DNA Flexibility

Electron micrograph of a metaphase chromosome

•cm's of DNA

Metaphase chromosome, after removal of histones

DNA is a stiff polymer

- Phosphate-phosphate repulsion
- Hard sphere repulsions of bases

Sharply looped DNA in the lac operon

Sharply looped DNA in the Gal repressosome

Sharply looped and twisted DNA in vivo

Hierarchical DNA folding in eukaryotic chromosomes

Most eukaryotic DNA is sharply looped

~80 bp per superhelical turn

Cyclization assay for DNA flexibility

(a) Cyclization

J depends on total DNA twist

- Period equals DNA helical repeat
- Amplitude reflects the DNA torsional stiffness

Very small DNA circles!

116 bp and 94 bp circles are easy to make

How do we know they are circles?

- (Monomeric) circles are favored at low concentration
- Circles run off the ladder of linear oligomers
- Circles run off diagonal in a topology-sensitive 2-D gel assay
- Circles resist digestion by exonuclease

Circles run off the diagonal in 2-D gel

Ligation of 116 bp DNA at 100 pM

Circles resist digestion by exonuclease

How do we know circles are monomeric?

- Monomeric circles are favored at low concentration
- Monomer circles run near monomer linears in agarose gels
- Partial restriction digestion yields only linear monomer
- Complete restriction digestion nearby cohesive site yields only linear monomer

Restriction enzyme digestion distinguishes monomers from oligomers

Restriction enzyme digestion distinguishes monomers from oligomers

Quantitative measurement of J factor

Cyclization reactions with 94bp DNAs are first order in ligase concentration

Differing DNA sequences differ in inherent cyclizability

Sharply bent DNA appeared to be much softer for sharp looping than predicted

Quantitative measurement of J factor

DNA may *not* be softer for sharp looping than predicted

Measured J factors are independent of [ligase]

•bimolecular joining reactions, too, are first order in [ligase]

Measured J factors greatly exceed prediction

Measured J factors greatly exceed prediction

J depends on total DNA twist

- Period equals DNA helical repeat
- Amplitude reflects the DNA torsional stiffness

Measured J factors greatly exceed prediction

Sharply looped and twisted DNA in vivo

Sharply looped and twisted DNA, in vivo

•lac promoter

Becker, et al., 2005

Sharply bent DNA also appears to be much softer for twisting than predicted

Formation and stability of sharply looped protein–DNA complexes

Looping vs cyclization

Sharply looped DNA in the Gal repressosome

Chemical trapping assay for looping equilibria and kinetics

Chemical trapping assay for looping equilibria and kinetics

•94 bp loops

Rapid spontaneous looping of 94 bp DNAs

Structural basis of sharply looped protein–DNA complexes

J factors are weakly dependent on temperature

Basepair steps as fundamental units of DNA mechanics

Correlated deformations for sharp DNA wrapping

Richmond & Davey, 2003

Structural basis of sharply looped protein–DNA complexes

 Small distortions, and localized larger distortions along the full wrapped DNA length

Acknowledgements

Tim Cloutier
Julie Dohm
Karissa Fortney
Dan Grilley