DNA Looping and Gene Regulation: Sequence-dependence of DNA Flexibility

Hierarchical DNA folding in eukaryotic chromosomes

Most eukaryotic DNA is sharply looped

~80 bp per superhelical turn

Luger et al., 1997

Sharply looped DNA in the lac operon

Lewis et al., 1996

Sharply looped DNA in the Gal repressosome

Physical selection for stable nucleosome formation on chemically synthetic random DNAs

Lowary & Widom, 1998

Population diversity decreases, and affinity increases, as selection proceeds

Lowary & Widom, 1998

Course of the physical selection

Round #	# of Species	∆∆G (kcal mol⁻¹)
		(rel. to 5S molecule)
	10	
0	5 x 10 ¹²	+0.5 ±0.41 (n=10)
5	~10 ⁸	-0.09 ± 0.30 (n=2)
9	~10 ⁴	-1.7 ± 0.39 (n=6)
12	~100	-2.4 ± 0.37 (n=9)
15	30-50	-2.8 ± 0.32 (n=8)

Selected DNAs are strong nucleosome positioning sequences

Lowary & Widom, 1998

•Differing DNA sequences exhibit a > 5,000-fold range of affinities for nucleosome formation

Lowary & Widom, 1998 Thåström et al., 1999 Widom, 2001 Thåström et al., 2004 Why DNA some sequences have especially high affinity for histone octamer

- More or better bonds
 - Appropriately bent
- More easily bendable
 - Appropriate twist
- More easily twistable

Widom, 2001 Cloutier & Widom, 2004

Nucleosome positioning sequences are especially bent or bendable

Lowary & Widom, 1998

Bendedness, or bendability?

Sharp bending from static bends?

- A-tracts may be the most-bent of all sequences
- The most-bent A-tracts are bent by ~19° per 10-mer (i.e., ~2° / bp)
- DNA in nucleosomes is bent by ~4.5° / bp
- The standard deviation of basepair roll is $\sim 4-6^{\circ}$ / bp

Sequence dependence of DNA flexibility

DNA sequences that make stable nucleosomes are especially bent or especially bendable

A-tracts are not very bent (relative, e.g., to sharp DNA loops or to the standard deviation of basepair roll)

J-shapes in AFM images of plasmid molecules with 9 A-tracts near one end

Greene, Hersam, & Widom

Selected nucleosome-forming DNAs are much less bent than A-tracts

•3 kb plasmid linked to 30 copies (~6 kb) of selected sequence 601

Greene, Hersam, & Widom

Properties of nucleosome positioning sequences

DNA sequences that make stable nucleosomes are especially bent or especially bendable

A-tracts are not very bent (relative to sharp DNA loops or to the standard deviation of basepair roll)

Nucleosome positioning sequences are much less bent than are A-tracts

Quantitative measurement of J factor ╋ + Ligase, ATP Λ + Ligase, ATP

Especially stable nucleosomes have especially flexible DNA

Roychoudhury, et al., 2000

Especially flexible DNAs make especially stable nucleosomes and vice-versa

Cloutier & Widom, 2004

Properties of nucleosome positioning sequences

DNA sequences that make stable nucleosomes are especially bent or especially bendable

A-tracts are not very bent (relative to sharp DNA loops or to the standard deviation of basepair roll)

Nucleosome positioning sequences are much less bent than are A-tracts

Nucleosome positioning DNA sequences are sequences that are especially *bendable* (especially soft for bending)

Especially flexible DNAs make especially stable nucleosomes and vice-versa

What DNA sequence motifs facilitate DNA bendability? And, how do they work?

Widom, 2001 Thåström et al., 2004 Segal et al., 2006, in press

DNA sequence motifs that stabilize nucleosomes and facilitate spontaneous sharp looping

Segal et al., 2006

Basepair steps as fundamental units of DNA mechanics

Olson Calladine & Drew

Liquid-like ~10 bp spacings of AA dinucleotides in selected nucleosome forming DNAs

Lowary & Widom, 1998 Bailey et al., 2000

Crystal-like ~10 bp spacings of TA dinucleotides in selected nucleosome forming DNAs

Lowary & Widom, 1998 Bailey et al., 2000

Probability of TT at distance λ bp from an AA, in selected nucleosome forming DNAs

Lowary & Widom, 1998 Bailey et al., 2000

Probability of TA at distance λ bp from an AA, in selected nucleosome forming DNAs

Lowary & Widom, 1998 Bailey et al., 2000

GC steps occur out of phase with AA, TT, & TA steps in high affinity nucleosome-forming DNAs

Locations of dinucleotide steps in alignments of natural nucleosome DNA sequences

DNA sequence motifs that stabilize nucleosomes and facilitate spontaneous sharp looping

Segal et al., 2006

Basepair steps as fundamental units of DNA mechanics

Zhurkin Olson

Correlated deformations for sharp DNA wrapping

Richmond & Davey, 2003

Structural basis of sharply looped protein–DNA complexes

•Small distortions, and localized larger distortions along the full wrapped DNA length

Base step thermodynamic stability does not explain sequence preferences for sharp DNA bending

Base step	$\Delta G^{0}(1)$	Base step	$\Delta G^{0}(2)$
TA/TA	-0.58	TA/TA	0.76
AT/AT	-0.88	AT/AT	0.51
AA/TT	-1.00	AA/TT	0.26
AG/CT	-1.28	AG/CT	0.15
GA/TC	-1.30	AC/GT	-0.05
AC/GT	-1.44	GA/TC	-0.16
CA/TG	-1.45	CA/TG	-0.26
CC/GG	-1.84	CC/GG	-0.68
CG/CG	-2.17	GC/GC	-1.02
GC/GC	-2.24	CG/CG	-1.07

1: Allawi & SantaLucia (1997), ΔG^{0} (±0.06) (kcal mol⁻¹) for base pair formation

2: Johnson, Zhu, & Wartell (1998), ΔG^{0} (±0.09) (kcal mol⁻¹) for basepair stacking

Most-nonrandom dinucleotides in selected nucleosome DNAs

2-mer	# Occurrences	(actual-expected)
		std. dev.
ta	1094	6.4
at	850	-4.9
ct	1196	4.5
tg	1012	-4.0
gс	1350	3.9
са	1012	-3.7

Basepair stacking energies capture some but not all of the sequence preferences

	A	Т	G	С
5'-A	-1.11	-1.34	-1.06	-1.81
5'-T	-0.19	-1.11	-0.55	-1.43
5'-G	-1.43	-1.81	-1.44	-2.17
5'-C	-0.55	-1.06	-0.91	-1.44

 $\Delta G_{\text{stacking}}$ (kcal mol⁻¹)

Protozanova et al., (2004)

DNA sequence motifs that stabilize nucleosomes and facilitate spontaneous sharp looping

Segal et al., 2006

Flexibility of DNA for bending via basepair roll

Base step	Avg roll (degrees)	Dispersion
CA/TG	5.2	4.6
CG/CG	5.1	5.3
CC/GG	4.7	4.3
AG/CT	3.5	3.8
ΤΑ/ΤΑ	2.7	5.7
GA/TC	2.1	5.2
AC/GT	1.6	3.6
AT/AT	1.1	3.7
AA/TT	.8	4.5
GC/GC	.8	4.5

Basepair steps as fundamental units of DNA mechanics

Zhurkin Olson

Roll-twist covariance for YR, RR, and RY steps

Olson et al., (1998)

Correlated deformations for sharp DNA wrapping

Richmond & Davey, 2003

Elastic energy of dinucleotide step

$$E = E_0 + \frac{1}{2} \sum_{i=1}^{6} \sum_{j=1}^{6} f_{ij} \Delta \theta_i^{\wedge} \Delta \theta_j^{\wedge}$$

Knowledge-based harmonic potential

- E_0 = minimum energy for step
- *f*_{ij} = elastic constants impeding deformation; calculated from dispersion of parameters in X-ray crystal structures, assuming harmonic potential

$$\Delta \theta_{\rm i} = \theta_{\rm i} - \theta_{\rm i}^{\rm 0},$$

= fluctuation of step parameter from equilibrium

Toward a proper free energy model for the sequencedependent cost of DNA wrapping

Shift

Tilt

y Roll

Slide

Dinucleotide step elasticity model correctly classifies high and low affinity nucleosome forming sequences

Basepair steps as fundamental units of DNA mechanics

Zhurkin Olson

Most-strongly correlated trinucleotides

Tri-nt	Separ.	Actual #	<u>(actual-expected)</u>
Pair	(bp)	Occur.	std. dev.
cta : tag	11	48	27.1
cta:cta	10	44	25.5
taa : tag	10	41	24.2
cta : tta	10	41	24.0
tag : tag	10	44	22.1
tta : tag	11	34	21.2

Highly enriched tetranucleotides

Tetranucleotide	Actual #	Expected #	<u>(actual-expected)</u> std. dev.
	Occur.		
ctag	152	65 ± 9	10.0
taga	124	57 ± 9	7.8
tcta	124	58 ± 9	7.8
agag	104	67 ± 8	4.6

p<10⁻⁸

Acknowledgements

Sequence-dependence of DNA flexibility

Peggy Lowary AnnChristine Thåström Kathryn Bailey (Ohio State U.) Suzette Pereira (Ohio State U.) John Reeve (Ohio State U.) Timothy Cloutier Julie Dohm Mark Greene Mark Hersam (Northwestern U. Mat. Sci. Eng.) Karissa Fortney Eric Siggia (Rockefeller U.) Alexandre Morozov (Rockefeller U.) Dan Grilley