
DNA Flexibility



Marsden & Laemmli

Electron micrograph of a metaphase chromosome

•cm’s of DNA

few µ’s

Few hundred
nm’s



Paulson & Laemmli

Metaphase chromosome, after removal of histones



DNA is a stiff polymer

Alberts et al., 4th ed.

•Phosphate-phosphate repulsion

•Hard sphere repulsions of bases



Lewis et al., 1996

Sharply looped DNA in the lac operon



Semsey et al., 2004

Sharply looped DNA in the Gal repressosome



Lee & Schleif, 1989;
Müller et al., 1996

Sharply looped and twisted DNA in vivo

araCBAD

lac



Felsenfeld & Groudine,,
Nature 421:  448-453 (2003)

Hierarchical DNA folding in eukaryotic chromosomes

DNA double helix

Nucleosomes



Luger et al., 1997

Most eukaryotic DNA is sharply looped

~80 bp per superhelical turn



Shore, Langowski, & Baldwin, 1981

Cyclization assay for DNA flexibility



Shore & Baldwin, 1983

J depends on DNA length

Limited by
entropy

Limited by
energetic

cost of
bending



Shore & Baldwin, 1983

J depends on total DNA twist

•Period equals DNA
helical repeat

•Amplitude reflects the
DNA torsional stiffness



Very small DNA circles!

116 bp 105 bp

94 bp 84 bp



116 bp and 94 bp circles are easy to make
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How do we know they are circles?

•(Monomeric) circles are favored at low
     concentration

•Circles run off the ladder of linear oligomers

•Circles run off diagonal in a topology-sensitive 2-D gel assay

•Circles resist digestion by exonuclease



Circles run off the diagonal in 2-D gel
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Circles resist digestion by exonuclease

Cloutier & Widom, 2004



How do we know circles are monomeric?

•Monomeric circles are favored at low
     concentration

•Monomer circles run near monomer linears
     in agarose gels

•Partial restriction digestion yields only linear
     monomer 

•Complete restriction digestion nearby cohesive
     site yields only linear monomer



Restriction enzyme digestion distinguishes monomers
from oligomers

Digestion

unique site

Monomer
Circle

116 bp

unique site in primer

Cohesive ends

Dimer Circle
(head-to-head)

~ 200 bp

(off gel)
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•Partial digestion by Eag I
     yields only linear monomer 

•Complete restriction digestion
     by BstU I yields only linear
     monomer

Restriction enzyme digestion distinguishes monomers
from oligomers

Cloutier & Widom, 2004
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Cyclization reactions with 94bp DNAs
are first order in ligase concentration

Cloutier & Widom, 2004



Differing DNA sequences differ in inherent cyclizability

Cloutier & Widom, 2004



Sharply bent DNA appeared to be much softer for
sharp looping than predicted
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Du et al., 2005

DNA may not be softer for sharp looping
than predicted
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•bimolecular joining reactions, too, are first order in [ligase]

Measured J factors are independent of [ligase]

J. Dohm
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Measured J factors greatly exceed prediction

J. Dohm

J-predicted



Cloutier & Widom, 2004

Dohm & Widom

Measured J factors greatly exceed prediction



Shore & Baldwin, 1983

J depends on total DNA twist

•Period equals DNA
helical repeat

•Amplitude reflects the
DNA torsional stiffness



Cloutier & Widom, 2004

Dohm & Widom

Measured J factors greatly exceed prediction



Lee & Schleif, 1989;
Müller et al., 1996

Sharply looped and twisted DNA in vivo

araCBAD

lac
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Becker, et al., 2005

Sharply looped and twisted DNA, in vivo

•lac promoter



Sharply bent DNA also appears to be much softer for
twisting than predicted
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Formation and stability of sharply looped
protein–DNA complexes

Cloutier & Widom, 2005



Semsey et al., 2004

•Sharply looped DNA in the Gal repressosome

Looping vs cyclization



Chemical trapping assay for looping
equilibria and kinetics
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Chemical trapping assay for looping
equilibria and kinetics
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•94 bp loops
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Rapid spontaneous looping of 94 bp DNAs
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Luger et al., 1997
Richmond & Davey, 2003

Structural basis of sharply looped
protein–DNA complexes
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J factors are weakly dependent on temperature

J. Dohm



Basepair steps as fundamental units of DNA mechanics

Zhurkin
Olson



Richmond & Davey, 2003

Correlated deformations for sharp DNA wrapping
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Structural basis of sharply looped
protein–DNA complexes

Richmond & Davey, 2003

•Small distortions, and localized larger
distortions along the full wrapped DNA length
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