STM on High-Tc Superconductors
This talk:

- Basic STM on cuprates: inhomogeneity, qp interference, signs of d-wave
- New technique: Watching superconductivity develop on the atomic scale
- Precise measurements of electron-boson coupling on the atomic scale
- Connection between normal and superconducting states
This talk:

- Basic STM on cuprates: inhomogeneity, qp interference, signs of d-wave
- New technique: Watching superconductivity develop on the atomic scale
- Precise measurements of electron-boson coupling on the atomic scale
- Connection between normal and superconducting states

Pairing is local & occurs above T_c (OP & OV samples)
This talk:

- Basic STM on cuprates: inhomogeneity, qp interference, signs of d-wave
- New technique: Watching superconductivity develop on the atomic scale
- Precise measurements of electron-boson coupling on the atomic scale
- Connection between normal and superconducting states

Electron-boson coupling?

Pairing is local & occurs above Tc (OP & OV samples)
This talk:
• Basic STM on cuprates: inhomogeneity, qp interference, signs of d-wave
• New technique: Watching superconductivity develop on the atomic scale
• Precise measurements of electron-boson coupling on the atomic scale
• Connection between normal and superconducting states

Pairing is local & occurs above Tc (OP & OV samples)

Electron-boson coupling?

Superconductor mimics normal state
Families of Hole-doped Cuprate Superconductors

<table>
<thead>
<tr>
<th>Holepan Family</th>
<th>Bi Family</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb Family</td>
<td>1L Ti Family</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La Family</td>
<td>2L Family</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YBCO Family</td>
<td>Hg Family</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Family</th>
<th>T_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca$_2$Na$_2$CuO$_2$Cl$_2$</td>
<td>26</td>
</tr>
<tr>
<td>Pb$_2$Sr$_2$La$_2$Cu$_4$O$_8$</td>
<td>33</td>
</tr>
<tr>
<td>La$_2$MgCuO$_4$</td>
<td>39</td>
</tr>
<tr>
<td>Bi$_2$Sr$_2$La$_2$CuO$_8$</td>
<td>38</td>
</tr>
<tr>
<td>TIBa$_2$La$_2$CuO$_8$</td>
<td>45</td>
</tr>
<tr>
<td>Sr$_2$CuO2F${2+x}$</td>
<td>40</td>
</tr>
<tr>
<td>La$_2$CuO$_4$</td>
<td>45</td>
</tr>
<tr>
<td>Tl$_2$Ba2CuO${6+\delta}$</td>
<td>93</td>
</tr>
<tr>
<td>HgBa2CuO${4+\delta}$</td>
<td>98</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Family</th>
<th>T_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>La$_2$Sr$_2$Ca$_4$Cu$_2$O$_8$</td>
<td>60</td>
</tr>
<tr>
<td>(La${1.5}$Ca${0.5}$)(Ba${1.75}$Ca${0.25}$)$_2$Sr$_2$Cu$_2$O$_y$</td>
<td>80</td>
</tr>
<tr>
<td>Bi$_2$Sr$_2$Ca$_4$Cu2O${8+y}$</td>
<td>90</td>
</tr>
<tr>
<td>Pb2Sr2Y${1.4}$Ca${6.6}$Cu8O${20.8}$</td>
<td>80</td>
</tr>
<tr>
<td>Y${1.4}$Ca${6.6}$Ba$_2$Cu8O${20.8}$</td>
<td>90</td>
</tr>
<tr>
<td>Bi$_2$Sr$_2$Ca4Y${1.4}$Cu2O${8+y}$</td>
<td>96</td>
</tr>
<tr>
<td>YBa$_2$Cu3O${7+y}$</td>
<td>93</td>
</tr>
<tr>
<td>TlBa$_2$CaCu2O${7.6}$</td>
<td>110</td>
</tr>
<tr>
<td>HgBa$_2$CaCu2O${7.6}$</td>
<td>110</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Family</th>
<th>T_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi$_2$Sr$_2$Ca$_4$Cu2O${10+\delta}$</td>
<td>110</td>
</tr>
<tr>
<td>TIBa$_2$Ca$_2$Cu2O${13+\delta}$</td>
<td>131</td>
</tr>
<tr>
<td>TiBa$_2$Ca$_2$Cu2O${13+\delta}$</td>
<td>133</td>
</tr>
<tr>
<td>Tl$_2$Ba$_2$Ca$_2$Cu2O${10+\delta}$</td>
<td>125</td>
</tr>
<tr>
<td>HgBa$_2$Ca$_2$Cu2O${10+\delta}$</td>
<td>135</td>
</tr>
</tbody>
</table>

Highest $T_c \sim 135$K

From Esaki et al 2004
Phase Diagram of Hole Doped Cuprates

Hole Density in CuO$_2$ Plane

Temperature

Anti-Ferromagnetism

Superconductor

Normal Metal ?

5% 12.5% 16% 30%
Phase Diagram of Hole Doped Cuprates

- Temperature
- Superconductor
- Normal Metal?
- Anti-Ferromagnetism

Hole Density in CuO$_2$ Plane
- 5%
- 12.5%
- 16%
- 30%

Disordered Magnetism & Stripes
Phase Diagram of Hole Doped Cuprates

- Temperature
- Anti-Ferromagnetism

Stripes: Spin/Charge Ordering

Hole Density in CuO$_2$ Plane
- 5%
- 12.5%
- 16%
- 30%

Superconductor

Normal Metal?
Phase Diagram of Hole Doped Cuprates

- Temperature
- Hole Density in CuO$_2$ Plane

- Pseudogap “Phase”
- Superconductor
- Anti-Ferromagnetism
- Disordered Magnetism & Stripes
- Normal Metal ?
Phase Diagram of Hole Doped Cuprates

- Normal Metal ?
- Anti-Ferromagnetism
- Pseudogap “Phase”
- Fluctuating Superconductor
- Disordered Magnetism & Stripes
- Superconductor

Hole Density in CuO$_2$ Plane:
- 5%
- 12.5%
- 16%
- 30%
What have been accomplished after 20 years?

- Superconducting state involves Cooper pairs
- The pair wavefunction has d-wave symmetry, change of sign and nodes
- Demonstrated by phase sensitive & angle resolved photoemission experiments
What have been accomplished after 20 years?

- The Fermi surface on the overdoped side of the phase diagram
- Large hole barrels for hole doped cuprates on overdoped side
- Strange partially gapped Fermi surface in underdoped side
- Nature of underdoped samples FS still highly debated

T>Tc Overdoped

T>Tc underdoped pseudogap state

Key Questions I:

- What is the correct microscopic Hamiltonian?

Reduce to one band Hubbard Model?

• Pairing Mechanism?

RVB Approach:

\[
\begin{align*}
\left| \uparrow_{r} \downarrow_{r'} \right> - \left| \downarrow_{r} \uparrow_{r'} \right> \\
\sqrt{5}
\end{align*}
\]

• nearest neighbor d-wave pairing

Anderson (1987); Kotliar & Lu (1988); others
Numerical Calculations of the Hubbard Model: n.n. d-wave pairing
- Somehow a retarded interaction can be constructed
- Perhaps at sufficiently high doping close to normal metal
- A Pairing glue? Even in the Hubbard model
- Example: Spin Fluctuations
Somehow a retarded interaction can be constructed
Perhaps at sufficiently high doping close to normal metal
A Pairing glue? Even in the Hubbard model
Example: Spin Fluctuations
Anderson-Scalapino Debate

Aspen 2007

See Science Letters 2007
Phil: No glue required!
Doug: A separation of energy scales as in BCS may be still possible
Key Questions II:

- When do pairs form? At Tc or above? $\Psi = |\Delta| \exp(i\Phi)$
- Pseudogap? What is it?
- Due to competing orders or pairing?
- Tc occurs due to phase coherence? paired above?
Key Questions II:

• When do pairs form? At Tc or above? \(\Psi = |\Delta| \exp(i\Phi) \)
• Pseudogap? What is it?
• Due to competing orders or pairing?
• Tc occurs due to phase coherence? paired above?

Experiment by Wang, Li, Ong and coworkers 2002
From PA Lee ‘00
Key Questions II:

- When do pairs form? At T_c or above? $\Psi = |\Delta| \exp(i\Phi)$
- Pseudogap? What is it?
- Due to competing orders or pairing?
- T_c occurs due to phase coherence? paired above?

Enhanced Diamagnetism Exp
Li, Wang, & Ong et al.
Gaiver Tunneling in the Cuprates:

Due to d-wave nature of the order parameter very sensitive to interface disorder.
Gaiver Tunneling in the Cuprates:

Due to d-wave nature of the order parameter very sensitive to interface disorder.

\[
\Delta_d = 40 \text{ meV} \quad \Gamma = 6 \text{ meV}
\]

\[d\text{-wave (}\Gamma=6\text{meV)}\]
Probing Electronic States With the STM

- **Imaging:**

 Tip trajectory at constant current is an image of the contours of constant electron density

 \[
 I(r, V) \propto \int \frac{E_{F+v}}{E_F} |\Psi(r, E)|^2 T(E) \, dE
 \]

- **Spectroscopy:**

 \[
 \frac{dI}{dV}(V) \propto \rho(r, V)
 \]

 Local density of state of the sample as a function of position & energy
High-Tc Material System: $\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_{8+\delta}$

At Optimal Doping for this system: $T_c \sim 93K$
High-Tc Material System: $\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_{8+\delta}$

At Optimal Doping for this system: $T_c \sim 93K$
Cleaved $\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_{8+d}$
Superconducting State Tunneling Spectra for an overdoped sample ($x=0.225$) $T_c=65$K sample
Superconducting State Tunneling Spectra for an overdoped sample (x=0.225) Tc=65K sample

\[dI/dV \text{ [pS]} \]

\[\text{Voltage [meV]} \]

\[\Delta_d = 40 \text{ meV} \]

\[\Gamma = 6 \text{ meV} \]

\[\text{DOS [arb]} \]
Spatial Variation of the tunneling spectra in superconducting state (overdoped doping Tc=65K, T=40K)
Previously reports of inhomogeneous gaps on 2212 has been made by Cren, Pan, Davis, Kapitulnik.

Inhomogeneous Gaps

overdoped sample

T < Tc (T = 30K, Tc = 68K)
Inhomogeneous Gaps

300 Å x 300 Å

Δ(mV)

18mV

38mV

overdoped sample

T < Tc (T = 30K, Tc = 68K)

Previously reports of inhomogeneous gaps on 2212 has been made by Cren, Pan, Davis, Kapitulnik
Spatial Structure of Electronic States
&
Quantum Interference for a d-wave Superconductor
Optimally doped Sample Tc=93K

Conductance Maps Below Tc

Homogeneity of Nodal QP

25pS

300pS

520 Å x 520 Å

dI/dV [pS]

Voltage [V]

Optimally doped Sample Tc=93K
Optimally doped Sample $T_c=93\text{K}$

Conductance Maps Below T_c

Homogeneity of Nodal QP

$520 \text{Å} \times 520 \text{Å}$
Fourier analysis of the modulation in the local density of states of the superconducting state ($T=T_c/2$)
Fourier analysis of the modulation in the local density of states of the superconducting state \((T=T_c/2) \)
Quantum Interference in the Superconducting State of a Cuprate Superconductor

Scattering between equal energy counters.

The belief is that scattering is dominated by points with large density of states

\[n(E) = \int_{E(k)=E} \frac{1}{\nabla_k E(k)} \, dk \]

Quantum Interference in the Superconducting State of a Cuprate Superconductor

Scattering between equal energy counters.

The belief is that scattering is dominated by points with large density of states

$n(E) = \oint_{E(k)=E} \frac{1}{\nabla_k E(k)} dk$
Quantum Interference in the Superconducting State of a Cuprate Superconductor

Scattering between equal energy counters.

The belief is that scattering is dominated by points with large density of states.

\mathbf{x}

$n(E) = \int_{E(k)=E} \frac{1}{\nabla_k E(k)} dk$
Quantum Interference in the Superconducting State of a Cuprate Superconductor

Scattering between equal energy counters.

The belief is that scattering is dominated by points with large density of states.

\[n(E) = \int_{E(k)=E} \frac{1}{\nabla_k E(k)} dk \]
Quantum Interference in the Superconducting State of a Cuprate Superconductor

Scattering between equal energy counters.

The belief is that scattering is dominated by points with large density of states.

\[n(E) = \frac{1}{\sqrt{\operatorname{det} \nabla_k E(k)}} dk \]

Quantum Interference in the Superconducting State of a Cuprate Superconductor

Scattering between equal energy counters.

The belief is that scattering is dominated by points with large density of states.

Quantum Interference in the Superconducting State of a Cuprate Superconductor

Scattering between equal energy counters.

The belief is that scattering is dominated by points with large density of states.

\[
\frac{1}{\nabla_k E(k)} \frac{1}{E(k) - E} dk
\]

Quantum Interference in the Superconducting State of a Cuprate Superconductor

Scattering between equal energy counters.

The belief is that scattering is dominated by points with large density of states.

$n(E) = \int_{E(k)=E} \frac{1}{\nabla_k E(k)} \, dk$

Lower temperatures measurements show more spots

Energy (meV)
Local Signature of d-wave Pairing
Nanoscale Signatures of d-wave Pairing in the Cuprates

- Changing Direction in a d-wave: π-phase shift

$\Delta(k)$

Momentum Space Variation of Gap

1D model:
Zero Energy Solution

- Andreev surface bound state

- At defects structures

Hu '94, Tanaka et al. '95, Covington et al. '97,

Chen et al. '96, Adagideli, et al. PRL’99 (UIUC)
Andreev Bound State at a Surface of a d-wave Superconductor

110 Edge at 45° relative to CuO

One dimensional Andreev Bound State appear at $E = E_F$

C. Hu, PRL 72, 1526 (1994)
Y. Tanaka et al. (1995)
M. Covington et al., PRL 79, 277 (1997)
D. Morr and E. Demler, cond-mat/0010460
One Dimensional Andreev Bound State at the Edge of a \textit{d-wave}

\[T\ll T_c \]

100Å x 100Å
One Dimensional Andreev Bound State at the Edge of a \textit{d-wave}

\begin{align*}
T \ll T_c \\
100\text{Å} \times 100\text{Å}
\end{align*}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{image.png}
\caption{BiO Plane}
\end{figure}

\textbf{1D model: Zero Energy Solution}

\begin{align*}
+\Delta \\
-\Delta
\end{align*}

S. Misra \textit{et al.} PRB RC 2002

Similar zero-dimensional phenomena near unitary scatters
One Dimensional Andreev Bound State at the Edge of a d-wave

Spectra to the step

100Å x 100Å

T<<Tc

1D model: Zero Energy Solution

S. Misra et al. PRB RC 2002

Similar zero-dimensional phenomena near unitary scatters
One Dimensional Andreev Bound State at the Edge of a \textit{d-wave}.

\textbf{Spectra to the step}

\begin{itemize}
\item $T << T_c$
\item $100\text{Å} \times 100\text{Å}$
\end{itemize}

\textbf{1D model: Zero Energy Solution}

\begin{itemize}
\item $+\Delta$
\item $-\Delta$
\end{itemize}

S. Misra \textit{et al.} PRB RC 2002

Similar zero-dimensional phenomena near unitary scatterers.
Impurity Induced Resonance in a d-wave Superconductor

Applying Shiba’s Work to d-wave:
Balatsky et al. 1995, Salkola et al. 1996,
Flatte and Byers ‘98

- Energy

\[\Omega_0 \approx \frac{\Delta_0}{2UN_F(\ln 8UN_F)} \]

- Width

\[\Gamma \approx \frac{\pi \Omega_0}{2(\ln 8UN_F)} \]

- Strong scattering limit:

Simple Picture: Without e-h asymmetry
Resonance induced by nonmagnetic impurity

See Review by Balatsky et al.
arXiv:cond-mat/0409474
Defect Scattering on the BiO Surface:

Native Defects
A. Yazdani et al. PRL 1999

Similar data by Hudson et al. Science 1999

Au defects on BiO

36Å x 36Å

A. Yazdani et al. PRL 1999
Effect of Zn-impurity on the Superconducting State

- **Spectroscopy on/off the Zn dopent**
 - Zn replaces the Cu atoms and kills T_c.
 - **Missing Cu**: At Zn site NMR experiments (normal state) see a local magnetic moment
 - **Various models**: Resonant scattering, Kondo scattering, ...

Map of DOS at $V=0$ (Fermi level)
Ni Impurities as a marker for local superconductivity

- Ni produces a low energy Shiba state--with d-wave symmetry (Hudson et al. 2001)
- Bound states are spatially asymmetric with respect of electrons and hole excitations

Hudson et al., Nature 411, 920 (2001)
Questions:

- When do pairs form?
- Are there bosonic excitations that couple to electrons?
- What controls the pairing strength?
Inhomogeneous Gaps

Previously reports of inhomogeneous gaps on 2212 has been made by Cren, Pan, Davis, Kapitulnik.
Inhomogeneous Gaps

300 Å x 300 Å

\[\Delta(mV) \]

18mV

38mV

overdoped sample

\[T < T_c \ (T=30K, T_c=68K) \]

Previously reports of inhomogeneous gaps on 2212 has been made by Cren, Pan, Davis, Kapitulnik.
What happens with increasing temperature?

- Pseudogap “Phase”
- Fluctuating Superconductor
- Superconductor
- Ant-Ferromagnetic
- Disordered Magnetism & Stripes
- Normal Metal?
Variable Temperature UHV STM:
Can be used to track a single atomic site with T

- Thermal compensation
- Compact design
- Result:
- Extremely low drift at high temperatures

(8K<T<350K)
Lattice-Tracking Spectroscopy

Overdoped Sample
Spot #1

Avoiding Material Inhomogeneity with LTS

Tc = 68K
Lattice-Tracking Spectroscopy

Overdoped Sample Spot #1

Avoiding Material Inhomogeneity with LTS

Tc = 68K

Voltage [meV]

dI/dV [pS]
Lattice-Tracking Spectroscopy

Overdoped Sample
Spot #1

Avoiding Material Inhomogeneity with LTS

T_c=68 K
Avoiding Material Inhomogeneity with LTS

Lattice-Tracking Spectroscopy

Tc=68K

Overdoped Sample
Spot #1

$\frac{dI}{dV}$ [pS]
Voltage [meV]

Tc=68K
Lattice-Tracking Spectroscopy

Overdoped Sample
Spot #1

Avoiding Material Inhomogeneity with LTS

Tc=68K
Lattice-Tracking Spectroscopy

Overdoped Sample
Spot #1

Avoiding Material Inhomogeneity with LTS

T_c=68 K
Lattice-Tracking Spectroscopy

Overdoped Sample
Spot #1

Avoiding Material Inhomogeneity with LTS

T_c=68K
Lattice-Tracking Spectroscopy

Overdoped Sample
Spot #1

Avoiding Material Inhomogeneity with LTS

Tc=68K
Inhomogeneous Gaps:

300 Å x 300 Å

Δ(mV) 18mV 38mV

OV68

Spot #1
Inhomogeneous Gaps:

300 Å x 300 Å

Δ(mV)

18mV 38mV

Probability [%]

Spot #1

Spot #2

Gap [mV]

OV68
Lattice-Tracking Spectroscopy:

Overdoped Sample
Spot # 2

$T_c=68\text{K}$
Lattice-Tracking Spectroscopy:

Overdoped Sample
Spot # 2

Tc = 68K
Lattice-Tracking Spectroscopy:

Overdoped Sample
Spot # 2

Tc=68K
Lattice-Tracking Spectroscopy:

Overdoped Sample
Spot # 2

$T_c = 68K$

dI/dV [pS]
Voltage [meV]

$T_c = 68K$
Lattice-Tracking Spectroscopy:

Overdoped Sample
Spot # 2

\[\frac{dI}{dV} \text{[pS]} \]

Voltage [meV]

\[T_c=68K \]
Lattice-Tracking Spectroscopy:

Overdoped Sample
Spot # 2

Tc=68K
Lattice-Tracking Spectroscopy:

Overdoped Sample
Spot # 2

Tc=68K
Non-uniform closing of the gaps (T=70K) for an overdoped sample (Tc=65K)
Non-uniform closing of the gaps
(T=70K) for an overdoped sample (Tc=65K)

Experimental Procedure:
\[\Delta = 0 \text{ when } \frac{dI}{dV}(0) \geq \frac{dI}{dV}(\text{all } V > 0) \]
Local d-wave Pairing Gap Collapse

Background: Tunneling Matrix Element
Incoherent tunneling processes

Overdoped Sample
Spot #1

Avoiding Material Inhomogeneity with LTS

Tc=68K
Conductance Ratio: $R = \frac{[dI/dV]_s}{[dI/dV]_n}$

For the case that the “normal state” is T-independent

Overdoped Sample
Spot #1

$T_c = 68\,\text{K}$
Conductance Ratio: \(R = \frac{[dI/dV]_S}{[dI/dV]_N} \)

For the case that the normal state is T-independent

Overdoped Sample
Spot #2

\(T_c = 68K \)
Fitting Conductance Ratio with a Local d-wave Model:

\[
\frac{N_S(r,V,T)}{N_N(r,V)} = \frac{1}{\pi} \int dE \frac{df(E+V,T)}{dE} \int_0^\infty d\theta \text{Re} \frac{E - i\Gamma(r,T)}{\sqrt{(E - i\Gamma(r,T))^2 - \Delta(r,T)^2 \cos^2 2\theta}}
\]

\[\Delta(r,T)\] - local d-wave gap

\[\Gamma(r,T)\] - local inverse QP lifetime

Different Spots on the OV68 at T=30K
Fitting Conductance Ratio with a Local d-wave Model:

$$\frac{N_S(r,V,T)}{N_N(r,V)} = \frac{1}{\pi} \int dE \frac{d\Gamma(E+V,T)}{dE} \int d\theta \text{Re} \frac{E-i\Gamma(r,T)}{\sqrt{(E-i\Gamma(r,T))^2 - \Delta(r,T)^2 \cos^2 2\theta}}$$

$\Delta(r,T)$ - local d-wave gap

$\Gamma(r,T)$ - local inverse QP lifetime

Different Spots on the OV68 at $T=30K$
Fitting Conductance Ratio with a Local d-wave Model:

\[
\frac{N_S(r,V,T)}{N_N(r,V)} = \frac{1}{\pi} \int dE \frac{df(E+V,T)}{dE} \int d\theta \text{Re} \frac{E - i\Gamma(r,T)}{\sqrt{(E - i\Gamma(r,T))^2 - \Delta(r,T)^2 \cos^2 2\theta}}
\]

- \(\Delta(r,T)\) - local d-wave gap
- \(\Gamma(r,T)\) - local inverse QP lifetime

Different Spots on the OV68 at T=30K
Fitting Conductance Ratio with a Local d-wave Model:

\[
\frac{N_s(r,V,T)}{N_N(r,V)} = \frac{1}{\pi} \int dE \frac{df(E + V,T)}{dE} \int d\theta \text{Re} \frac{E - i\Gamma(r,T)}{\sqrt{(E - i\Gamma(r,T))^2 - \Delta(r,T)^2 \cos^2 2\theta}}
\]

\(\Delta(r,T)\) - local d-wave gap

\(\Gamma(r,T)\) - local inverse QP lifetime

Different Spots on the OV68 at T=30K

Excellent fit at low E
Fitting the T-dependence of the Conductance Ratio:

\[
\frac{N_s(r,V,T)}{N_N(r,V)} = \frac{1}{\pi} \int dE \frac{df(E+V,T)}{dE} \int_0^{\pi} d\theta \text{Re} \frac{E-i\Gamma(r,T)}{\sqrt{(E-i\Gamma(r,T))^2 - \Delta(r,T)^2 \cos^2 2\theta}}
\]

\(\Delta(r,T)\) - local d-wave gap \hspace{1cm} \(\Gamma(r,T)\) - local inverse QP lifetime
Extract the local d-wave Pairing Gap
Extract the local d-wave Pairing Gap

Gap size (mV) vs Temperature (K)

“Tp’s”
Extract the local d-wave Pairing Gap

Gap size (mV) vs. Temperature (K)

"Tp’s"
Evolution of gaps in the overdoped regime

Temperature (K)

Doping

Gap Coverage (%)
Evolution of gaps in the overdoped regime

![Graph showing the evolution of gaps in the overdoped regime with temperature and doping. The graph includes a curve labeled T_c and a color-coded area indicating gap coverage.](image-url)
Slightly overdoped Sample $T_c = 83K$

Gaps get large with reduced doping
Evolution of gaps in the overdoped regime

![Graph showing temperature (K) vs. doping, with a color scale indicating gap coverage (%).]
Evolution of gaps in the overdoped regime

\[T_c \]

Temperature (K)

Doping

Gap Coverage (%)
Optimally doped Sample $T_c=93K$
Local Pairing Gap Detected Above Tc

The graph shows the relationship between temperature (K) and doping, with the gap coverage (%) indicated by the color scale. The critical temperature (Tc) is marked on the graph, and the data points represent experimental measurements.
Local Pairing Gap Detected Above T_c

![Graph showing the relationship between temperature and doping with a color-coded gap coverage percentage.](image-url)
Thermodynamic transitions in inhomogeneous d-wave superconductors

Brian M. Andersen1,2, Ashot Melikyan1, Tamara S. Nunner3, and P. J. Hirschfeld1,4

1Department of Physics, University of Florida, Gainesville, Florida 32611-8440, USA
2Laboratoire de Physique Quantique (CNRS), ESPCI, 10 Rue de Vauquelin, 75231 Paris, France
3Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
4Laboratoire de Physique des Solides, Université Paris-Sud, 91405 Orsay, France

(Dated: April 3, 2006)

FIG. 2: (Color online) OP maps, parameters from Fig. 1(d): $T = 0.18t$ (a), $T = 0.20t$ (b), $T = 0.22t$ (c), and $T = 0.24t$ (d).
Is there a relation between T_p and Δ?

- Smaller Δ will vanish first
- $T_p \propto \Delta$?
- Gap distribution is also T_p distribution
Is there a relation between T_p and Δ?

- Smaller Δ will vanish first
- $T_p \propto \Delta$?
- Gap distribution is also T_p distribution
Is there a relation between T_p and Δ?

- Smaller Δ will vanish first
- $T_p \propto \Delta$?
- Gap distribution is also T_p distribution
Is there a relation between T_p and Δ?

- Smaller Δ will vanish first
- $T_p \propto \Delta$?

- Gap distribution is also T_p distribution

Integral of Gap Histogram = Percentage of Ungaped Regions
Relation between T_p and Δ?

OV83
Relation between T_p and Δ?

$$\frac{2\Delta}{k_B T_p} = 7.9 \pm 0.2$$
Relation between T_p and Δ?

\[
\frac{2\Delta}{k_B T_p} = 7.9 \pm 0.2
\]

- The ratio is much higher than BCS weak coupling limit (~4 for d-wave).
- Optimal/Overdoped samples appear to have only one energy scale, the pairing gap
Average Relation between T_p and Δ

$$\frac{2\Delta}{k_B T_p} = 8.0 \pm 0.5$$
Average Relation between T_p and Δ

$\frac{2\Delta}{k_B T_p} = 8.0 \pm 0.5$

~ 1,000,000 Independent Measurements
Compare to other experiments?

Gomes, Pasupathy, Pushp, Ono, Ando, Yazdani Nature 447, 569 (2007)
Compare to other experiments?

![Graph showing temperature (K) vs. doping with Tc and Tp(max) annotations.]

Compare to other experiments?

![Graph showing doping and temperature with labels and data points]

What happens on the dark side?

Disordered Magnetism & Stripes
Underdoped Samples: Unusual shaped spectra

\[T < T_c \]
Underdoped Samples: Unusual shaped spectra

T<T_c
Underdoped Samples: Static Electronic Modualations

FFT of conductance maps for $T<T_c$
Underdoped Samples: Static Electronic Modulations

FFT of conductance maps for $T < T_c$
Underdoped Samples: Static Electronic Modulations

FFT of conductance maps for $T < T_c$

Static Modulations with close to 4a spacing
Underdoped Samples: Static Electronic Modulations

Local Ordering in the Pseudogap State of the High-T_c Superconductor Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$

Michael Vershinin, Shashank Misra, S. Ono, Y. Abe, Yoichi Ando, Ali Yazdani

FFT of conductance maps

Energy-resolved conductance maps at $T>T_c$

Static Patterns appear for $E<P_G$

FFT of conductance maps
Underdoped Samples: Static Electronic Modualations

Local Ordering in the Pseudogap State of the High-T_c Superconductor Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$

Michael Vershinin,1 Shashank Misra,1 S. Ono,2 Y. Abe,2† Yoichi Ando,2 Ali Yazdani1,§

Science 303, 1995 (2004)

Energy-resolved conductance maps at $T>T_c$

Static Patterns appear for $E<PG$

FFT of conductance maps
Origin of Static Patterns in the Pseudogap State

- Disordered Stripes?
- Nesting of FS?
- AF zone boundary?
- Valance bond solid?
- Regardless: correlate with PG

Local Pairing is Pseudogap Physics above Optimal doping

\[T_p(\text{max}) \sim T^* \]

Questions:

- When do pairs form? *From locally over a range of temperatures above T_c.*
- Are there bosonic excitations that couple to electrons?
- What controls the pairing strength?
“Electron-Boson coupling” Features:

- Data shows a dip below “weak-coupling” d-wave
- Definite signature of coupling to some sort of a boson

Electron-Phonon coupling in Pb

Overdoped Sample
T=30K
“Electron-Boson coupling” Features:

- Data shows a dip below “weak-coupling” d-wave
- Definite signature of coupling to some sort of a boson

Systematic Deviation from local d-wave model

Electron-Phonon coupling in Pb

Overdoped Sample

T=30K
Angle Resolved Photoemission Spectroscopy & Electron-Boson Coupling

Data from D. Dessau (U of Col.) seen by all photoemission groups
Angle Resolved Photoemission Spectroscopy & Electron-Boson Coupling

Data from D. Dessau (U of Col.) seen by all photoemission groups
STM/ARPES Spectra features & the “Glue”

- Bosonic Battles: magnetic or lattice; Relevant to pairing or not?
STM/ARPES Spectra features & the “Glue”

• Bosonic Battles: magnetic or lattice; Relevant to pairing or not?
STM/ARPES Spectra features & the “Glue”

• Bosonic Battles: magnetic or lattice; Relevant to pairing or not?

Evidence for ubiquitous strong electron–phonon coupling in high-temperature superconductors

* Department of Physics, Applied Physics and Stanford Synchrotron Radiation Laboratory, Stanford University, Stanford, California 94305, USA
† Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
§ Department of Physics and § Department of Applied Chemistry, University of Tokyo

Volume 89, Number 17 | Physical Review Letters

Interplay of electron–lattice interactions and superconductivity in Bi$_2$Sr$_2$CaCu$_2$O$_8$+δ

Quantitative test of a microscopic mechanism of high-temperature activity

Hou-Cheng Zhang, Ford University, Stanford, California 94305, USA

Neutron Resonance in the Cuprates and its Effect on Fermi

J. Hwang, T. Timusk & G. D. Gu

and Astronomy, McMaster University, Hamilton, Canada

Brookhaven National Laboratory, Upton, New York

High-transition-temperature superconductivity in the absence of the magnetic-resonance mode

J. P. Carbone

n-doped transition-temperature superconductor

Pengcheng Dai, S. Kunwar, S. Zhou, Shiliang Li, H. Ding, Ziqiang Wang, V. Madhavan

....& many others
What is the relation between bosonic features & the gap?

- Quantitative analysis using the locally measured conductance ratio
- Avoids inelastic tunneling & matrix element effects
- Do they control the gap?
Size of the boson mediate features scale with the gap size in a BCS-Eliashburg superconductors

Dynes and Rowell, PRB 11, 1884 (1975)
Electron-Boson Coupling & the SC Gap

Lessons From the Past:

Size of the boson mediate features scale with the gap size in a BCS-Eliashburg superconductors

Dynes and Rowell, PRB 11, 1884 (1975)

Different gaps can be achieved via doping it causes changes to electron-phonon coupling

\[\Delta = \hbar \omega_c e^{-\frac{1}{\lambda}} \]
Electron-Boson Coupling & the Gaps

$R = \frac{[dI/dV]_S}{[dI/dV]_N}$

Voltage - Δ [meV]

OV68

Inset: Gap [mV]

Probability [%]
Electron-Boson Coupling & the Gaps

$R = \left[\frac{dI}{dV} \right]_S / \left[\frac{dI}{dV} \right]_N$

Voltage - Δ [meV]
Electron-Boson Coupling & the Gaps

\[\Delta = \hbar \omega_c e^{-\frac{1}{\lambda}} \]

OV68

shifts features in energy

shifts features in magnitude

R = \frac{[dI/dV]_S}{[dI/dV]_N}

Voltage - \Delta [meV]
Lack of Correlation Between Electron-Boson Coupling & the Gaps!

Pasupathy, Pushp, Gomes, Parker, Gu, Ono, Ando, Yazdani. Science, 320, 196 (2008)
Electron Boson Coupling & Frequency Dependent of the Pairing Interaction:

\[
\frac{N_s(r,V,T)}{N_N(r,V)} = \frac{1}{\pi} \int dE \frac{df(E + V,T)}{dE} \int_0^\pi d\theta \text{Re} \frac{E - i\Gamma(r,T)}{\sqrt{(E - i\Gamma(r,T))^2 - \Delta(r,T)^2 \cos^2 2\theta}}
\]

\(N_s(V)/N_n(V) \) is a function of \(V \) and can be less than 1

Within the model:

- \(\Delta \) must have some \(\omega \) dependence
- \(\Delta(\omega) = \Delta_R(\omega) + i \Delta_I(\omega) \)
- Near dip \(\Delta_I(\omega) \sim 25 \text{mV} \)
Electron Boson Coupling & Frequency Dependent of the Pairing Interaction:

\[
\frac{N_s(r,V,T)}{N_n(r,V)} = \frac{1}{\pi} \int dE \frac{df(E+V,T)}{dE} \int_0^\pi d\theta \text{Re}\frac{E-i\Gamma(r,T)}{\sqrt{(E-i\Gamma(r,T))^2-\Delta(r,T)^2}}\cos^2 2\theta
\]

Ns(V)/Nn(V) is a function of V and can be less than 1

Within the model:

- \(\Delta\) must have some \(\omega\) dependence
- \(\Delta(\omega) = \Delta_R(\omega) + i \Delta_I(\omega)\)
- Near dip \(\Delta_I(\omega) \sim 25\text{mV}\)

Scalapino (1969)
Electron Boson Coupling & Frequency Dependent of the Pairing Interaction:

\[
\frac{N_s(r,V,T)}{N_N(r,V)} = \frac{1}{\pi} \int dE \frac{df(E+V,T)}{dE} \int_0^\pi d\theta \text{Re} \frac{E-i\Gamma(r,T)}{\sqrt{(E-i\Gamma(r,T))^2-\Delta(r,T)^2}} \cos 2\theta
\]

Ns(V)/Nn(V) is a function of V and can be less than 1

Bottom Line:

- \(\Delta s\) are equally “affected” by bosons (20-120meV)
- Unlikely “cause” of inhomogeneous \(\Delta s\)
Questions:
- When do pairs form? _Over a range of temperatures above Tc._
- Are there bosonic excitation that couple to electrons? Sure. Unlikely cause the major cause of pairing interaction.
- What controls the pairing strength?
Why does the pairing gap vary spatially?

Pairing Gap Map

\(T = 30K \)

\[\Delta \text{ (meV)} \]

18 - 38
Why does the pairing gap vary spatially?

Pairing Gap Map

T=30K

Structural Features?

Δ (meV)

18 38
Why does the pairing gap vary spatially?

Pairing Gap Map

Structural Features? Defects/Dopants?

Δ (meV)

18 38

T=30K
What about normal state background?

Different Locations for OV68 @ 100K

Voltage [meV]
What can the “Normal State” Tell us?

Gap Map

$\Delta (\text{meV})$

$T=30K$

300 Å x 300 Å

OV68
What can the “Normal State” Tell us?

Gap Map

T=30K

300 Å x 300 Å

Δ (meV)

18

38

dI/dV Map at E_F

T=93K

300 Å x 300 Å

dl/dV (pS)

160

290
What can the “Normal State” Tell us?

Gap Map

300 Å x 300 Å

Δ (meV)

T=30K

dl/dV Map at E_F

300 Å x 300 Å

T=93K

dl/dV (pS)
What can the “Normal State” Tell us?

Normal State & Gap Maps are anticorrelated!
Strong Anti-Correlation between “Normal” and SC states

Length scale of gap inhomogeneity is set by normal state
“Normal State” Spectra Foreshadow the Gaps

Systematic correlation between shape & eventual gaps

OV68@ 100K

Pasupathy, Pushp, Gomes, Parker, Gu, Ono, Ando, Yazdani Science, 320, 196 (2008)
“Normal State” Spectra Foreshadow the Gaps

Systematic correlation between shape & eventual gaps

OV68@ 100K

Pasupathy, Pushp, Gomes, Parker, Gu, Ono, Ando, Yazdani Science, 320, 196 (2008)
“Normal State” Spectra Foreshadow the Gaps

Systematic correlation between shape & eventual gaps

OV68@ 100K

Pasupathy, Pushp, Gomes, Parker, Gu, Ono, Ando, Yazdani Science, 320, 196 (2008)
“Normal State” Spectra Foreshadow the Gaps

Systematic correlation between shape & eventual gaps

OV68@ 100K

Pasupathy, Pushp, Gomes, Parker, Gu, Ono, Ando, Yazdani Science, 320, 196 (2008)
“Normal State” Spectra Foreshadow the Gaps

Systematic correlation between shape & eventual gaps

OV68@ 100K

Pasupathy, Pushp, Gomes, Parker, Gu, Ono, Ando, Yazdani Science, 320, 196 (2008)
“Normal State” Spectra
Reference by Low-T Gaps

Systematic correlation
between shape &
eventual gaps

OV68@ 100K
“Normal State” Spectra
Reference by Low-T Gaps

Systematic correlation between shape & eventual gaps

Zero Bias Trend
“Normal State” Spectra Reference by Low-T Gaps

Systematic correlation between shape & eventual gaps

Hump Energy Trend

Zero Bias Trend

OV68@ 100K
Spectra Asymmetry & Mott Physics

At optimal doping: 16% doped

Adding electrons hard
Removing electrons easy
Origin of “Hump” in the so-called “Normal Metal”??

- Mott Physics?
- Projected schemes: asymmetric e-h excitation
- Even a “hump”
Conclusions

- Pairing is local and occurs above T_c

- Electron-boson coupling unlikely cause of the inhomogeneous local pairing

- Electron-hole asymmetric excitations of the normal state determine both magnitude and variation of pairing at low T