define its bosonic normal ordered
form : A : by taking all the b,’s to the right of all the bj]’s by suitable transpositions. Given
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an operator A which can be written in terms of either fermionic or bosonic operators, normal
ordering it in the fermionic and bosonic ways do not always give the same result. However,
it will always be clear from the context which normal ordering we mean.

We can now begin to understand why bosonization works. First of all, note that there is
a one-to-one correspondence between the particle-hole excitations described in Eq. (B3) and
the bosonic excitations created by the b’s [J]. For instance, consider a bosonic excitation in
which states with the momenta labeled by the integers n; > ny > ... > n; > 0 (following the
convention in Eq. (B4)) are excited. Some of these integers may be equal to each other; that
would mean that particular momenta has an occupation number greater than 1. Now we
can map this excitation to a fermionic excitation in which j fermions occupying the states
labeled by the momenta integers 0, —1, —2, ..., —j + 1 (following the convention in Eq. ([[d]))
are excited to momenta labeled by ni,ns —1,n3—2,...,n; — 41 respectively. This is clearly
a one-to-one map, and we can reverse it to uniquely obtain a bosonic excitation from a given
fermionic excitation. This mapping allows us to show, once an appropriate Hamiltonian is
defined, that thermodynamic quantities like the specific heat are identical in the fermionic
and bosonic models.

The above mapping makes it plausible, although it requires more effort to prove, that
all particle-hole excitations can be produced by combinations of b'’s acting on the vacuum.
For instance, the state in Fig. 4 (a) is given by b}m|0>. However the state in Fig. 4 (b)
has a more lengthy expression in terms of bosonic operators, although it is also a single
particle-hole excitation just like (a); to be explicit, it is given by the linear combination
(1/6)[2b}y 5 + 35l bl + (b,)7][0).

Next, we define bosonic field operators and show that some bilinears in fermionic fields,

such as the density pgr(z), have simple expressions in terms of bosonic fields. Define the
fields

i 1 .

XR(I’) _ bR, 6zqm—aq/2 ’
2,/ g v, !
i _ i Lot —igu—ag2
X (I) - - b € 5
R 2/ g Vi, 1
mr -~

ou(r) = xule) + xXhle) — Y N (26)

The last term in the definition of ¢(x) has been put in for later convenience; it simplifies the
expressions for the Hamiltonian and the fermion density in terms of ¢x. (Some authors prefer
not to include that term in the definition of ¢ but add it separately in the Hamiltonian and
density). Note that Ng commutes with both yg and X;z- From the commutation relations
in Eq. (B3), we see that

[xa(e), xa(@)] = 0,
@) b)) = = [1 = e (= (atite—a))],
1 2T . , ) ..
= —Eln[f(a+z($—$))] in the limit L —oo0. (27)



Henceforth, the limit . — oo will be assumed wherever convenient. We find that

1 iz -2
[0r(2), or(2)] = = ln[ %} ;
= - % sign (z —z') in the limit o« — 0. (28)

Thus the commutator of two ¢’s looks like a step function which is smeared over a region of
length a.
Now we use the operator identity

1
expA expB = exp (A+B+§[A,B]), (29)

if [A, B] commutes with both A and B. It follows that

2rx AR] _ ( L

exp [12vmh(e)] exp [i2vxa(e)] exp (T Nal = (5)" exp [i2v/on(x)] . (30)

We observe that the left hand side of this equation is normal ordered while the right hand
side is not; that is why the two sides are related through a divergent factor involving L/c.
We can show that the fermion density operator is linear in the bosonic field, namely,

pr(x) = Uh(@)dr(e):
1 . . 1
= 1 > Vng (bree’™ + bkqe_lqm) + 7 > :C}MC}M:
q>0 k
1 O¢r

- - 7t 31

oL (31)

We now go in the opposite direction and construct fermionic field operators from bosonic

ones. To do this, we first define the Klein factors ngz and 7713 which are unitary operators
satisfying

[NRﬂﬂ%] = 7712 ) [NR>773] = — nr,
[77376374] = [7737612@] = 0. (32>

Pictorially, in terms of Figs. 3 and 4, the action of 7713 is to raise all the occupied fermion states
by one unit of momentum, while the action of 1z is to lower all the fermion occupied states
by one unit of momentum. Although these actions are easy to describe in words, the explicit
expressions for ngr and 7713 = nr ! in terms of the ¢’s and ¢’s are rather complicated[f]. The
Klein factors will be needed to ensure the correct anticommutation relations between the
fermionic operators constructed below.

We observe that

bro Ur(z)] = - ﬁ Un(x)
bhovr@) = — S gp(a) (33)
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Since bgr 4 annihilates the vacuum, we have

e—lqx

&

Thus ¥ (2)|0) is an eigenstate of bg , for every value of ¢, namely, it is a coherent state. We
therefore make the ansatz

brq Yr(z) [0) = —

V() [0) (34)

—1iqx

vr(a) 10) = Q@) exp [~ X =ty (00110},

= Q(z) exp [ —i2y/7 xj(2) ]10) , (35)

where Q(z) is some operator which commutes with all the b’s and b’s. Since 1z reduces the
fermion number by 1, () must contain a factor of ng. Let us try the form Q(x) = F(z)ng,
where F'(x) is a c-number function of x. The form of F' is determined by computing

F(z) = (0] nknrF(z) |0)
= (0] nkr(z) |0)
6—i7rcrm/L

= — (36)

(The last line in Eq. (B8) has been derived by using the actions of 7}, above and of ¥ in
Eq. ([[7). To see this explicitly, note that (O|n£ is the conjugate of the state in which the top
most fermion has been removed from the vacuum. Hence, in 1z|0), we only have to consider

the state in which the top most fermion has been removed; so we require the wave function
of the state with ny = 0 in Eq. ([d)). We now obtain

6—i7rcrm/L
€
V2o e

where we have used Eq. (BO) and the fact that xz(z) and Npg annihilate the vacuum. We
are thus led to the plausible conjecture

Yr(x) |0) = avRen® o) (37)

6—i7rcrm/L

Yr(r) = np e 2VTORE) (38)

2o

To prove this, we need to show that the two sides of this equation have the same action on
all states, not just the vacuum. Such a proof is given in Ref. 7. Eq. (BY) is one of the most
important identities in bosonization.
We next introduce a non-interacting Hamiltonian by defining the energy of the fermion
mode with momentum k to be
€L = 'UF/{? (39)

11



for all values of k. The Hamiltonian is

TR

H(] - VF Z k CR chk ‘I‘ T NR
k=—o00
L ) TUF -
= —wp /0 dr = phidghr : + TF N; . (40)

This defines the chiral Luttinger model. (The term proportional to N2 has been introduced
in Eq. (fl0) so as to reproduce similar terms in Eq. (f]) after we introduce left-moving fields
in the next section). We can check that Hy|0) = 0 and

[H0> bR,q] = —VUpq bR,q >
[H(]? bTR7q:| - ,UFq bTR7q ) (41)

To reproduce these relations in the bosonic language, we must have

TUp ~
Hy = wp Y, qbkqb}g,q + TF N7
q>0
= vp/ dx : ( mgb (42)

We can introduce an interaction in this model which is quadratic in the fermion density.
Let us consider the interaction

= ) = 2 Dl b 43
=5 | gieie) = 5% gl b, (43)

q>0

Physically, such a term could arise if there is a short-range (i.e., screened) Coulomb repulsion
or a phonon mediated attraction between two fermions. We will therefore not make any
assumptions about the sign of the interaction parameter g,. If we add Eq. () to Eq. ([2),
we see that the only effect of the interaction in this model is to renormalize the velocity from
vp to vp + (ga/21).

In the next section, we will consider a model containing fermions with opposite chiralities;
we will then see that a density-density interaction can have more interesting effects than just
renormalizing the velocity.

2.2 Bosonization of a fermion with two chiralities

Let us consider a fermion with both right- and left-moving components as depicted in Figs.
3 and 5 respectively. For the left-moving fermions in Fig. 5, we define the momentum label
k as increasing towards the left; the advantage of this choice is that the vacuum has the
negative k states occupied and the positive k states unoccupied for both chiralities. We
introduce a chirality label v, such that v = R and L refer to right- and left-moving particles

12



respectively. Sometimes we will use the numerical values v = 1 and —1 for R and L; this
will be clear from the context. Let us choose periodic boundary conditions on the circle so
that 0 = 0. Then the Fermi fields are given by

1 > ,
bo(r) = —= Cue €7
\/Z kgoo
2
ko= % e | (44)
where ny = 0,41, +2, ..., and
{evrcowt = 0,
{Cu,hc:r/,k’} = Ou Oppr - (45)
The vacuum is defined as the state satisfying
vk |0) = 0 for k>0,
chp0) =0 for k<0. (46)

We can then define normal ordered fermion number operators N, in the usual way.
Next we define bosonic operators

1 o
sz/,q - ﬁq kz C’T’vk+qcl«k>
=—00
bug = N k;@ Cok—qCrik - (47)

Note that b}z’q and bTL7q create excitations with momenta ¢ and —q respectively, where the
label ¢ is always taken to be positive. We can show as before that

bog byl = 0, and [byg, bl

u’,q’]

= Gy Guy . (48)

The unitary Klein operators 7, (1)) are defined to be operators which raise (lower) the
momentum label k of all the occupied states for fermions of type v. We then have

{nr.n} = {ommi} =0,
[Nuyni/] == 61/1/ 77:[/ 5 [Nl/7771/:| = - 51/1/ m
[77117 bl”#]] = [77117 b:r/,q] = 0. (49)
We now define the chiral creation and annihilation fields
N 1 -
XV($) _ bu, 6qu—ozq/2 ’
2\/m g) n, 1
) 1 '
X:r/(l’) — _ w Z - bT 6—wqm—aq/2 ‘ (50)

2\/m =0 \/ﬁq v
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Then

(@), X, ()] = 0,
o (@), x5 ()] = — ﬁ S In | 2%( a—iv(zr—2'))] inthe limit L — oo . (51)

The chiral fields

6() = wl@) + xba) - LN, (52
satisfy .
[0(2). u(@)] = = b sign (z — ') (53)

in the limit @ — 0. Finally, we can define two fields dual to each other

o(x) = or(r) + ou(z),
0(x) = = or(x) + or(z), (54)

such that [¢(x), ¢(z')] = [0(x), 8(z")] = 0, while

[6(2),0(2)] = 5 sign (z ") (55)

The fermion density operators p,(x) =: ¥l (z),(z) : satisfy p, = 0,¢,//7. Hence the
total density and current operators are given by

p($) = pPrtpL = — %89%257
j@) = vrlpr—pL) = 3—;8&, (56)

where vp is a velocity to be introduced shortly.
We can again show that the fermionic fields are given in terms of the bosonic ones as

1

wR(I) _ \/% nR 6—i2ﬁ¢R ,
bo(e) = —m— mp €2V (57)

e
V2T =

As before, we introduce a linear dispersion relation €, = vpk for the fermions. The
non-interacting Hamiltonian then takes the form

Hy = vp Y. k[ :ichucrr + chpenn t ] + %(Nfﬁ](ff)
k=—o00
L . . ™ ~ ~
= —vp [ do [ 0h(@)ia(e) — eh@iue) ] + TEEEHND) (59
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in the fermionic language, and

Hy = op Z q ( bJIr%,quvq + bTL#]bL’q) + ZE(N}%_I_NE)
q>0
L ) 9
= up /0 dr [ 1 (0:0r)" + (0x01)”: |
VR L 2 2
= 5[ dr @0 + @0 ] (59)

in the bosonic language. If we use this Hamiltonian to transform all the fields to time-
dependent Heisenberg fields, we find that g, g become functions of xr = x — vrt while
Y, ¢, become functions of x; = x + vgt.

From Eq. (B3), we see that the field canonically conjugate to ¢ is given by

I = 8,0 . (60)
Thus
[p(z), 11(2")] = idé(x —2'), (61)
and :
Hy = %F a1+ (0.0 ] (62)

We now study the effects of four-fermi interactions. In the beginning it is simpler to work
in the Schrodinger representation in which the fields are time-independent; we will transform
to the Heisenberg representation later when we compute the correlation functions. Let us
consider an interaction of the form

v /OL dz [ 2g: pr(x)pr(z) + g (pA() + ()] (63)

Physically, we may expect an interaction such as ¢ : p?(z) :, so that go = g4 = g. However, it
is instructive to allow gs to differ from g4 to see what happens. For reasons explained before,
we will again not assume anything about the signs of g5 and ¢g4. In the fermionic language,
the interaction takes the form

1 o0
_ T T
V= E , [ 292CR,k1+k3 CRk1CL kgt ks CL k2
2L .
k1,ka,kz3=—00

T T T T
+94(CR gy + ks CRI1 CR ky—ks CREs T CL ey kg CLk1 CL ey ks CLik2 )|+ (64)

From this expression we see that go corresponds to a two-particle scattering involving both
chiralities; in this model, we can call it either forward scattering or backward scattering
since there is no way to distinguish between the two processes in the absence of some other
quantum number such as spin. The g4 term corresponds to a scattering between two fermions
with the same chirality, and therefore describes a forward scattering process.

The quartic interaction in Eq. (f4) seems very difficult to analyze. However we will now
see that it is easily solvable in the bosonic language; indeed this is one of the main motivations
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behind bosonization. The bosonic expression for the total Hamiltonian H = Hy+V is found
to be

g2 g4
H = z;) q [vr (bl brq + ) brg) + %(b}r%,quL,q_l'bR,quq) + %(b}rﬂqbﬂq_"bTL,qu,q)]
q>
TV ~ A A A ~ N
+TF(N§+N§)+“C’L—QNRNL+§—2(N§+N§). (65)

The g4 term again renormalizes the velocity. The g, term can then be rediagonalized by a
Bogoliubov transformation. We first define two parameters

_ 99 7RI
v [(UF_I—QW QW)(UF_I—QT[‘_I—QTF)} ’
g4 g2 g4 g2 1/2
K = g4 92 JE oy Je 66
[(UF_I—QW QW)/(UF—I_QTI‘—I_QTF)} ( )

Note that K < 1 if g5 is positive (repulsive interaction), and > 1 if g, is negative (attractive
interaction). (If go is so large that vp + g4/(27) — ¢2/(2w) < 0, then our analysis breaks
down. The system does not remain a Luttinger liquid in that case, and is likely to go into a
different phase such as a state with charge density order). The Bogoliubov transformation
now takes the form

R,q m )
L,q - m )
1-K
= — 67
! 1+ K’ (67)
for each value of the momentum ¢q. The Hamiltonian is then given by the quadratic expression
H = Z vq [ Z)JIF%,qZ)Rﬂ + Z)TL,ql;L#]]
q>0
I L (Na NP K (- M) (68)
o L ¢ VR L R L) |-
Equivalently,
1 (L
H = - / dr [oKI2 + 2 (9,0)%] . (69)
2 Jo K

The old and new fields are related as

bn = (1+K) ¢or — (1K) ¢
R Wie :
b = (1+K)¢r — (1-K) ¢r
L Wire ;

6 = VK¢ and 6 =

1 -
=0 (70)
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Note the important fact that the vacuum changes as a result of the interaction; the
new vacuum |0) is the state annihilated by the operators b, . Since the various correlation
functions must be calculated in this new vacuum, they will depend on the interaction through
the parameters v and K. In particular, we will see in the next section that the power-laws
of the correlation functions are governed by K.

Given the various Hamiltonians, it is easy to guess the forms of the corresponding La-
grangians. For the non-interacting theory (g2 = g4 = 0), the Lagrangian density describes a
massless Dirac fermion,

L = L0 +vpd)Vr + i) (8 — vpdy)iy (71)

in the fermionic language, and a massless real scalar field,

1
L= 57— (@00) — 5 (9:0)° (72)
VF 2
in the bosonic language. For the interacting theory in Eq. (), we find from Eq. ([() that
_ L 2 _ Y > = Logae _ Yiaay

The momentum operator in Eq. (fJ) has the same expression in terms of the old and new
fields, namely,

" " L
P = kp(Ng— Ny + /0 dr 9,60,0 . (74)

We can check that [P, ¢| = —i0,¢ and [P, 0] = —i0,0.

Let us now write down the fields ¢ and 0 in the Heisenberg representation. This is simple
to do once we realize that the right- and left-moving fields must be functions of xgp = x — vt
and z; = x + vt respectively. We find that

[ Z)Rq 6iQ(rR+ia/2) _ Flr%q 6—i¢](rR—ia/2) _ Z)Lq 6—iq(mL—ia/2)
+ Z)Lq 6iq(rL+ia/2) ]
T T - R X )

- \/_[ NI (Ngp + Np) — VKvt(Ng — Np) ],

_[ _ Z)R,q 6iQ(rR+ia/2) + Z)E’q 6—i¢](rR—ia/2) _ Z)L,q 6—iq(mL—ia/2)

+ Z)Lq 6iq(rL+ia/2) ]

VI Re (Np — No) — ;—% (Np + No) . (75)

We observe that the coefficients of N r and N 1 have terms which are linear in ¢. This is
necessary because we want the conjugate momentum field to satisfy

1 - -
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We note that a dual equation holds, namely,

00 = 0.6 . (77)

S| =

(One can check from Eq. ([3) that ¢r and ¢, are functions of 2z and x alone). In terms
of 6, the Lagrangian density is
K

2 —
L= 5 (20)

Kv
2

0,02 = ~ (3672 — 2 (9,0) . (78)
2v
Although the Lagrangians in Eq. ([J) and Eq. ([[§) have opposite signs, the Hamiltonians
derived from the two are identical.
Before ending this section, let us comment on a global symmetry of all these models. It
is known that fermionic systems with a conserved charge are invariant under a global phase
rotation

Yr — e? Y, and Yp — €My, (79)

where A is independent of (z,t). Eq. (p7) then implies that the corresponding bosonic
theories must remain invariant under

A
¢ — ¢, and 9—>9+ﬁ. (80)
This provides a constraint on the kinds of terms which can appear in the Lagrangians of
such theories.

2.3 Field theory of modes near the Fermi momenta

In the last section, we discussed bosonization for a model of fermions which has the following
properties.

(i) There are an infinite number of right- and left-moving modes with the momenta going
from —oo to oo, and

(ii) the relation between energy and momentum is linear for all values of the momentum.
Neither of these properties is true in condensed matter systems which typically are non-
relativistic and have a finite (though possibly very large) number of states. The question
is the following: can bosonization give useful results even if these two properties do not
hold? We will see that the answer is yes, provided that we are only interested in the long-
wavelength, low-frequency and low-temperature properties of such systems.

In an experimental system, the fermions may be able to move either on a discrete lattice
of points such as in a crystal, or in a continuum such as the conduction electrons in a metal.
For instance, non-interacting fermions moving in a continuum have a dispersion €; = k?/2m,
while fermions hopping on a lattice have a dispersion such as €, = —t cos(ka) if a is the lattice
spacing and t is the nearest neighbor hopping amplitude. In either case, a non-interacting
system in one-dimension will, at zero temperature, have a Fermi surface consisting of two
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points in momentum space given by k = tkp (see Fig. 2). As stated before, we define the
one-particle energy to be zero at the Fermi points. At low temperatures 1" or low frequencies
w, the only modes which can contribute are the ones lying close to those points, i.e., with
excitation energies of the order of or smaller than kg7 or w. Near the Fermi points, we
can approximate the dispersion relation by a linear one, with the velocity being defined
to be vp = (deg/dk)g=k,. We thus restrict our attention to the right-moving modes with
momenta lying between kr — A and kp + A, and the left-moving modes with momenta lying
between —kr — A and —kpr + A. Here A is taken to be much smaller than the full range
of the momentum (which is 27 /a on a lattice if the lattice spacing is a), but vpA is much
larger than the temperatures or frequencies of interest. If we include only these regions of
momenta, then the second quantized Fermi field can be written in the approximate form

Y(x,t) = Yp(x,t) e*r® 4 app(z,t) e *re (81)

where ¢ and v vary slowly over spatial regions which are large compared to the distance
scale 1/A. The momentum components of these slowly varying fields are related to those of

Y as

Yri(t) = Urgre(t)
Yrp(t) = Ypke(t), (82)

where —A < k < A. These long-wavelength fields are the ones to which the technique of
bosonization can be applied.

The definitions in Eqs. (BIHBY) tell us the forms of the various terms in a microscopic
model and also tell us which of them survive in the long-wavelength limit. For instance, the
density is given by

p = Pl = ke + Yl + e Yy + €T gl
1 8 3 — x —1 TY— T
¢ QVRS—2hre) | i o—iVES2eD) | (3)

1
I P |
NZaeL * 2 ke

The terms containing exp(+i2krx) in Eq. (§3) vary on a distance scale ki' which is typically
of the same order as the inverse particle density p~!. These terms can therefore be ignored if
we are only interested in the asymptotic behavior of correlation functions at distances much
larger than kz'. In a lattice model, we have to be more careful about this argument since
the lattice momentum only needs to be conserved modulo 27 /a in any process. However,
since 0 < kp < m/a in general, and x/a is an integer, we see that the last two terms in Eq.
(B3) vary on the scale of the lattice unit a; we can therefore ignore those terms if we are only
interested in phenomena at distance scales which are much larger than a.

On the other hand, there are situations when a density term like p cos(2kpx) is generated
in the model; for instance, this happens below a Peierls transition if the fermions are coupled
to lattice phonons. We then find that the slowly varying terms in the continuum field theory

19



are given by

1
cos(2kpz) p = 5 [?ﬂz?ﬂL + ¢2¢R | in general ,
= b + Wiy if T = 1. (84)

The second possibility can arise in a lattice model if 4kpa = 27, 1.e., at half-filling; we then
call it a dimerized system. We will call the term on the right hand sides of Eq. (B4) the
mass operator. We will see below that for any value of K < 2, this term produces a gap in
the low-energy spectrum. This is called the dimerization gap if it occurs in a lattice system.
We should emphasize an important difference between models defined in the continuum
and those defined on a lattice. In the continuum, 1¥%(z) = % (z) = 0 due to the anticom-
mutation relations. Therefore a term like ¢} (2)¢2(z) is equal to zero in the continuum.
However such a term need not vanish on a lattice, if we take the two factors of ¢}, (or ¥;)
as coming from two neighboring sites separated by a distance a. In fact, this term is allowed
by momentum conservation on a lattice if 4kpa = 27, and it leads to umklapp scattering.

3 Correlation functions and dimensions of operators

We will now use bosonization to compute the correlation functions of some fermionic oper-
ators in the interacting theory discussed above. The power-law fall-offs of the correlation
functions will tell us the dimensions of those operators.

The bosonic correlation function can be found from the commutation relations in Eq.
(B1), remembering that all normal-orderings have to be done with respect to the new vacuum
0). (Henceforth we will omit the tilde denoting the new vacuum, but we will continue to
use the tilde for the new ¢ fields). For instance,

(0] Té(z, £)31(0,0) [0) = ﬁ In [(2% ) (22— (t—iasigm®)?)].  (55)

We can use the expressions in Eq. (b7) and identities like Eq. (BJ) to obtain the corre-
lation functions of various operators. For instance,

278G (L) ,—i2y/TBHR(0,0 o Ch
(0] Té’ VEBOR(w,t) ,—i2v/TBPR(0,0) 0)  ~ ( i ) ’
vt — x — i sign(t)
2/7BGL (w,t) , —i2/TBL (0,0 o p?
(0] Te2Vmhor(@t)=i2vboL(0.0) |0y ~, ( M ) ’ (86)
vt + & — i sign(t)

in the limit L — oo; we will assume henceforth that this limit is taken in the calculation of
all correlation functions. Consider now the positive-chirality fermion field; according to Eq.

(62),

1 .
wR = \/% MR 6_12\/7_@1% ) (87)
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where ¢p is given in Eq. ([[0) in terms of ér and ¢r. Hence its time-ordered correlation
function takes the form

a(l—K)Z/ZK

2m (vt — x — dasign(t)) HE?/AK (vt + 1 — jasign(t))(1-K)?/4K"
(88)

We see that the correlation function falls off at large space-time distances (i.e., large com-
pared to «) with the power (1 + K?2)/(2K). This means that the scaling dimension of
the operator ¢z or ¢, is (1 + K?2)/4K; this agrees with the familiar value of 1/2 for non-
interacting fermions.

If we set x = 0 in Eq. (BY), and Fourier transform over time, we find that the one-particle
density of states (DOS) has a power-law form near zero frequency,

(0| TYr(z, )Y 5(0,0)[0) ~

i(w) ~ |wl?, (89)
where (- Ky
B =t (90)

The same result holds for the DOS of the negative-chirality fermions. We therefore see that
for any non-zero interaction, either repulsive or attractive, the one-particle DOS vanishes as
a power. (This result is not to be confused with the bosonic DOS which, from Eq. (B§), is
a constant near zero energy since the energy is linearly related to the momentum which has
a constant density. That leads to a specific heat which is linear in the temperature at low
temperatures). Alternatively, we may set ¢ = 0 in Eq. (B§) and Fourier transform over space,
with a factor of exp(ikpx) since the momentum of the right-chirality fermions is measured
with respect to the Fermi momentum kr. We then see that the momentum distribution
function is continuous at kr with a power-law form,

n(k) = n(kr) + constant - sign(k — kp) |k — kp|® , (91)

as we have sketched in Fig. 1 (b). These expressions for n(w) and n(k) are characteristic
features of a Luttinger liquid.

Next let us compute the correlation function of an operator which is bilinear in the
fermion fields, namely, the mass operator

1 ; —i2/T
M = @htn + Vipr = 5— [l €Y7 4 ming eV (92)

Using the same technique as before, we find that
o 2(E-1)

472 ((vt — i sign(t))? — x2)K

(0| TM(z,t)M(0,0) |0) ~ (93)

This shows that the scaling dimension of the mass operator is K. For the non-interacting
case K = 1, we see that the addition of such a term to the Lagrangian density in Eq. ([1)
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makes the Dirac fermion massive; this is why we have called it the mass operator. (For
convenience, we will sometimes omit the Klein factors when writing fermionic operators in
the bosonic language. We will of course need to restore those factors when calculating the
correlation functions; clearly, correlation functions will vanish if the numbers of 1z and 7712
(or n and n}) are not equal).

An important operator to consider is the density p. From Egs. (BJ), (B3) and (P3), we
see that the density-density equal-time correlation function is asymptotically given by

K cos(4kpx)

(O p(x,0)p(0,0) [0) = — SECI) + const - K

(94)

We should emphasize that this is only the asymptotic expression; the complete expression
generally contains oscillatory terms like cos(4nkpz)/ 227K for all positive integers n. However
the form of the denominator shows that these terms decay rapidly with x as n increases.

In general, we can consider an operator of the form

Om7n — €i2\/7_r(m¢+nc9) ) (95)

(Such an operator can arise from a product of several 1’s and 1’s if we ignore the Klein
factors; then Eq. (p7) implies that m £ n must take integer values). We then find the
following result for the two-point correlation function

(0] TOp ()0, ., (0,0) |0)
Oé2(m2K—i-n2/K)

(vt — x — iasign(t))MVE-/VE)? (vt 4 2 — jasign(t))mvE+n/VE)?

(96)

~ 5mm’ 5nn’

where we have taken the limit L. — oo as usual. (If L had been kept finite, the correlation
function in Eq. (P) would have been non-zero even if m # m' or n # n’/. This may seem
surprising since the global phase invariance in Eqs. ([[9 - B0)) should lead to the Kronecker
d’s in Eq. (PG) even for finite values of L. The resolution of this puzzle is that we need to
include the appropriate Klein factors in the definition in (P5) to show that the correlation
function of a product of fermionic operators is zero if it is not phase invariant). We conclude
that the scaling dimension of O,,,, is given by

n2

2
do = m°K + K . (97)
The appearance of the cut-off a in the expressions for the various correlation functions
may seem bothersome. This may be eliminated by redefining the operators O,,, in Eq.
(B3) by multiplying them with appropriate K-dependent powers of «; then the two-point
correlation function has a well-defined limit as @ — 0. The important point to note is that
all the correlation functions fall off as power-laws asymptotically, and that the exponents
give the scaling dimensions of those operators. The significance of the scaling dimension will
be discussed in the next section.
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For certain applications of bosonization, it is useful to know the forms of the correlation
functions in imaginary time. From the various expressions above, it is clear that if x is held
fixed at some non-zero value, then the poles in the complex ¢ plane are either in the first or
in the third quadrant. We may therefore rotate t by /2 without crossing any poles. After
doing this, we write ¢t = iT where 7 is a real variable. Eq. (Bf]) then takes the form

2 m2K+n?/K
L (98)

T2 + V2712

<Om,n(l’,t)0;rn/7n/(0,0)> ~ 5mm’5nn’ 6i4mn§ (

where ¢ = tan~'(v7/z), and we have dropped the a-dependent terms in the denominator
since there are no longer any poles for non-zero values of x.

4 Renormalization group analysis of perturbed models

We will now study the effects of some perturbations on the low-energy properties of Luttinger
liquids. A standard way to do this is to use the renormalization group (RG) idea. Suppose
that we are given an action at a microscopic length scale which may be a lattice spacing a; the
action contains some small perturbations proportional to certain dimensionless parameters
Ai, such that for \; = 0, we have a gapless system with an infinite correlation length &,
i.e., all correlations fall off as power laws. Then the RG procedure typically consists of the
following steps.

(i) First, a small range of high momentum modes of the various fields are integrated out.
Specifically, we will assume that the momenta lie in the range [—A, A] while the frequencies
go all the way from —oo to oco. Then we will integrate out the modes with momenta lying
in the two intervals [—A, —A/s] and [A/s, A] and with all frequencies from —oo to co. Here
s = e¥ where dl is a small positive number. The asymmetry between the momentum and
frequency integrations is necessary to ensure that the action remains local in time at all
stages. (Note that we are using sharp momentum cut-offs in this section, whereas we used
a smooth momentum cut-off with the parameter « in the previous sections).

(ii) Secondly, the space-time coordinates, the fields and the various parameters are rescaled
by appropriate powers of s so that the new action looks exactly like the old action. This
new action is effectively at a larger length scale equal to ae®. Clearly, the changes in the
parameters A; must be proportional to the small number di. Since we are going to repeat
the process of integrating out high momentum modes, we introduce the idea of an effective
length scale a(l) = ae!; we also define length scale dependent parameters \;(1), where \;(0)
denote the values of \; in the original action. We then define the (-functions

dx (1)

BN) = — - (99)

These are functions of all the \;(1)’s so that we get a set of coupled non-linear equations
in general. In principle, the g-functions are given by infinite power series in the \;, but
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in practice, we can only obtain the first few terms depending on the number of loops of
the various Feynman diagrams that we can compute. The RG analysis is therefore usually
limited to small values of ;.
(iii) Finally, we integrate the RG equations, i.e., the differential equations described by the
[-functions, in order to obtain the functions A;(1). For simplicity, let us consider the case of
a single perturbation with a coefficient A. Then one of three things can happen as [ increases
from 0. Either \(I) goes to zero in which case we recover the unperturbed theory at long
distances; or \ does not change with [; or A(l) grows with [ till its value becomes of order
1. In the last case, the RG equation cannot be trusted beyond that length scale since the
[-functions are generally only known up to some low order in the \’s. All that we can say
is that beyond the length scale ae! where A(I) becomes of order 1, a completely new kind
of action is likely to be required to describe the system. Large perturbations of a gapless
system often (but not always) correspond to a gapped system whose correlation length &
(which governs the exponential decay of various correlation functions) is of the same order
as that length scale ae’. Thus, although the blowing up of a parameter A at some scale does
not tell us what the new action must be beyond that scale, it can give us an idea of the
correlation length of that new theory. This is the main use that is made of RG equations.
To complete the picture and find the new theory beyond the scale &, one usually has to do
some other kind of analysis.

Let us now examine in a little more detail the various kinds of RG equations which can
arise at low orders. Suppose that to first order, the RG equation for a single perturbing term

is given by
d\
_ = 1
i b, (100)

where by is some constant. If by < 0, any non-zero value of A at [ = 0 flows to 0 as [ increases.
Such a perturbation is called irrelevant. If by > 0, it is called a relevant perturbation. A small
perturbation then grows exponentially with [ and reaches a number of order 1 at a distance
scale given by e’ ~ 1/X(0). In many models, this gives an estimate of the correlation length
¢ and of the energy gap AF of the system, namely,

_ I _ a
& = ae = O
v vA(0)Y/0
AE = - = 22 101
S0 : ” (101)

Finally, if by = 0, the perturbation is called marginal. One then has to go to second order
in A. If the RG equation takes the form

% = A7, (102)

then a small perturbation of one particular sign flows to zero and is called marginally irrele-
vant, while a small perturbation of the opposite sign grows and is called marginally relevant.
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For instance, suppose that by > 0. Then the above equation gives
M) = ——4 . (103)

If we start with a negative value of A(0), A(l) flows to 0. For large [, \(I) goes to zero
logarithmically in the distance scale as —1/(b2l) independently of the starting value. (It turns
out that this produces logarithmic corrections to the power-law fall-offs of the correlation
functions at large distances and the various excitation energies [[J]). On the other hand, if
we start with a small positive value of A(0), then A(l) grows and becomes of order 1 at a
distance scale which we identify with a correlation length

£ = qel/2M0) (104)

The corresponding energy gap AE = v/¢ is extremely small for small values of A(0); it may
be very hard to distinguish this kind of a system from a gapless system by numerical studies.
This is in sharp contrast to the situation with a relevant perturbation where the gap scales
as a power of \(0).

There is a simple relation between the scaling dimension of an operator O (assumed to
be hermitian for simplicity), and the first-order coefficient b; in its [G-function. We recall
that the scaling dimension dp is defined as half of the exponent appearing in the two-point
correlation function at large distances, namely,

{ O(2,0)0(0,0) ) = |z . (105)

It is convenient to define the normalization of O in such a way that the right hand side of Eq.
(M0F) has a prefactor equal to 1. Consequently, O has the engineering dimensions of a~%.
Let us now add a perturbation to the Hamiltonian (or to the Lagrangian with a negative
sign) of the form

SH = Mato2y / dz O, (106)

where the factors of a and v (the velocity of the unperturbed Luttinger liquid) are put in to
make A dimensionless; note that v/a has the dimensions of energy. Then the first-order RG
equation for A must take the form given in Eq. ([[00) with

by = 2 — do . (107)

This important statement will be proved below for the class of operators O,,, introduced
in Eq. (PY). If do = 2, the perturbation is marginal and we have to proceed to Eq. ([02).
It turns out that by can be obtained from a three-point correlation function, but we will not
pursue that here [[[]].

It will not come as a surprise that the RG equations for interacting quantum systems in
one dimension can often be derived in two different ways, namely, using the fermionic theory
or the bosonic one. Although both the derivations are limited in practice to small values of

25



the perturbations \;, we will see that the bosonic derivation is superior because it can handle
the interactions in Eq. (B3) exactly. In the fermionic derivation, we have to assume that not
only the \’s but also the interaction parameters g and g4 are small. We will now discuss
some simple examples of G-function calculations to first order in the two kinds of theories.

As a particularly simple exercise, consider a non-interacting massive Dirac theory, where
the mass term is to be treated as a perturbation. We define the Fourier components of ¢,
as

A [ )
wR(%t) — / dk / d_w 6Z(km—wt) wR(k:,w) 7

-A 2T Jo 2
Adk (o dw
_ —i(kz+wt)
v (x,t) /_A - /oo o © Ur(k,w) . (108)

Then the action takes the form

A dk
Sl 0] = [

/: ;i_:[ Uh(k,w)(w — vk)Yr(k,w) + Y] (k,w)(w — vk)vr(k,w)
~(Wh(—k @) lw) + YL~k )ir(he) | . (109)

Since p has the dimensions of energy, the dimensionless parameter must be taken to be

A=
v

A 27

(110)

(The value of a is completely arbitrary here and it will not appear in any physical quantity
as we will see). We consider the partition function in the functional integral representation,

Z = /Dwmwi &S (111)

We integrate out the modes in the momentum and frequency ranges specified in step (i) of the
RG procedure outlined above. Since Eq. ([[09) describes non-interacting fermions, the mode
integration produces an action which looks exactly the same, except that the momentum
integrations go from —A/s to A/s. To restore this to the original range of [—A, A], we define
the new (primed) quantities

K = sk,
o= sw,
UKW = sk w)
Noo= s\, (112)

The resultant action in terms of the new variables and fields looks exactly the same as the
original action in terms of the old variables. Note that we had to rescale the mass parameter
also in order to achieve this. Since s = e?, we obtain the RG equation

dA(1)

—~ =0 (113)
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Clearly, this describes a relevant perturbation, and A(l) grows to 1 at a length scale

& = ael = ° (114)
i

The energy gap is AE = v/ = p as expected.

Now let us add density-density interactions as in Eq. (BJ) to the above massive theory.
The question is the following: do £ and AFE scale in the same way with p as they do in
the non-interacting theory? Clearly, it is not easy to answer this in the fermionic language
since the interactions themselves are not easy to handle in that language, and the mass
perturbation is an additional complication. But bosonization comes to our rescue here since
the bosonic theory remains quadratic even after including the four-fermi interactions; hence
the mass perturbation is the only thing that needs to be studied.

Let us consider a more general perturbing operator of the form

0 = Om,O + O;rn,0> (115)

where O,, ,, is defined in Eq. (P5); the reason for setting n = 0 will be explained later. From
Eq. (P7), the scaling dimension of O is given by dpo = m?K; note that this contains the
effects of the four-fermion interaction in a non-trivial way through the parameter K. In the
bosonic language, the perturbed action has the sine-Gordon form,

/ dxdt 8t¢) ( 0p0)? —2\ cos(2m\/—¢)} (116)

where we have changed variables from ¢ to ¢ using Eq. (). We now have to apply the RG
procedure to this action. We introduce the Fourier components of ¢ as

bty = [ BT et Gk ) (117)

A 2T Joo 2w

(In principle, the momentum cut-offs for fermion and boson fields need not be equal, but we
will use the same symbol A for convenience). Next we consider the partition function

/ DG S | (118)
and expand e’ in powers of A to obtain an infinite series. Let us write the field ¢ as the sum

Q; = Q;< + ¢~5>> (119)

where both ¢ and ¢~ contain all frequencies, but ¢. only contains momenta lying in
the range [—A/s, A/s], whereas ¢~ only contains momenta lying in the ranges [—A, —A/s]
and [A/s,A]. Following step (i) of the RG procedure, we have to perform the functional
integration over ¢-, and then re-exponentiate the infinite series to obtain the new action in
terms of ¢.. We will do this calculation only to first order in A. This is not difficult since
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e*i2mVTES can be written as the product of exponentials of d< and ¢, while the quadratic
part of the action decouples as Sp[¢] = So[¢<] + So[¢>]. Let us denote the expectation value
of a functional F[¢-] as

(Fl]) = [ Do %1 Fl5.] . (120)
Now we have to compute i
< 6:|:i2m\/7m¢>(m,t) > ) (121)

By translation invariance, the value of this is independent of the coordinates (z,t), so we
can evaluate it at the point (0,0). We then use the fact that (¢2(0,0)) = 0 if n is odd, while

(02(0,0)) = (n—=1)(n—3)---1(¢%(0,0) )" (122)

if n is even. Thus the expectation value in ([[21)) is given by

2mVm b S 1 , n A
< 6:I: 2 K¢>(0,0) > = ngo E (:f:22m\/7_TK) < ¢>(070) >
_ 6—2m27rK<(;~52>(070)> ) (123)
Now we use the fact that
B A dk oo dw i Ins
2
0,0) =2/ & [ = o 124
< ¢>( ) > As 27'(' oo 27'(' w2/,U _ Uk.2 + 7€ 27'(' ( )

to show that the left hand side of Eq. ([23) is equal to s~™* K Putting everything together,
we find the new action to be
vAsm K

—_— cos(2m\/7r—ng~S<)} . (125)

a2

Slo<] = / dadt [% (Ohd)? — g@@)z B

where the momentum integrals only go from —A/s to A/s. To restore the range of the
momentum to [—A, A] and to recover the form of the action in Eq. ([[16), we have to define

E' = sk, and 2/ = s 'z,
W = sw, and t = s't,
le(k/>wl) = QE<(k‘7w) )
o= PRy (126)

and write the action in terms of primed variables. Since s = e¥, we see that d\ = X — \

satisfies the RG equation
d\

di
This proves the relation between the first-order [-function coefficient b; and the scaling
dimension dp. Note that the S-functions of the parameters v and K remain zero up to this

= (2 — m*K)\ . (127)
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order in the perturbation. However they do get a contribution to second order in A as shown
in Ref. 3.

The mass perturbation corresponds to the special case of Eq. ([If) with m = 1. We
now see that it is marginal for K’ = 2 and is relevant if K < 2. In the latter case, \(I) grows
till we reach a length scale &€ = a/A(0)"/~K) where the length scale of the coefficient of the
cosine term in the Lagrangian becomes of the same order as a; that is the appropriate point
to stop the RG flow of A. The expression for £ implies that the energy gap of the system is
given by y

AB = ~ A(0)Y/ =K (128)

Thus the effect of the renormalization is to produce a sine-Gordon theory with the Lagrangian
density

1
20
where x and t in this expression denote the original coordinates, and it is understood that
this Lagrangian is not to be renormalized any further. This theory is exactly solvable and
its spectrum is known in detail [[[T]. It has both bosonic and fermionic (soliton) excitations,
and both of them have energy gaps of the order of AE given in Eq. ([2§).

Finally, let us briefly consider some other relevant and marginal perturbations that can
appear in a system which, at the microscopic model, involves fermions on a lattice. If the
model has the global phase invariance discussed in Eqs. ([ - BJ), then the operators O,, .,
appearing in the bosonized theory must necessarily have n = 0. The scaling dimension is
then dpo = m?K. Since m > 1, there is only a finite number of relevant operators possible
depending on the value of K. For K > 2, there are no relevant operators at all. For
1/2 < K < 2, the mass operator is the only relevant term, and so on.

Turning to the possible marginal operators, we see that the umklapp operator Oyy =

£:

(8,0) — %(amas)? — const - (AUE)Q cos(2VTK) | (129)

w}?w% is marginal for K = 1/2. This is a particularly important case to consider because
a Luttinger liquid at K = 1/2 is known to have a global SU(2) symmetry; it therefore
describes a large number of gapless systems involving spins. From conformal field theory,
the value of by in the RG equation Eq. ([[03) for the umklapp operator O is exactly known to
be 41 /+/3 for the normalization given in Eq. ([[09). The coefficient of O in the Hamiltonian,
namely A, depends on the microscopic parameters of the model. In general, a system will
have a non-zero value of A\. As discussed above, for one sign of A, the system remains gapless
but with logarithmic corrections to various physical quantities; for instance, a 1/InT" term
appears in the magnetic susceptibility of a spin system at low temperatures. For the other
sign of A\, the system spontaneously dimerizes producing a finite correlation length and an
energy gap; this leads to an exponentially vanishing susceptibility at low temperatures.
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5 Applications of Bosonization

We will now study various applications of the method of bosonization. The method, as
you have learned, can only be applied in one dimension, so we restrict ourselves to one-
dimensional models. As you have also seen, the main advantage of the method of bosoniza-
tion is that many interacting fermion theories can often be recast (within some approxima-
tions) as non-interacting boson theories. This enables the explicit calculation of correlation
functions. This is an advantage, even in Bethe ansatz solvable one-dimensional models,
because it is often not possible to compute correlation functions using the Bethe ansatz.

We will concentrate on the applications of the bosonization technique in the following
problems - (i) the quantum antiferromagnetic spin 1/2 chain, (ii) the Hubbard model in
one dimension, (iii) transport in clean quantum wires and (iv) transport through isolated
impurities. Since the physics of each of these applications is a huge subject by itself, here we
will only concentrate on explaining the model and the quantities that we can obtain through
the use of bosonization, rather than go into details of its phenomenology.

6 Quantum antiferromagnetic spin 1/2 chain

The model

The first problem that we shall study is the model of a spin 1/2 antiferromagnetic chain.
We are picking this model, since you have already learned a lot about the model from the
course on quantum spin chains and spin ladders. Here, we will restrict ourselves to just the
study of the spin 1/2 anisotropic Heisenberg model with the Hamiltonian given by

N
J — — zZ Qz
H =3 [5 (SFSiu+ 87855 + J. Sisi ], (130)
=1

where the interactions are only between nearest neighbor spins, and J > 0. S}t = S¥ +4S?
and S; = 57 — S} are the spin raising and lowering operators. Although this model can
be exactly solved using the Bethe ansatz and one has the explicit result that the model is
gapless for —J < J, < J and gapped for J, > J, (there is a phase transition exactly at
the isotropic point J, = J), it is not easy to compute explicit correlation functions in that
approach. Hence, it is more profitable to use field theory methods.

Symmetries of the model

Note that this spin model has a global U(1) invariance, which is rotations about the
S* axis. Precisely when J, = J, the U(1) invariance is enhanced to an SU(2) invariance,
because at this point the model can simply be written as H = J Y ;Si - Sijr1. The model
also has discrete symmetries under S* — —S*, S§¥ — S¥Y and under S* — —S5%. Note also
that one can change the sign of the XY part of the Hamiltonian by making a rotation by 7
about the S* axis on alternate sites, without affecting the J, term, although this is not an
extra symmetry of the model.
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Aside on non-linear sigma models

Even using field theory methods, there are two distinct approaches to the problem. In
the large-S limit, there exists a semiclassical field theory approach to this model, which
leads to an O(3) non-linear sigma model (N Lo M), with integer and half-integer spins being
distinguished by the absence or presence of a Hopf term in the action. In this approach, it
is easy to see that integer spin models have a gap in the spectrum. However, it is less easy
to study the effect of the Hopf term and show that 1/2-integer spin models are gapless. In
fact, in this case, it was the spin model which gave information about field theories with the
Hopf term!

Jordan-Wigner transformation

For spin 1/2 models, it is possible to fermionize and then bosonize the spin model and
study its spectrum. That is the approach we will follow in the rest of this lecture. First,
we will try to convince you that it is possible to rewrite the spin model in terms of spinless
fermions. The spin 1/2 model has two states possible at every site - spin | or spin |. Hence,it
can be mapped to another two state model which we can construct in terms of fermions.
We shall assume that an T spin or | can be denoted by the presence or absence of a fermion
at that site. Since no more than a single spinless fermion can sit at a site, the degrees of
freedom in both the models are the same. This mapping is implemented by introducing a
fermion annihilation operator 1; at each site and writing the spin at the site as

S; = Ylvi—1/2=ni-1/2
S7 = (-1 e (131)

where the sum runs from one boundary of the chain up to the (i — 1)*® site and S;" is the
hermitian conjugate of S; . So an T-spin is denoted by n; = 1 and the |-spin by n; = 0
at the site . One might have naively guessed that the spin-lowering operator should be
expressed by 1; which denotes annihilation of a fermion (with the spin raising operator
being given by the hermitian conjugate). One can explicitly check that this gives the correct
commutation relations of the spin operators at a site because [S;", S; | = 257 just reproduces
the correct anticommutation relations for the fermions {v;, wj } = 1. The extra string factor
has to be added in order to correct for different site statistics - the fermions at different
sites anticommute, whereas the spin operators commute. In fact, it is instructive to check
explicitly that the string operator changes the commutation relation on different sites.
(H.W. Exercise 1. Check the above explicitly).

The Hamiltonian
Now, we rewrite the spin model in terms of the fermions. We find that

H = — % Z [le™inhin + hoe] + ., Z [(n; — 1/2)(nip1 — 1/2)]

- _% O [l +hel + 0o 30 (0= 1/2)(ni — 1/2)] (132)
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The point to notice is that the string operator has cancelled out in the nearest neighbor
interaction, except for a phase term, which also can be explicitly shown to be just 1 because
ei™i precedes a creation operator @Z)Z-T which can only act if n;, = 0. The spin-flip terms are like
the hopping terms in the fermion Hamiltonian and give rise to motion of fermions whereas
the S#-S* interaction term leads to a four fermion interaction between fermions on adjacent
sites (the analog of the on-site Hubbard interaction for spinless fermions). So for non-zero
J,, the fermionic model is non-trivial. There exists a competition between the hopping term
or kinetic energy term, which gains in energy when the electrons are free to hop from site to
site, and the potential energy which costs J, if there are electrons present on adjacent sites.
So naively, for large .J,, one expects the potential energy to win and electrons to be localized
on non-adjacent sites, and for small J,, one expects the kinetic energy to win and to have
delocalized fermions. Let us see whether this expectation is true and how it comes about.

Set J, =0
To make the problem simpler, we first consider the case where J, = 0 or where there
are no interaction terms. Then this is just the model of free spinless fermions. By Fourier
transforming the fermions, - 1; = ¥, ¢re™?/v/N, ( a is the lattice spacing) where the k
sum is over momentum values in the first Brillouin zone, - we find that the Hamiltonian is
given by
H = — JY_ cos(ka) IR (133)
k

(H.W. Exercise 2. Obtain the above Hamiltonian explicitly).

The discrete symmetry of the model under S;” « —S;" and S7 — —S? implies a particle-hole
symmetry v; < wj in the fermion language. Thus, the ground state has to have total spin
M =3, 57 =0 or equivalently in the fermionic language, the ground state is precisely half-
filled. This symmetry can be broken by the addition of a magnetic field term that couples
linearly to S*. In the fermionic language, this is equivalent to adding a chemical potential
term (which couples to n; which is the S* term) in which case, the ground state no longer
has M = 0 and the fermion model is no longer half-filled. Thus, for M = 0, the band is
precisely half-filled and the Fermi surface (F = 0) occurs exactly at ka = +7/2 = kra
(because the density of states is symmetric about £ = 0. ) Low energy excitations are
particle-hole excitations about the Fermi surface, which can occur either at a single Fermi
point i.e., k ~ 0 modes, or across Fermi points, which are the k ~ 2kpr = m/a modes.

Effective field theory

The next step is to write down an effective field theory for the low energy modes. Now
comes the approximation. Let us make the assumption that it is only the modes near the
Fermi surface (or here, the Fermi points), which are relevant at low energies. Hence, we are
only interested in ka values near ka = +m /2 and we may approximate the dispersion relation
around the Fermi points to be linear - i.e., cos(ka) = cos(+kpa + k'a) = cos(£7/2 + k'a) =
Fsin(k'a) = F(k'a). We introduce the labels left and right to denote fermion modes near
ka = —m/2 and ka = m/2 respectively and henceforth drop the primes on the momenta
and assume that they are always measured from the Fermi points; as before, we take k as
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increasing towards the right near the right Fermi point, and increasing towards the left near
the left Fermi point. If we want to solve the problem without any approximations, we have
to allow for excitations about the Fermi points with arbitrary k. The approximation that is
made is that we only allow small values of k compared to kgr. This is why the excitations
around the left and right Fermi points can be thought of as independent excitations. In this
approximation, the Hamiltonian breaks up into

H=Jay k ¥hbre+ v ) - (134)
k

(Note that we have incorporated the change in sign mentioned below Eq. ([33)). The
fermions around the Fermi points are Dirac fermions since we have linearized the dispersion.
These fields do not contain any high momentum modes. In real space, the original non-
relativistic fermion field, which has high energy modes (rapidly oscillating factors), has been
split up as exponential prefactors times smoothly varying fields -

—kpa+A
wj N e_iija/ Fa d(ka)ﬁ’ikjawk —|—€iija/ eikja?/fk

—kFCL—A 27T kFCL—A 27T
— e—iijaij _l_eiijaij ) (135)

keath d(ka)

We assume that the A << kra and that it is sufficient to keep just these modes, if we are
interested in physics at length scales much greater than 1/A, which is of course much greater
than the lattice spacing. (The real physical cutoff is the lattice length or in momentum
space, the Fermi momentum. As a low energy approximation, we are introducing the larger
length cutoff 1/A or the smaller momentum cutoff A). For both R and L fermions, states
with k£ > 0 are empty and correspond to electron operators (cy), while states with k£ < 0 are
filled and correspond to hole operators (dl.). (See Fig. 2). In terms of these operators, the
Hamiltonian can be rewritten as

H=Ja Z k (CTLJCCLJQ + dTLJgdL,k + Ckch’k + d}r,z’kdgk) . (136)
k>0

We now introduce continuum fermion fields made up of particle (electron) and anti-particle
(hole) operators at the left and right Fermi points as

1

o) = S e 4 o
k>0
1 | |
Yr(z,t) = 37 [eppe ™) 4 gl ettt (137)

VNa 2

where v = Ja is defined to be the velocity. Note that the factor of 1/y/a is needed to
relate continuum fermions to lattice fermions. (The factor of y/a is needed to get the dimen-

sions right. The lattice fermions satisfy {v;, %T} = 0;;, whereas continuum fermions satisfy
{(z),% (y)} = 6(x — y) where the Dirac d-function has the dimension of 1/length. Also
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Na = L gives the conventional box normalization of the continuum fermions). Note also that
the standard inclusion of the e~ for the particle fields and the e*** for the anti-particle
fields, show that the right-movers are a function only of xr = x — vt and the left-movers
are a function only of x; = x + vt. This observation will come in useful when we compute
correlation functions. In general, we only need to compute equal time correlation functions.
The time-dependent correlations are then obtained by replacing x by z g for right-movers
and by x, for left-movers.
In terms of the continuum fields, the Hamiltonian is obtained as

d d
H= iv/d:z [~k —vn+ ¥ v (138)

(H.W. Exercise 3. Check that this Hamiltonian reduces to the one in Eq. ([36) using Eqgs.
([37)).
We see that the corresponding Lagrangian density is just the standard one for free fermions
given by

L =ip5(0; + v0,) ¥R + it} (9, — v0, U1, . (139)

Using the standard rules of bosonization, this Lagrangian can also be rewritten as

1 v 1
L= S-(00) = 5(0.0)° = 5 0:00" . (140)

where the last equality requires setting v = 1. Note: It is also worth checking to see that
the same Hamiltonian in Eq. ([[3§) is obtained by directly starting with the real space lattice
model given in Eq. ([33), rewriting the lattice fermions in terms of the continuum fermions
remembering the y/a conversion factor, using >; a = [ dz and using ;11 = ¥; + a01;.

Correlation functions

Thus, we have a Lorentz-invariant massless Dirac fermion field theory in the low energy
approximation. All low energy properties can be obtained from the field theory, which in
fact are trivially computed, since this is a free massless field theory. As far as fermionic
correlation functions are concerned, one does not even require bosonization. However, for
the spin correlations, it depends on how the spins can be expressed in terms of fermions. For
instance, we can explicitly obtain the following spin-spin correlation function

G#(x,t) =< S%(,1)5%(0,0) > (141)

simply using Wick theorem. We start by writing S7 in term of the fermions as 57 = n;—1/2 =

w;wj —-1/2=: ¢;wj ., since the expectation value of n; is half. Since the lattice fermion can
be written in terms of the continuum fermions as

v = Va [eM T pp(e = ja) + e (e = ja)] | (142)
and since e??FrJ = ¢(imz/a — (_1)?/e we find that the spin operator can be written as
Sifa= 8z = ja,t) = Wi+ Ujvr  H(D)T Wi + LRl . (143)
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Directly using the Wick theorem and the fermion correlators

—1

< T (z, )9} (0,0) > =

2m(xy, — z'q sign(t))

; - i
and < Tyg(z,t)YR(0,0) > = Sm(on +ia Sgn() (144)

we see that ) . . .
a
G (x,t) = —— [(= + —) — (—1)*/*—— 145
(@1 =~z [+ ) = (D7 ] (145)

where g = —t and z; = = + t.

(H.W. Exercise 4. Obtain this explicitly).

This can also be computed using bosonization. Note that even without doing the calculation,
one could have guessed that the four-point correlation of the fermions must go as 1/1?, where
[ is a distance, because in 141 dimensions, the fermion field has a mass dimension of 1/2
or distance dimension of —1/2. So, in the absence of any other scale in the problem (the
fermion field is massless and there are no interactions to cause divergences or introduce any
anomalous mass scale), as long as the spin correlations can be expressed purely in terms
of local fermion fields, no calculations are needed to see that correlations go as 1//%. But
we do need to calculate to get the explicit coefficients of 1/x%, etc, because they could be
multiplied by dimensionless quantities like f(xgr/x1), etc.

However, to obtain the correlation function < S*(z,¢)S~(0,0) > in the fermionic lan-
guage is more difficult because of the non-local string operator. Here, simple dimensional
analysis is not sufficient to give the answer and one actually needs bosonization. The corre-
lation function can be written as

Gt (2,t) = < ST(z,1)5(0,0) >
_ (_1)m/a [e_ika/a’l/J;r%(l’,t) + eika/awE(I’t)] %
[6i7rfoz(:wT(m’,t)w(m’,t):+1/2a)dz’ + h.c.] %
[¥r(0,0) + ¥ (0,0)] , (146)

where the string operator stretches between the two positions of the spin operator. (The other
terms cancel out between S~ and ST). Also, we have explicitly made the string operator
hermitian, since it is hermitian in the lattice model. The reason bosonization comes in
handy here is because the non-local operator when written in terms of bosons, turns out to
be perfectly simple. We just use the bosonization identity

[ et = = 2 [Taitoeo = = — o) = 6(0.1)

= = = nlant)+ (e 0) = 60(0.1) = 6,(0.0)] . (147)
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Substituting this in Eq. ([40), and substituting for the other fermion operators in terms of
bosons, we get

Gt (l’,t) — (_1)m/a 2& [nke—ikpm/aeﬁﬁqﬁﬁg(m,t) _I_nzeikpm/ae—i2\/7_r¢L(m,t) ] >
yye;

[6ikFr/a—i\/7_r(¢R(r)+¢L(r)—¢R(0)—¢L(0)) + e~ tkra/atiVT(¢r(z)+¢L(2)—dRr(0)—=¢L(0)) ] x

[nge~2VAor(00) 4 ) o276 (0.0) ] (148)
fully in terms of bosons. Now we use the operator identity e4+? = e4eBe451/2 to write
each of the 8 terms that appear in the above equation in terms of products of exponential
factors. Just for illustration, we explicitly write the first term which appears by multiplying
the first term in each of the square brackets in the above equation.

G (x,t) = NhnreVToRED mVToL @) o =iVTor(0.0)oivVoL00) L7 other terms] . (149)

2T« :
Now, we use the standard commutators

[r/L(2), dr/L(Y)] = (—/+) i sign(z — y) /4, and [¢r/L(2), ¢r/r(y)] = 0 (since we are using
Klein factors), and the standard algorithm for computing the correlation function

< 6i2\/7_rm1¢L($)6—i2\/7_rm2¢L(0) > ~ Limg_o ( - )m1m2

x — o sign(t)
« )m1m2
TR+ o sign(t)

and < e2VTmMor(@)emi2VEmadr(0) o Lz'ma_@( . (150)

when m; and my have the same sign and vanish when they have opposite signs [[f]. This
implies that of the 8 terms above, four of them give zero contribution. Adding up the
contributions of the remaining four, we obtain

1 1 1
G (z,t) ~ —1)"/* + const (= + —)] - (151)

(5ER517L)1/4 [ Tr 2L

Note that the Klein factors always come as nZ-T 7; = 1 in this correlation function. Also note
that one cannot fix the arbitrary constant that can appear between the uniform and the
alternating parts of the correlation function because of the normal ordering ambiguities. It
is only the exponents which can be found.

(H.W. Exercise 5. Obtain the above explicitly).

Thus even for the non-interacting theory or purely the XY model, bosonization comes in
handy to compute the correlation functions. As we have already said, the reason the corre-
lation functions are not obtainable just by naive scaling arguments is because the expression
for the ‘off-diagonal’ spin correlations in terms of the fermion operators is non-trivial, be-
cause of the presence of the string term. These are the only non-zero correlators in the
theory. The other correlators such as G** or G™* are zero by symmetry - i.e because of
U(1) invariance in the spin model or because of charge conservation in the fermion model.
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Case when J*# # (0
We now consider the Hamiltonian in Eq. ([32). In the fermionic language, the last term
is given by
SH = 1.3 s plhy bl i o (152)
j

At very large J,, we would expect electrons to be localized on every alternate site so that
adjacent sites are not occupied. However, this will not be true for small J,, so the point of
the exercise is to see when this happens and what the ground state looks like, for both small
J, and large J,. In the low energy limit, we can rewrite this term in terms of the continuum
Dirac fermions at the Fermi points (use Eq. ([42)) as

o = al. [dv [ o)) +BL@)vn(a) + (17" M(2) ] x
[ k@ +a)vr(z +a) + ¢f(z+ a)vr(z +a) + (1) T M(z + a) 1,
where  M(xz) = ¢h(2)vr(r) + ¢](2)vr(z) . (153)

Using the notation pr(z) = 9} (2)(x) and pr(z) = Wh(x)Yr(z), (pr + pr is the charge
density, and pr — pr is the current density; pr and pgr are also called the left and right
moving currents respectively), we can rewrite Eq. ([53)) as

0H = al, / dr | pr(2)pr(z +a)+ pr(@)pr(e +a) + pr(r)pL(z + a) + pr(z)pr(z + a)
—M(x)M(z + a)] . (154)

Here we have used the fact that oscillatory factors integrate to zero. (More precisely, they
give rise to higher dimension operators, which, however, are irrelevant and ignored in this
analysis). In the current-current terms, we can use the expansions pr(z + a) = pr(z) +
a0ypr (), Yr(r + a) = Yr(z) + adyypr(x), ete., and the fact that square of a Fermi field
vanishes, e.g., ¥?(x) = 0, to deduce that terms of the form pr(x)pr(z + a) are higher
dimension operators ( they have four fermion operators and at least one derivative term)
and renormalize to zero in the a — 0 limit. So among the current-current terms, we are
only left with p-pg cross terms of the form py(z)pg(x) as the lowest dimension operators.
For the four fermion terms in the second line also, we apply the same expansion. Dropping
higher derivative terms, we see that the only term which survives in the product of the curly
brackets is of the form —pg(z)pr(z) — pr(z)pr(x). The extra negative sign is because we
need to anticommute one of the fields. This adds to the prpr term coming from the first
line and we are finally left with

0H = 4Jza/d$ pr(z)pr(x) . (155)
This is a four fermion term which in continuum quantum field theory is called the Thirring

term. In the fermionic language, this is an interacting quantum field theory. However, it is
easy to solve by bosonization.
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By the standard rules of bosonization for non-interacting fermions, we can write

1 1 1
PL= 5 /m (U3t+8)¢, and pR:ﬁ(—;8t+8m)¢. (156)

In that case, using the units that Ja = v = 1, we get
0L =—0H = L pO* ¢ (157)
B - Jr ’

where 0L denotes the change in the Lagrangian. This is precisely of the same form as the
bosonization of the free fermion Hamiltonian. So the new Lagrangian is given by

L=_— 0.00"¢, (158)

where . 5]
— =1 S 159
K * Jr (159)

This can be made to look like the free term by redefining the field ¢ - i.e., we define a new
field ¢ = ¢/VK, so that in terms of ¢, the Lagrangian is just 3 ( “gb@“gb) However, the
canonical momentum obtained from the rescaled Lagrangian is just II = dy¢ whereas the
momentum obtained from the Lagrangian in Eq. ([5§) IT = dy¢/K. Hence, the momentum
gets rescaled compared to the original momentum as IT = /KTI. Clearly, the new coordinate
and momenta satisfy the canonical commutation relations, since they are rescaled in opposite
ways. (Remember that ¢ takes values on a compact circle, since the original spin operators
are defined in terms of exponential of the boson fields and are invariant under periodic
changes of ¢). But since the right and left mover fields are defined by taking both the field
and the canonical momentum, and they scale in different ways, one can no longer write the
right and left moving fields in the tilde representation as just scaled versions of the right
and left moving fields of the original theory - in fact, they mix up the left and right moving
fields. Explicitly,

Snlt.z) = % 3(ta)— [ OO do’ Ti(t, 2')] = % ol ) VE - [ ; do’ VETI(t, )]
(0r+01)  VE(r — ¢r)

2K 2
= %(\/——4'\/_) br +

where e=? = /K. Similarly

%(\/% - \/E) ¢, = coshf3 ¢r + sinhf ¢r, ,  (160)

¢1(t,x) = coshB ¢, + sinhf ¢r . (161)
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One can now express the spin fields in terms of the ¢ fields. They are given by

K_ - , 7
S*(x,t) =~ U?ﬁmgb—l— (—1)*/ const ei2VTKo

[ei@\/ﬁ(({mﬂﬂ)‘i‘\/ m/K(pr—¢1)) + ei(—2\/7m(¢~5R+¢~5L)+\/ W/K(Q;R_(Z;L))] ] (162)

With these substitutions, it is trivial (albeit algebraically more tedious!) to recalculate the
spin-spin correlators G**(z,t) and GT~(x,t). Since the method is exactly the same as for
the free case, we just quote the answers here.

G*(x,t) ~ ——(F+ )+ (=1)*/% const (zpxy)™*

- z/a — (L 2,1 1
Gt (x,t) ~ (=1)"%zgzry) ** + const (zgry) (v —VE) (:E—2 + 55_2) . (163)
L R
(H.W. Exercise 6: Obtain the above expressions).
Note that at K = 1/2, the two correlations above are the same.

Limitations of this calculation

So the end result is that we have now obtained spin-spin correlation functions even includ-
ing J,. But since we have made a low energy continuum approximation and included only a
few low-lying modes around the Fermi point, this derivation of the correlation functions is
not true for arbitrary .J,. For instance, we left out terms that were irrelevant by naive power
counting, which only works in the non-interacting case. Once we have interactions, some of
those operators could acquire anomalous dimensions and hence become relevant. In other
words, we have seen that interactions change the dimensions of operators. However, we have
only studied operators of the form pz(x)pr(z), which were marginal to start with and seen
how they evolved. But we did not keep all the irrelevant operators and see how they evolved.
Sometimes, they will also become relevant with sufficiently strong interactions.

A more general effective action approach

However, one can try to understand what can possibly change if we include other correc-
tions that we left out in our approximation. One way of doing this is to look at all possible
relevant terms that can appear consistent with the symmetries of the problem. The idea
is not to try and derive these terms but to write them down in the effective Lagrangian
assuming that if they are not explicitly prohibited by a symmetry, then they will appear.
This is the philosophy behind what are called effective field theories.

Aside on how to ‘read off’ dimensions of operators

We know that to see whether an operator is relevant or irrelevant, we have to compute
its correlation function and find out its scaling dimension. Then, we have to check whether
the scaling dimension is such that the coefficient of the operator grows or becomes smaller
as the energy scale is reduced. So given any operator O; in terms of bosons, we first compute
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the correlation function < O;(z,t)O;(2’,0) > which goes as 1/(z — 2')?%. For a free fermion
theory with no interactions, (equivalently a boson theory with the interaction parameter
K = 1) we know that < O;(x,t)0;(2,0) >= 1/(x — 2')2% where d; is just the naive scaling
dimension or the engineering dimension of the operator O;. The difference between d; and
the d; that appears when we actually compute the correlation function is because of the
interactions and is called the anomalous dimension of the operator. As was explained in
the other courses in this school [[J], the extra dimensional parameter comes from the cutoff
scale. We shall use the term scaling dimension to mean d; itself. For an operator of the
form O; ~ ¢2V™B(@L+9r) the scaling dimension is given by d; = (2, for the standard (non-
interacting) form of the Hamiltonian. Since the space-time dimension is two, it is clear that
d; > 2 implies that the coefficient \; of the operator has to have dimension 2 — d; < 0. So
each time the cutoff is scaled down by a factor A, \; — MA2"%. Hence, after successive
rescalings, this term in the action is irrelevant and scales to zero. On the other hand, d; < 2
denotes relevant operators, whose coefficients grow under scaling downs of the cutoff. d; = 2
is a marginal operator, whose coefficient remains unchanged under rescalings. (We will
come back to this when we study impurity scattering and scaling dimensions of ‘boundary
operators’).

Back to the effective action

The only possible Lorentz-invariant relevant terms that can be added to the Lagrangian
is either cos2v/73(¢r + ¢r) or cos2/7B(dr — ¢r); both of these have dimension 5% and
are thus relevant for 3 < /2. (The real problem on a lattice, of course, does not have
Lorentz invariance. However, in the long distance or low energy limit, all such Lorentz
non-invariant interactions will probably be irrelevant). Of these, the U(1) symmetry under
rotations about the z-axis in fermion language implies that L and ¥g have to be multiplied
by the same phase (because S, which has terms of the form LwR + h.c. should not change).
This in turn means that ¢, — ¢ + ¢ and ¢r — ¢g — ¢ so that ¢, + ¢r — o1 + dr and
br—dr — ¢L — QSR—I—Constant Thus, to be consistent with this symmetry, we can only allow
cos 2v/73 (01 + o).

Furthermore, since the spin operators are all expressed in terms of exponentials of the
boson fields, (see Eq. ([[62)) the boson fields need to be 'compactified on a circle’. This only
means that the boson fields are periodic -

- - i
= 164
oty (164)
since the spin fields cannot distinguish between ¢ and ¢ + \/m/K. This restricts  in

cos 2v/73(dr, + dr) to be of the form nv/K where n is an integer.

Finally, we use an unusual feature which occurs in the continuum field theories of many
lattice spin models. The translational symmetry of the lattice spin model by one site (or more
sites for more general models) maps to a discrete symmetry in the continuum model, which is
distinct from translational symmetry. This can be seen from the continuum definition of the
spin in terms of the Dirac fermions - Eq. ([[43). When we change j to j + 1, the oscillatory
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factor (—1)7 — —(—1)?. This is a drastic change from site to site. So if in the continuum
version, we want to define smooth fields without having this rapid oscillations, we need to
define one field for every pair of sites. Thus invariance under translation by 2a on the lattice
becomes translational invariance in the continuum model. But from Eq. ([43), we see that
translational symmetry through a single site corresponds to the discrete symmetry

YL — W, Yr— —iR . (165)
In the bosonic language, this corresponds to
- ~ 1 /7 ~ ~ 1 /=
¢L_’¢L+§\/E> and ¢R—>¢R+§\/E . (166)

This symmetry implies that the only terms that can be added to the Lagrangian are of the
form cos 2y/m2nVK (¢ + ég), so that = 2nyv/K. This is relevant when K < 1/2 when
n = 1. So the system is in a massless phase till K reaches 1/2 below which it develops a
relevant interaction, and a mass gap.

However, we cannot use our low energy approximate result to estimate the point at which
the spin model develops a relevant interaction. Besides adding the possible relevant term
mentioned above, the most general thing the other terms that we have neglected can do is
to change the relation between K and J, in an unpredictable way. In fact, the low energy
result relating K to the perturbation J, is only true to lowest order in J,/J. This particular
spin-chain model is, in fact, solvable by Bethe ansatz and the exact answer is

1 2 .

T+ sin—l(‘]7) (167)
which, to lowest order in J,/J, gives us the relation in Eq. ([[59). From this, we see that
1/K — 2 at J, = J. This is precisely the K value for which the cosine interaction term
becomes relevant. To prove that a relevant interaction necessarily leads to a mass gap is
non-trivial, but it is certainly plausible. Once, there is a relevant interaction, its coefficient
grows under renormalization. It becomes divergent as we make the energy scale lower and
lower, so we have to cut it off at some scale, which is the mass scale associated with the
theory. However, it could also lead us to a new fixed point, which may not have a mass gap.

To get higher orders in J,/J in this effective field theory approach is not easy, because
one needs to go beyond the region of linear dispersion. Also, once one starts including modes
with k ~ kr, we need to be careful to put in the restriction that —kr < k < kp. Also, since
the Bethe ansatz already gives the exact answer to all orders, there may not be much point
in trying to do this for this problem.

So what does all this formalism gain us? How does the ground state evolve as J, changes?
For small values of J, all that happens is that the spin-spin correlations have a slightly
different power law fall-off with anomalous non-integer exponents. Does this continue for all
values of .J,7 No. Once, J, reaches J, = J, the isotropic point, there exists a phase transition
to a massive phase where spin-spin correlations fall off exponentially fast at large separations.
In this particular problem, of course, one knew this answer from the Bethe ansatz, but the
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point is that the bosonization method can be used even for other models, which are not
exactly solvable by the Bethe ansatz. But without the Bethe ansatz, one cannot analytically
find the value of the parameter where the phase transition into a massive phase occurs.
The other important gain that we have in this method is that it allows the computation
of correlation functions, which is not possible using the Bethe ansatz. Finally, since it is a
symmetry analysis, it tells us that for any Hamiltonian of this type, the model is likely to
be massless only when the theory has U(1) symmetry and the Z; symmetry of translation
by a single site and even then, only for some restricted values of the parameter space.

The best reference for this application is Affleck’s lectures [H] on field theories and critical
phenomena, which we have followed fairly faithfully.

7 Hubbard model

The Hubbard model is one of the simplest realistic models that one can study which has
a competition between the kinetic energy and the potential energy. The kinetic energy or
the hopping term gains, or rather the energy gets lowered, if the fermions are delocalized -
free to move throughout the sample. In this model, the potential energy represents screened
Coulomb interactions between electrons and the model is constructed so that it costs energy
to put two electrons at the same place. So the potential energy prefers each electron to sit
at its own site. The model is given by

H = —% > (atsiia + hoc) + U njmji+p) Ui, (168)
ja j ja

where t is the hopping parameter, U is a positive constant denoting the repulsion between
two electrons at a site, p is the chemical potential and « is the spin index which can be T or
l. This model is very similar to the fermion model we studied for the spin chain except that
the electrons have spin and the chemical potential term allows for arbitrary fillings. The U
term or Hubbard term is analogous to the nearest neighbor J, interaction term for spinless
electrons.

At half-filling (one electron/site, since a filled band implies two electrons/site), for large
U, the model is expected to describe an insulator. One can easily understand this, because
at infinite U, the ground state will have one electron at every site. Any excitation will cost
an energy of U. So there is a gap to excitations and the model behaves as an insulator. It
is called a Mott-Hubbard insulator (as opposed to other band insulators) because here the
insulating gap is created by interactions.

The question that one would like to ask is, at what value of U does the Mott-Hubbard
gap open, because naively one may think that at very small values of U, the model allows
free propagation of electrons and describes a metal. Using bosonization, we will show that
in one dimension, this expectation is wrong. The Mott-Hubbard gap opens up for any finite
U if the filling is half and not otherwise. For any other filling, the model at low energies
is an example of a Luttinger liquid with separate spin and charge excitations. The spin
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modes are always gapless whereas the charge modes are gapless at any filling other than
half-filling; precisely at half-filling a charge gap opens up. The model for arbitrary filling
(other than half-filling) and positive U is said to be in the Luttinger liquid phase. Spin and
charge correlations fall-off as power laws and we expect power law transport. At half-filling,
the model is in a charge-gapped phase called the charge-density wave phase.

Aside: For negative U, it is found that the spin excitations are always gapped. Here, the
model is said to be in the Luther-Emery phase or spin gapped phase.

Bosonization of the model without interactions

How do we go about seeing all that we have described above? In higher dimensions, we
would do a mean field theory, but in one space dimension, we know that a mean field analysis
is not very useful because of the infrared divergences of the low energy fluctuations. (In other
words, if we write down a mean field theory and then try to do systematic corrections about
the mean field theory, then order by order in perturbation theory, we find that the integrals
which appear in the corrections are divergent). So it seems like a good idea to try and use
bosonization. In fact, the way this model is analyzed is very similar to the way we analyzed
the spinless fermion model in the previous section. We first switch off the interactions and
start with the Fourier decomposition

1 o
Via = ——= Y Vo™ . (169)
J \/N -
We rewrite the Hamiltonian as
Hy =" (1~ tcoska) Yfotra (170)
ko

where the & values go from —7/a to w/a. In the ground state, all states with |k| < kp are
filled, where kp is determined by the chemical potential from the equation p = cos kra. Just
as in the spinless case, we will look only at the low energy modes near the Fermi surface, so
that each fermion is written as

o —kpa+A d(k;a) i _ kra+A d(k;a) i
) ~ —ikpja ikja ikpja ikja
wja ¢ ~/—kFa—A 2T © wka te ~/kpa—A 2T © wka
= e_iijaija + 6iijaija ) (171)

so that the ¥r;, and ¥gj, do not contain high energy modes. Substituting this expression
in Eq. ([63), we get

t —i J
Ho=—3 S0 (el riiia + € kR 110 +
Jjo
6—i2ija—ikFaw2jaij+1a ‘I’ 612ija+ZkFawizjaij+1a) _I_ hc]

FuD | Uha¥rie + Vkiatrje + e I g + eREIL ] L (172)
Jjo
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The oscillatory terms do not contribute because they have the form

. . /
Z 6z2kpjaw;zjaija Z 6z2kpja Z e zkga ik jawkawk/ Z wkawk’ Z 6z2kpja ikja+ik'ja ’
J

ek e,k

(173)
and the sum over j in the last expression produces ds, r— Which cannot be satisfied for
small values of k, k’. (Note that even for the half-filled case where kra = 7/2, this cannot
be satisfied). Hence, we may drop these terms and we are left with only

t —ikra kra
Ho= — 3> [ VLjaritia + € YUhjariiia) + hucl
+ 1Y (W) alLa + VhialRia) - (174)
Jjo

Now, we expand ¢110 = ¥a(j + 1) = ¢¥a(J) + a0s10a(j) + higher order irrelevant terms and
use the fact that cos kpa = p (which means that part of the hopping term cancels with the
i term) to get

at - ;
H = -5 (€79} ja0stLja + €M U0 Outrja + hoc.)
= Jdatsin(kra) Z (whaaﬂhg’a — w;r%jaamw}%ja) ) (175)
Jjo

where we have also integrated the hermitian conjugate terms by part to get it in the form
of the second equation above. Finally, we can rewrite this Hamiltonian as a continuum
Hamiltonian in terms of continuum fields (defined with the usual factor of \/a as 14 (j)/\/a =

Yo(z) ) and using Y-;a = [dx
Hy = itsin(kpa) ) /dx [0} (2) 000 (1) — Vb (2)Dtralz) ], (176)

where we call tsin(krpa) = vpa, the Fermi velocity times a. The derivation here is very
similar to the one for spinless fermions, except that here we have carried it out in real space
instead of momentum space. This Hamiltonian can be bosonized using the usual rules of
bosonization and we get

-2 £ [ de 2+ (0.00)7] (177)
(H.W. Exercise 7. Derive the Hamiltonian in Eq. ([76) through a momentum space deriva-
tion).

Bosonization of the interaction term
The next step is to figure out the low energy part of the on-site Hubbard interaction.
Here, again, the principle is the same. We rewrite the four-fermion term written in terms
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of the original fermions in terms of the low energy Dirac fermion modes. Just as in the
spin model, the S% — S* term or the four fermion term corresponded to a product of normal
ordered bilinears, here also the four fermion term in Eq. ([[6§) can be written in terms of
the product of normal ordered bilinears if we subtract the average charge densities of the T
and | fields. So we may write

Hint:UZ annjl:UZ N R 7 ] (178)
j i
In terms of the Dirac fields, this becomes

Hiw = U Y[ 0 -+ Oy - 0]y mre” 25090 4+ 9l mrer9) x (1= 1)),
j

(179)
We now expand the products and keep only the terms with no oscillatory factor, to get
Hine = U Y (Jing + Jiet)(Jiry + Jjn) + U Y (gl dmy + hec.) (180)
J J

The remaining terms have the oscillatory factors of either e?*#7¢ or ¢*ri® and can be set to
zero for arbitrary filling. Notice however, that e’**77¢ = 1 and is not oscillatory at half-filling
since krpa = 7/2. We will come back to this point later. Now we first express these fields in
terms of the continuum fields and just use the standard bosonization formulae to get

1

Ua
Hip = Ua/df [~ 0:010:0) + ﬁETﬁLmlmmm cos VAT (drt + ¢y — drp — ¢ry)] - (181)

(H.W. Exercise 8. Derive the above).
The interesting point to note here is that the cosine term only depends on ¢ — ¢;. (We use
the earlier defined notation that ¢ = ¢+ ¢r and 0 = —¢pr+ ¢1,). So if we define the charge
and spin fields

¢1 — 9y

o1t A j;l, and g, = "o (182)

the Hamiltonian is completely separable in terms of these two fields and we may write
H:Ho—l—Hmt :HC—I—HS with

¢c:

o= [ M2 4 (14 2 )(060)?]

TVUR
v (e - oo s U8
Hy = G [de [+ (1= —)(@60.)" + 575 cos VBmo (183)

where the bosonized form of the kinetic energy term given by Hy in Eq. ([[71) along with the
first term in Eq. ([81) (U0.¢10:¢,/7) can also be written in terms of the charge and spin
fields as above. The charge sector is massless, but for the spin sector, one has a cosine term in
the Hamiltonian. From our earlier experience of spinless models, we know that a cosine term
can lead to a mass gap, when it becomes relevant. So we need to compute the dimension of
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the operator and see when it becomes relevant. Note that we have chosen the product of the
Klein factors to be unityf]. But we only know how to compute correlation functions when
the quadratic Hamiltonian is in the standard form. To get that, we need to rescale the ¢
fields and their conjugate momenta (in the opposite way so that the commutation relations
are preserved) as

b= (1+ i)l/%c , and Il.=(1+ i)—l/‘*nc : (184)
VR VR
and similarly for the spin fields to get the Hamiltonian in the standard form, from which we

can directly read out the dimensions of the operators. In terms of the bar fields, we see that

U Vpa _ _
H, = (1 _1/2_/ 2 5.2
(14 — )220 [ dalT2 + (0,6
_ o L 1/2@ =0 T \2 Ua 1 i _
Heo= 7T'UF) 2 /dﬂﬂs +(0:05)"+ 2me? (1 — %)1/2 o (1- %)1/4%]'
(185)

The charge sector is purely quadratic (both before and after rescaling!) and remains massless,
whereas for the spin sector, the rescaling was necessary to ‘read off’ the dimension of the
cosine operator. Since its scaling dimension is given by d = 2/(1 — -£-)!/* it is irrelevant
(d < 2) for any weak positive U and the spin sector is also massless. On the other hand,
for any negative U, this term has dimension d > 2 and is relevant. As we explained in the
spinless case, this means that the spin sector acquires a mass gap for all negative U.

Also note that the velocities of the charge and the spin modes have got renormalized in
different ways. v. = (1+ %)1/2211: is the velocity of the charge mode and v, = (1— %)1/2211:
is the velocity of the spin mode. Thus, spin and charge move independently. This is one of
the hallmarks of Luttinger liquid behavior in one-dimensional fermion models. It is only for
U = 0, that the spin and the charge modes move together.

How does one look for such spin-charge separation in one-dimensional models? Experi-
mentally, one has to look at different susceptibilities and measure the Wilson ratio, which is
the ratio of the spin susceptibility to the specific heat coefficient. The specific heat coefficient

depends both on spin and charge modes and is given by
v 1 up
— (_

= (EL (186)
Yoo 2 v s
where 7, is the specific heat of non-interacting electrons with velocity vr. However, spin
susceptibility only depends on the spin mode and is given by
X _vr
Xo v
3For single chain problems, the Klein factors usually cause no problems and can be set to be unity, in

(187)

most cases. The only care that we need to take is to remember the negative sign that one gets when two
of them are exchanged. But for multi-chain models, when more than four explicit Klein factors exist, one

needs to be more careful.
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Thus, the Wilson ratio is given by

_ X/Xo _ 2
7/’}/0 Ve + 'Us.

Ry (188)
Clearly, when there is no spin-charge separation, this is given by one. So deviations of the
Wilson ratio from unity are a sign of spin-charge separation in real systems.

Finally, let us consider the case exactly at half-filling, kra = 7 /2. In this case, the e
term we neglected in Eq. ([[79) as oscillatory, is no longer oscillatory, since e™*#® = 1. In
this case, there exists a term in the Hamiltonian of the form

Humklapp = UZ (w;{RijLTw;lele + hC) . (189)
J

idkpja

Note that this term destroys two right movers and creates two left movers or vice-versa. So
there is an overall change in momentum by 4krpa = 27, which has to be absorbed by the
lattice. It is an umklapp process unlike the earlier interaction term for arbitrary filling which
created and destroyed a particle at the left Fermi point and also created and destroyed a
particle at the right Fermi point and did not change any momentum. It is easy to see
that this term also gives rise to a cosine term by bosonizing, which, after rescaling gives
MUHZJJW oS | /W‘#W@ neglecting Klein factors. Thus it appears in the Hamilto-
nian of the charge sector. This term is irrelevant for any negative U, but relevant for any
positive U. Thus, precisely at half-filling, the charge sector has a gap. This is similar to the
case for spinless fermions where the spin model actually corresponded to a half-filled spinless
fermion model. But unlike the case for the spinless fermions where the gap only opens up
at J = J,, here the gap opens up for any positive U, however small.

Is there any way one can understand these results in a physical way? For negative U,
we found that the spin sector has a gap. This can be understood by saying that since there
is an attractive interaction between the spin T and the spin | densities of fermions, they
will like to form singlets and sit on a single site. So to make a spin excitation, one needs
to break a pair and this costs energy. But charge excitations can move around as bound
spin singlet pairs with no cost in energy. On the other hand, for positive U, there exists a
repulsion between two electrons at a site. So each electron will tend to sit on a different site.
At half-filling, hence, there is no way for an electron to move, without trying to sit at a site,
at which an electron is already present. And this costs a repulsive energy U. Hence, there is
a gap to charge excitations. But one can flip spins at a site and hence have spin excitations
with no cost in energy.

So what results has bosonization given us here? We started with electrons with spin and
charge moving together via a hopping term, but with a strong on-site Coulomb repulsion.
This term could not be treated perturbatively. However, when we rewrote the theory in
terms of bosons, with one boson for the T spin and one for the | spin, we found that the
theory decoupled in terms of new spin and charge bosons. For a generic filling, the charge
boson was just a massless free boson excitation, whereas the spin boson Hamiltonian had a
cosine term, which was relevant when U was negative, but irrelevant for positive U. But at
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half-filling, the charge excitations develop a gap, for any positive U. The most important
thing to note here is that the charge and spin degrees of freedom have completely decoupled.
Since the two fields are scaled differently, they move with different velocities in the system.
This is a result that one could never have obtained perturbatively. Thus, at any filling
other than half-filling, the low energy limit of the Hubbard model is a Luttinger liquid with
massless spin and charge excitations moving with different velocities. A good reference for
this part is Shankar’s article [] which also explains in great detail how to compute correlation
functions.

8 Transport in a Luttinger liquid - Clean Wire

The last two applications involved the study of correlation functions, with the aim of finding
out the different phases possible in a one-dimensional system of interacting fermions. In
this part of the course, we will study another application of bosonization, which is to study
transport, in particular the DC (or zero frequency) conductivity in one-dimensional wires of
interacting fermions.

Firstly, are one-dimensional wires experimentally feasible? The general idea to make
narrow wires is to gate’ 2D electron gases. In recent times, technology has developed enough
to make these wires so narrow, that they contain only one transverse channel. So these are
good enough approximations to one-dimensional wires. Another good approximation to
coupled chains of one-dimensional models are carbon nanotubes, though those are not the
kind of models we will study here.

The next point to note is that even at a qualitative level, transport in low dimensional
systems is extremely different from transport in higher dimensions. To understand this
point, we will first make qualitative statements about transport and conductivity before we
explicitly start computing it using bosonization. The usual aim is to compute the conduc-
tance as a function of the voltage, temperature, presence of impurities or disorder and so on.
Normally, when currents are measured in wires, one does not worry about quantum effects,
because wires are still macroscopic objects, but that is clearly not the case here, since we
are interested in one-dimensional wires. In fact, whenever the physical dimensions of the
conductor becomes small, (it need not be really one-dimensional), the usual Ohmic picture
of conductance where the conductance is given by

%74 width of conductor
G pr— e p— 1
T length of conductor ’ (190)

where ¢ is a material dependent quantity called conductivity, breaks down. A whole new
field called ‘mesoscopic physics’ has now been created to deal with electronic transport in
such systems. The term ‘mesoscopic’ in between microscopic and macroscopic is used for
systems, where the sizes of the devices are such that it is comparable with a) the de Broglie
wavelength ( or kinetic energy) of the electron, b) the mean free path of the electron and c)
the phase relaxation length ( the length over which the particle loses memory of its phase)
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of the electron. Ohmic behavior is guaranteed only when all these length scales are small
compared to the size which happens for any macroscopic object. These lengths actually
vary greatly depending on the material and also on the temperature. Typically, at low
temperatures, they vary between a nanometer for metals to a micrometer for quantum Hall
systems.

For mesoscopic wires, in general, quantum effects need to be taken into account. One
way of computing these conductances is by using the quantum mechanical formulation of
transmission and reflection through impurities and barriers. This formulation is called the
Landauer-Buttiker formulation and works for Fermi liquids. However, it does not include
interactions. But for one dimensional wires, interactions change the picture dramatically,
since the quasi-particles are no longer fermion-like. Hence the Landauer-Buttiker formalism
cannot be directly applied and one needs to compute conductances in Luttinger wires tak-
ing interactions into account right from the beginning. One way of doing this is by using
bosonization and this is the method that we will follow here.

The aim is to compute the conductance of a one-dimensional wire. First, we will com-
pute the conductance through a clean wire ( no impurities or barriers) and argue why the
conductance is not renormalized by the interaction. Then we will study the conductance
again after introducing a single impurity. Here, we will see that the interactions change the
picture dramatically. For a non-interacting one-dimensional wire, from just solving usual
one-dimensional quantum mechanics problems, we know that we can get both transmission
and reflection depending on the strength of the scattering potential. But for an interacting
wire, we shall find that for any scattering potential, however small, for repulsive interactions
between the electrons, there is zero transmission and full reflection (implies conductance is
zero, or that the wire is ‘cut’) and for attractive interactions between electrons (which is of
course possible only for some renormalized ‘effective’ electrons), there is full transmission
and zero reflection (implying perfect conductance or ‘healing’ of the wire).

Ballistic conductor

Let us first define the conductance of a mesoscopic ballistic conductor (i.e., a conductor
with no scattering) without taking interactions into account. We said earlier that the usual
definition of conductance as G = O’% breaks down for mesoscopic systems. For instance,
it is seen that instead of the conductance smoothly going down as a function of the area
or width of the wire W, it starts going down discretely in steps, each of height 2¢?/h.
Also as L decreases, instead of increasing indefinitely, G saturates at some limiting value
G.. The general understanding now, is that as the wire becomes thinner and thinner, the
current is carried in a very few channels, each of them carrying a current of 2e%/h (two
for spin degeneracy) until we reach the lowest value which is just a single channel (which
we interpret as the lowest eigenstate of the transverse Hamiltonian) carrying this current.
Moreover, as the length decreases, the resistance does not decrease indefinitely but instead
reaches a limiting value. One way of understanding this is to simply consider this to be a
contact resistance, independent of the length of the wire, which arises simply because the
conductor and the contacts are different. One cannot make the contacts the same as the
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conductor, because then our assumption that the voltage drop is across the conductor alone
does not make sense. That makes sense only if we assume that the contacts are infinitely
more conducting than the conductor. So we are finally left with a non-zero resistance and
the wire does not become infinitely conducting. In fact, in this limit, the conductance or
resistance of the wire is purely a 'boundary’ property and the ‘conductivity’ of the wire has
no real significance. In fact, whether we get a finite conductivity or infinite conductivity
depends on how one defines it.

However, for a single channel wire, clearly, the wire is one-dimensional and we know that
interactions can change the picture drastically. The question that we want to answer here
is precisely that. What is the conductance of a clean one-dimensional interacting wire or
Luttinger wire?

Computing conductance of a clean one-dimensional (mesoscopic) wire

(a) Without leads

First, we shall perform a calculation to compute the conductance of a Luttinger lig-
uid without any consideration of contacts or leads. (We shall restrict ourselves to spinless
fermions since spin only increases the degrees of freedom and gives an overall multiplicative
factor of two in the conductance). The conductance of a wire is calculated by applying an

electric field to a finite region L of an infinitely long wire and the current I is related to the
field as

I(x) = /OL dx’/ Z—: e “o,(x, 2" )E, ('), (191)

where E,(2) is the frequency w component of the time Fourier transform of the electric
field. The conductivity o, (z,x’), in turn, is related to the (imaginary time) current-current
correlation function by the usual Kubo formula as

2 /B .
oule,a) === [T dr < Toj(a, )i, 0) > e (192)
w JOo

where 7 = it, w = iw + €, T is the (imaginary) time ordering operator and j(x,7) is the
current operator. Both these formulae are standard in many books [[4] on many body
techniques, so here we will confine ourselves to just describing what they mean. The first
equation describes the current as a response to an electric field (externally applied plus
induced) of frequency w. The proportionality function is the conductivity. To get the usual
Ohmic formula, all we need to do is replace o = god(x — 2’) or remember that the o(z,z’)
is generally a function which is centered around z ~ z’ and which falls off sufficiently
fast elsewhere. The point for mesoscopic systems is that the length of the wire is roughly
comparable with the range of o(z, z"). Hence, the current gets contributions from the electric
field all over the wire, which is different from what happens in the usual case, where the
current at a point gets contributions only from the electric field very near that point. The
second equation tells us that the conductivity is related to the current-current correlation
function. This is derived by computing the current /(z) in a Hamiltonian formulation to
first order in the perturbation which is the applied electric field. The Euclidean formulation
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is used so that the generalization to finite temperature calculations is straightforward, but
we shall only work at zero temperature and hence take the § — oo limit.

Our aim here will be to compute the current-current correlation function and hence the
conductance for a Luttinger wire using bosonization. We shall denote the Euclidean time
action of a generic Luttinger liquid as

Sp = g [[dr [ dr [(0:0) +0(0:6)7) (193)

(Note that in the spin model and Hubbard model, 7 was replaced by it). The current can
directly be expressed in terms of the boson operators as

?

e 7) = vlon = pr) = =06 (194)

(The extra factor of i is because we are now using imaginary time 7). Our first step is to
obtain the correlation function < j(z, 7)j(z’,0) > which is similar to the correlation functions
for spinless fermions that we computed earlier when we were studying spin models, except
that we are now interested in the Euclidean correlation functions. Since we can pull out the
O, outside the correlation functionf], all we have to do is compute the propagator given by

G(r,2,2") =< Tr¢(x,7)$(2',0) >, (195)

or equivalently, its Fourier transform
B _
Gol(z,2') = / dr < Tod(x, 7)o (', 0) > e . (196)
0

The conductivity is then given by

62

B _
os(x,2') = =, dr < T,0:¢(x, 7)0;¢(2',0) > e ™7
e*w

= TG@ (x,2') . (197)

So now, to compute the conductance, all we have to do is compute the propagator for the
boson with a free Euclidean action. The propagator satisfies the equation

1 w?
% (—v0? + T)G@(I,I/) =0z —2'), (198)

from which upon integrating once, we get

v INF =4
EamG(a;,a;) =1 (199)

r=x'

4See R. Shankar in [@} for subtleties in pulling out the derivative outside the time ordering operator.

One gets an extra term which cancels another term that we have ignored here, a singular c-number term.
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The solution to the differential equation is given by

Gz, x') = AelE=a)/v < g
Ae@l@=alv 0 5 gt (200)

Using this in Eq. ([99), we see that

200

A =1 201
Eya = 1, (201)
K /
so that Gg(z,2') = 2Te|w|(m_m)/”, r<a
w
K _ /
= ﬁe_“"'(m_m)/”, x>a (202)
Ke? . /
leading to og(z,2') = 2—66“‘"@_“/”, x <
T
Ke? __ /
= 2—66_“"'@_”/”, x> (203)
T

The point to note is that in the @ — 0 limit or static limit, the conductivity is finite
and does not drop down to zero even for large |z — z/|. This is the main difference from
macroscopic conductivities which always decay to zero as |r — z'| — oo. Furthermore, for
x = ', even for arbitrary @, the Green’s function has a finite value, which is responsible for
the saturation value of the conductance. This only happens for a one-dimensional Green’s
function. In any other dimension, the Green’s function and hence conductivity will be
divergent at x = 2. Using this in the equation for the current, Eq. ([[97]) for a static electric
field £, (7) = 2m0(w)E(z), we finally get

Ke* (L Ke?
I(z) = ?/o d' B(a') = 5~ (V— V) (204)

which gives the final result for the conductance as

_ Ke?

- 205
9= (205)

There are several subtle points to note in this calculation. One is that we have taken the
w — 0 before |x — 2| — oo, which is opposite to the usual order of limits in the Kubo
formula. The physical justification for the usual order of limits in the Kubo formula comes
from the fact that if we first take w to zero, then we have a static electric field, which is
periodic in space. This means that the charge will seek an equilibrium distribution after
which there will be no flow of current. Setting |z — 2’| — o0, on the other hand, means
taking the thermodynamic limit or infinite length limit first, which allows for an unlimited
supply of electrons and is probably equivalent to having reservoirs even if we have do not
really have infinite length wires. For the mesoscopic systems, however, it is not correct to
take the thermodynamic limit first. The physical situation here, is that one applies a static
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electric field to a finite length of the wire L, which in fact, is comparable to the range of the
conductivity. If we take the |z — 2’| — oo limit first, then it is as if we are looking at a long
length of the wire beyond the range of the conductivity. This is the usual limit and we will
get the usual Ohm’s law, which however, is wrong in this context. In fact, it is instructive
to try out the calculation with the other order of limits -i.e. by computing o;(q) and taking
the ¢ — 0 limit first.

(H.W. Exercise 9: Try the above).

The second point is something we have mentioned earlier - i.e., we have not taken contacts
or leads into account. This was the initial computation by Kane and Fisher [[q] and they
obtained the answer in Eq. (B07) that the conductance of the clean wire depends on the
interaction parameter K.

(b) Including leads

When any experiment is done, however, one does have explicit contacts or leads. In fact,
when a measurement was actually done under conditions where one expected to measure the
Luttinger parameter K, it was found to ~ 1, instead of 0.7, which was expected from other
measurements of the K value of the wire. (We will see how else K can be measured after
considering impurity scattering). So we need to understand what happens when we actually
try to measure the conductance of a Luttinger wire.

How do we model the leads? The simplest model to consider is that the Luttinger wire is
connected to Fermi liquid leads on either side. (See Fig. 6). So the regions A and C can be
modelled by the same bosonic model with K; = 1 and the wire in region B can be modelled
as before as a Luttinger wire with K = K. But now, we have to put appropriate boundary
conditions at the points P and P’ between A and B and between B and C respectively. Note
that we are making the assumption that one has the same ¢ field or same quasiparticle in
all the three regions and it is only the LL parameters which are changing. Although, it
is interesting to compute the conductance in this case, it is still not clear that this brings
the calculation any closer to real experiments, because real experiments will have three
dimensional reservoirs.

We start with the action in all the three regions in Euclidean space as

L (00 o)
S:—/d/d 8,0)? . 206
E=5 0 T I[K(at)v(@_l_[((a:)( o)) (206)
with K(x) = K, v(x) = vy in regions A and C and K(z) = K, v(x) = v in region B.
This is just the free action of a scalar field in all the three regions. Fourier transforming the
imaginary time variable with respect to @, we obtain

1 /8 L 02 P? v(z) )
S L0)?) 2
Si 2/0 dT/O @ e Ty %) (207)
from which we see that the propagator satisfies the equation
v(x) w? N _ ,
{—am(K(g:)am) + K(a:)v(x)} Go(z,2") =6(x —2') . (208)
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Now let us consider the four regions. We assume that the interaction parameter changes
abruptly at P and P’, but that the Green’s function is continuous and the derivative of the
Green’s function has the correct discontinuity at all the boundaries. So now, we need to
solve the Green’s function equation subject to these boundary conditions. Let us choose z’
to lie between 0 and L. It is then easy to see that the solution is of the form

Go(z,z') =  Aelle/v for <0
= BellRvy cemlPlrv for 0 <z <af
=  Delllvy perlPlRlv for o < 2 < L
=  Fe Pl for x> L (209)

for semi-infinite leads, because we have assumed that the lengths of the leads are sufficiently
long compared to L so that we do not need to put any further boundary conditions on them.
Note that here the Green’s functions will no longer be functions of x — 2’ since we have
explicitly broken translational invariance. The constants A, B, ..., F' are found by matching
the boundary conditions. Since we are interested in the DC conductance, we only need the
solutions for w — 0 which are easy to obtain and are given by

Ky
20’

K+ K K, — K
e T P S B (210)

A:F:
4o 40

B=F
From this, we see that o5 (z,2’) is z and 2’ independent in the @ — 0 limit and is equal to
Kpe?/2m in all regions from which we find the conductance (using Eq. ([91)) given by

K L 62

I
— = . 211
\%4 2 (211)

9

is the same in all the regions. Thus, the conductance is determined by the K of the leads,
which is just K; = 1 for Fermi liquid leads and does not depend on interactions in the
wire. This is a highly counter-intuitive answer! It is telling us that whether we measure
the conductance in the leads or in the quantum wire, we get the same answer, so long as
we take into account the fact that we are attaching leads, which allow for the fermions to
enter and leave the quantum wire. At a very naive level, one may understand this by saying
that since the wire itself has no impurities, the only source of resistance is the contact effect
between the leads and the wire, which has nothing to to do with the interactions in the wire.
However, remember that we have taken semi-infinite leads and abrupt contacts and we are
only looking for DC conductance. If any of these assumptions are relaxed, certainly, there
are differences in the three regions and one could get more interesting answers.

In fact, using a Landauer-Buttiker scattering approach [[§], there has been some attempt
to understand these results more intuitively.

Physically, the difference between this computation and the earlier one is that any real
measurement requires Fermi liquid leads. So the end result is that the measurable conduc-
tance of an interacting one-dimensional wire is simply given by g = e2/h for spinless fermions
and g = 2¢?/h for fermions with spin [[[7].
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9 Transport in the presence of isolated impurities

Computing conductance with a single impurity
Now let us consider the case when there is a single impurity at the origin. At first, we
will model the impurity as a weak barrier and add a term to the action of the form

Sint = / dzdr V(2! (2)w(z) . (212)

We assume that V' (z) is weak and is centred around the origin. For instance, we can choose
V(x) = Ad(z), where X is much less than the Fermi energy.

First, let us think of what happens when we introduce such a perturbation in a non-
interacting wire. In that case, all one has is a one-dimensional quantum mechanics problem
with a d-function potential at the origin. We can find the reflection and transmission prob-
abilities for a single particle with momentum k as

N k?

=Sy N2 1R

(213)
So for any A, one gets both reflection and transmission. To get the total current, we just have
to sum up the contributions of all the electrons close to the Fermi surface. But it is clear
that there will be non-zero conductance for any potential, with the amount of current being
transmitted depending on the strength of the potential. However, for the Luttinger wire,
since there exists interactions between electrons in the wire, and no convenient quasiparticle
picture, one cannot solve the problem this way. We have to use the bosonized field theory
and include the impurity potential as a perturbation.

Let us first rewrite the impurity potential in terms of the left- and right- moving low
energy Dirac modes. We find that

Wie)(e) = (ke ™" + L) (rer” e )
= g + Yl + e 2Rl 4 eiRrTgly g

1 i2y/T(¢r+éL+2kp2)

1 .
= —— 0,0+ —(n —i2y/m(pr+or+2kpz)
\/7_'(' ¢ + ey (anLe )

+ninge

Y

(214)

where the last line is obtained using standard bosonization. So the full action is given by

A A
S =Sg+ Sint = Sg — \/—%&Eaﬁ(O) + %/dT cos 2¢/7[dr(0) + ¢1(0)] , (215)
where Sg is given in Eq. ([[93) and we have incorporated the fact that the potential only
acts at the origin. Moreover, we have simply set both 77;377L and 772773 to be one, with
the knowledge that in correlation functions, we will compute O(7)O(0) so that the Klein
factors disappear using ng, LU% L= 771z iR/ = 1 The first term due to the interaction

can be taken care of by a simple redefinition of 0,¢ — 9,¢' = 9,¢ + A\/2y/m, which makes
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no difference to the conductance. This could have been seen even from the fermion terms
from which it came. The ’gb;z’l/f}g + ¢2¢L term only causes scattering at the same Fermi point
with momentum transfers ¢ << 2kpg. This does not change the direction of propagation
of the particles and hence does not affect conductance in any appreciable way. But the
cosine term, on the other hand, occurs because of backscattering of fermions from the origin.
These represent scattering with g ~ |2kg| - i.e., from the left branch to the right branch and
vice-versa and change the direction of propagation of the particles. These scatterings will
definitely affect the conductance. The action with this perturbation is no longer quadratic
and cannot be exactly solved. However, since A is a weak perturbation, one can try to use
perturbation theory and the renormalization group approach to see the relevance of this
perturbation at low energies.

What is the question that we want to answer? We want to compute the conductance
through this barrier at low energies. One way to do that is to see whether this barrier
coupling strength grows or becomes smaller as we go to lower energy scales. To check that,
we need to perform the usual steps of a renormalization group analysis.

Here since the perturbation term is fixed in space, it is more convenient to first integrate
out the variables away from the origin and write down the action purely in terms of the
¢(x = 0,7) variables. Since integrating out quadratic degrees of freedom is equivalent to
using equations of motion for those degrees of freedom, we write down the equations of
motion for the action S; as

-2
Po—Lh=0=0—k6=0. (216)
v
The solution to the above equations are given by

6 = AeFl* >0
Ae7Hlz g <0, (217)

where A = ¢(x = 0, 7). Using this solution in the action, we get the effective action in terms
of p(@0) = [¢(x = 0,7)e“"dr as

1 diw [0 @? 1 do o2
Sp = — _/ d 22 2ke | W 2ka _/_/ d 2,2 —2kz | Y _oks
0= 9k ) o AR e e o | on )y de ke A e
B 1 d@ 2¢2@2 [ 62km|0 N 6—2km |oo ]
2K ) 2n w 2k 'm0 9k 0
1 do |
= = [ 5 [@le’ (218)

using k = |w|/v. Notice the singular dependence on the Matsubara frequency |w|. The reason
for its appearance is the following. In real space, even for a quadratic action, all degrees of
freedom (dof) are coupled. ( It is only in Fourier space that every mode is decoupled). So
when we integrate out all dof except the one at the origin, the dispersion of this degree of
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freedom can change and has changed. This is why we get the modulus factor in the effective
action. When we Fourier transform back to imaginary time, we get

d 1 dw(r—7' * /
Slelgh = i[5 [ [ar st o)

= —/deT/(TfiT/)ng*(T)gb(T/) , (219)

i.e., an explicitly non-local interaction in imaginary time.

So now, we have an action solely in terms of the variables at the origin with the action
given by

1 dw ., 5 div _
S= 5 [ 5o 1916(@)? + A / 2 cosl2vmo(@)] (220)

The RG analysis now involves finding out how the coefficient A behaves as we go to lower
and lower energies. Before we perform the RG analysis, we may ask why would we want
to go to lower energy scales? The general idea is that in spite of the fact that in different
physical problems or models, the parameter A may be slightly different, qualitatively many
such models may have the same behavior. This is because they are all governed by the same
fixed point Hamiltonian with the fixed point Hamiltonian being defined as the Hamiltonian
one gets when the RG flow stops. So the aim is to keep reducing the energy scale till the RG
flow stops so that we can find out the appropriate fixed point Hamiltonian for this model.

In this problem, we want to find out whether the fixed point Hamiltonian has a large
barrier or a small barrier. To find that out, let us perform the three steps of the renormaliza-
tion group transformation. We choose a high frequency cutoff A, which is the real physical
cutoff of the theory. Then we rescale A — A/s with s > 1 and then divide ¢(©) into ¢ (@)
(slow modes) and ¢~ (w) (fast modes) for the modes with frequencies less than or greater
than the cutoff A/s respectively. Finally, we integrate out the fast modes, which are the
modes between A/s and A and rescale v — &' = sw or 7 — 7 = 7/s to get back to the
original range of integrations. To lowest order, (tree level contribution) we find that

)\/dT cos 2y (x = 0,7) — )\sl_d/dT cos2y/Tp(x =0,7) , (221)

where d is the dimension of the cosine operator. This was explicitly computed earlier and
we found that d = K. The RG equation is now easily obtained by taking s = 1 + dl, for
infinitesimal dl. We find that the new )\ after rescaling is given by

N = A1 +d) K
= N-A=(1-K)\d
A

= =R\ (222)

Normally, one would have had coupled RG equations for A and K. But here since 1/K is
the coefficient of a singular operator, it does not get renormalized to any order.
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Notice that in Eq. (221]), the coefficient of the operator gets rescaled by a factor s'—¢

rather than s>~% as we had mentioned earlier when we computed the dimension of the cosine
operator in the spin model. The difference is that the operator in the spin model, in the
action, required integration over both space and time. So we rescaled both the space and
time ( or equivalently both the momentum and the energy). However, in this case, the
operator exists only at a fixed space point. So we only need to integrate over the time
coordinate. Hence, the naive scaling dimension or engineering dimension of the operator is
1 and not 2. Such operators are called boundary operators. You will learn more about them
in the course on boundary conformal field theory.

The RG equation is now trivial to analyze. For any K > 1, (which corresponds to
attractive interactions between the electrons), the A renormalizes to zero and for any K < 1,
(corresponding to repulsive interactions), it grows stronger and stronger. In other words, for
K > 1, the fixed point Hamiltonian is just the free boson Hamiltonian with no barrier and
for K < 1, the fixed point Hamiltonian has two disconnected wires to the left and right of the
origin. For K = 1, which is the limit of no interactions in the fermionic model, the coupling
is marginal. (This was expected, since we know that for free fermions, both transmission and
reflection occurs depending on the strength of the barrier potential). Thus, for attractive
interactions, the barrier renormalizes to zero and the wire is ‘healed’, whereas for repulsive
interactions, the barrier renormalizes to infinity and the wire is ‘cut’. Note that both these
answers are completely independent of the strength of the barrier potential [[LG].

Strong barrier limit

Since, we are doing perturbation theory, we cannot assume that this result holds for
arbitrary A. It is strictly valid only for A ~ 0. Once A ~ 1, the perturbative analysis in A
breaks down. So it is worthwhile to try and see what happens in the other limit. Supposing
we start with two decoupled wires and then allow a small hopping between the two wires.
Will this hopping grow at low energies and heal the wire or will it renormalize to zero?

Here, we start with two semi-infinite Luttinger liquid wires and analyze the effect of
adding a small hopping term coupling the two wires at x = 0. The models for x < 0 and
x > 0 are given by the action

L @) o)
Sp =3 /0 dr /0 W o) 7o o) (223)

(x)v

for ¢+ =< and ¢ => respectively. We can also write it in terms of the dual variables as

Sp = % /0 * dr /0 " an (B9 9 007 + K (@)o(e) (0,07 (224)

v(x)

Note that in terms of the dual variables, the action has 1/K in position of K. This is because
the roles of the fields and the canonically conjugate momenta have interchanged. The fact
that the wire is cut implies that at the point x = 0, there is zero density of either < or >
particles - Lo (z = 0) = 0 and ¢Lep (z = 0) = 0. In the bosonic language, this is imposed
as 2¢/mo<(r = 0) = 2y/7p~(x = 0) = 7/2 (and also 9,¢(x = 0) = 0 as can be seen from Eq.
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(BT4)). Now a term which hops an electron from one wire to another in the Hamiltonian is
just

H = —t[Ylys +hcl
= —t [Yhtrs + ) rs + Pk e + I re
+ UL VR + VI R + Vh brs + VR, (225)

where the second equation involves the left and right moving fields and we have already set
x = 0. Here, again, the terms that involve fields at one Fermi point are low energy forward
scattering terms which do not affect the conductance. In terms of the bosonic fields too, they
can be taken care of by trivial redefinitions. But the intra-Fermi point scatterings which will
affect the conductance can be bosonized and written in the action as

55 = —t / dr [ n}_mrse i @r<tons) 4t po omil@rs+on)
_I_ nTR<nL>6_i(¢R<+¢L>) _I_ n}r{>nL<6_i(¢R>+¢L<)] X (226)

Now, we impose the boundary condition on the bosonic fields that we mentioned above,
which constrains ¢(0) = ¢r(0) + ¢1(0) to be equal to 7/2. Using this, we can express the
above equation solely in terms of the ¢ (0) — ¢r(0) = 6(0) fields and get

5S — 4t / dr cos(f — 0.) , (227)

where once again, we have been able to drop the Klein factors after checking that they do
not lead to any extra minus signs in the correlation functions. (Physically, the reason why
we only get the ; term at the origin is because the constraint has set ¢;(x = 0) = 7/2).
Computing the dimension of this operator, we see that to leading order, the RG equations

are given by ;
t 1
v (1 K)t .
(K has been replaced by 1/K because we now have to compute the dimensions in the dual
action). Thus, for repulsive interactions (K < 1), the hopping term is irrelevant and flows
to zero. This confirms the weak barrier calculation that the wire is insulating. On the other
hand, for attractive interactions, the hopping strength grows, ultimately healing the wire.

This again is in accordance with the weak coupling analysis.

(228)

Intermediate fixed points?

We have started from a wire with a weak barrier and shown that under repulsive interac-
tions, the barrier strength grows. We have also started from two decoupled wires and shown
that for repulsive interactions, any small hopping term renormalizes to zero. Hence, it seems
plausible to conclude that for repulsive interactions in the wire, any barrier will cut the wire
and the conductance goes to zero. However, one should keep in mind that our analysis is
strictly true only for A\, ~ 0. Hence, it could happen that for intermediate values of the
barrier strength, one could have a pair of non-trivial fixed points (see Fig. 7).
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Conductance at finite voltage and temperature

The earlier analysis only tells us how the barrier strength or the tunneling amplitude
grows or falls as we go to low energies. But instead of allowing the energy scale to become
arbitrarily low, we can cut off the energy scale of renormalization at some finite energy scale,
which could be the temperature 7" or the voltage V. Note that the energy scale at which we
want to cutoff the integral is related to the initial high energy scale at which we start the
RG as E = Eye~!. So for attractive interactions for which weak barriers are irrelevant and
for which one would expect perfect transmission at very low energies will have power law
corrections when we put the lower energy cutoff as £. In that case, we have

A d\ In(Eo/E)
- = di(l - K 229
5= (1-K). (220)

which means that the effective barrier strength A is proportional to Ag(E/Eo)X~t. So by
choosing £ =T,V , we see that one can get power law corrections to the naive conductance
at T'— 0,V — 0. In other words, if we measure the conductance at a finite temperature 7T,
rather than at T' = 0, instead of zero conductance for K < 1, we will get conductances which
go as T~ (roughly the inverse of the barrier strength). Similarly, if instead of measuring
conductances as V' — 0, we measure them at finite voltages, we find that the conductances
go as V7% On the other hand, for repulsive interactions, we need to start at the strong
coupling limit with two decoupled Luttinger wires and allow for a small hopping, which is
irrelevant in the RG sense. Here, again, if we cutoff the lower energy scale at E, we expect
instead of zero transmission, power law corrections of the form I ~ V1=K and I ~ T1-1/K,
The only difference in the analysis at the strong coupling fixed point and the weak coupling
fixed point is that K gets replaced by 1/K as we saw in the RG equations. This, in fact,
is one way in which K can be measured in experiments. They could explicitly make a
constriction in the quantum wire and measure conductances through it and extract K.

10 Concluding Remarks

Almost any interacting quantum system in one dimension which is gapless and has a linear
dispersion for the low-energy excitations can be described as a Luttinger liquid at low energies
and long wavelengths. As we have seen, the properties of a Luttinger liquid are determined by
the two parameters v and K. These in turn depend on the various parameters which appear
in the microscopic Hamiltonian of the system. Some examples of systems where Luttinger
liquid theory and bosonization can be applied are quantum spin chains (including some spin
ladders), quasi-one-dimensional organic conductors and quantum wires (with or without
impurities), edge states in a fractional quantum Hall system, and the Kondo problem. Some
of these examples have been discussed above.

Antiferromagnetic spin-1/2 chains have a long history going back to their exact solution
by the Bethe ansatz. In recent years, many experimental systems have been studied which are
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well-described by quasi-one-dimensional half-odd-integer spin models with isotropic (Heisen-
berg) interactions. Such systems behave at low energies as a K = 1/2 Luttinger liquid with
an SU(2) symmetry. It seems to be difficult to vary K experimentally in spin systems. In
contrast, a single-channel quantum wire (which is basically a system of interacting electrons
which are constrained to move along one particular direction) typically has two low-energy
sectors, both of which are Luttinger liquids (except at special densities like half-filling). One
of these is the spin sector which again has K = 1/2. The other one is the charge sector
whose K value depends on a smooth way on the different interactions present in the system.
Finally, the edge states in a fractional quantum Hall system behave as a chiral Luttinger lig-
uid with K taking certain discrete rational values; the value of K can be changed by altering
the electron density and the magnetic field in the bulk of the system. For all these systems,
many properties have been measured such as the response to external electric and magnetic
fields (conductivity or susceptibility) and to disorder, scattering of neutrons or photons from
these systems, and specific heat; so the two Luttinger parameters can be extracted from
the experimental data. The measurements clearly indicate the Luttinger liquid-like behavior
of these systems with various critical exponents depending in a non-universal way on the
interactions in the system.

On the theoretical side, a large number of exactly solvable models in one dimension have
been shown to behave as Luttinger liquids at low energies [f}, [J]. These include
(1) models with short range interactions which are solvable by the Bethe ansatz, such as the
XXZ spin-1/2 chain (where K can take a range of values from 1/2 to oo; this includes the
XY model with K = 1 and the isotropic antiferromagnet with K = 1/2 as special cases),
and the repulsive d-function Bose gas (where K can go from 1 in the limit of infinite repulsion
to oo in the limit of zero repulsion), and
(ii) models with inverse-square interactions such as the Calogero-Sutherland model (where
K can go from 0 to co) and the Haldane-Shastry spin-1/2 model (where K = 1/2).
The models of type (ii) are ideal Luttinger liquids in the sense that they are scale invariant;
the coefficients of all the marginal operators vanish, and therefore their correlation functions
and excitation energies contain no logarithmic corrections. This property makes it partic-
ularly easy to study these systems numerically since the asymptotic behaviors are reached
even for fairly small system sizes.

What has been left out?

Finally, let us mention the various important things in this field which has been left out.
We have only worked with spinless fermions in the transport analysis. When we include
spin and do not destroy the SU(2) spin symmetry of the system, the results are very similar
to the spinless fermion case. For repulsive interactions, the barrier becomes infinite and
for attractive interaction, the barrier is healed. However, when the SU(2) symmetry is
destroyed, there exists possibilities of intermediate (non-trivial) fixed points where either
spin or charge can be transmitted and the other reflected. The other thing that has been
left out is the phenomenon of resonant tunneling with two impurities. This is an interesting
result, because it says that for repulsive interactions, a single impurity cuts the wire, but
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with two impurities, one can have particular energies, where there can be transmission.
The reason, of course, is quantum mechanical tunneling. Here, the energy levels, are the
energy levels of the quantum dot that is formed by the two impurities and one can have
resonant tunneling at these energy levels. If we include interactions between the electrons
on the island, (which is naturally included in the bosonized formalism), we can obtain the
physics of the Coulomb blockade. The other important thing that we have left out, from a
physical point of view, is what happens if there is a finite density of random impurities. In
general, one would expect Anderson localization and no transport. But there are regimes of
delocalization as well in the phase diagram. Finally, a very important application where the
physics of the Luttinger liquids has actually been experimentally seen is in the edge states
of the fractional Quantum Hall fluid. Since here, the edge states are chiral, a lot of the
complications of backscattering due to impurities are avoided and it is possible to explicitly
construct constrictions and allow tunneling through them. Here, both at the theoretical and
experimental level, there are a lot of beautiful results that are worth understanding.

Another important topic not covered here is non-abelian bosonization [J]. This is a
powerful technique for studying one-dimensional quantum systems with a continuous global
symmetry such as SU(2). For instance, isotropic Heisenberg antiferromagnets and Kondo
systems are invariant under spin rotations, and they can be studied more efficiently using
non-abelian bosonization.

To conclude, let us just say that low dimensional systems and mesoscopic systems have
gained in importance in the last few years. Although currently, much of the theoretical work
in mesoscopic systems has only involved conventional Fermi liquid theories, it is clear that
there are regimes where strong interactions are very important. We expect that bosonization
will be one of the important non-perturbative tools to analyze such problems for a few more
years to come.
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Figure Captions

1. One-particle momentum distribution function. (a) shows the finite discontinuity at the
Fermi momentum kg for a system of interacting fermions in more than one dimension. (b)
shows the absence of a discontinuity in an interacting system in one dimension.

2. Picture of the Fermi sea of a lattice model; the momentum lies in the range [—m, 7]. The
occupied states (filled circles) below the Fermi energy Er = 0 and the two Fermi points at
momenta +kr are shown.

3. The one-particle states of a right-moving fermion showing the occupied states (filled
circles) below zero energy and the unoccupied states above zero energy.

4. Two possible particle-hole excitations of a right-moving fermionic system showing the
occupied states.

5. The one-particle states of a left-moving fermion showing the occupied states below zero
energy and unoccupied states above zero energy. Note that the momentum label £ increases
towards the left.

6. The single channel quantum wire with Fermi liquid leads on the left and the right.

7. Renormalization group flow diagram for a quantum wire with repulsive interactions in the
presence of an impurity or barrier. In the absence of any non-trivial fixed points, the stable
fixed point is the strong coupling fixed point. But perturbative analyses at the strong and
weak coupling fixed points cannot rule out a pair of non-trivial fixed points at intermediate
strengths of the barrier potential.
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