DNA Flexibility

Electron micrograph of a metaphase chromosome

•cm's of DNA

Few hundred

few μ 's

Marsden & Laemmli

Metaphase chromosome, after removal of histones

Paulson & Laemmli

DNA is a stiff polymer

- Phosphate-phosphate repulsion
- •Hard sphere repulsions of bases

Alberts et al., 4th ed.

Sharply looped DNA in the lac operon

Lewis et al., 1996

Sharply looped DNA in the Gal repressosome

Sharply looped and twisted DNA in vivo

Hierarchical DNA folding in eukaryotic chromosomes

Most eukaryotic DNA is sharply looped

~80 bp per superhelical turn

Luger et al., 1997

Cyclization assay for DNA flexibility

(a) Cyclization

(b) Bimolecular Association

Shore, Langowski, & Baldwin, 1981

Very small DNA circles!

116 bp and 94 bp circles are easy to make

How do we know they are circles?

•(Monomeric) circles are favored at low concentration

•Circles run off the ladder of linear oligomers

•Circles run off diagonal in a topology-sensitive 2-D gel assay

•Circles resist digestion by exonuclease

Circles run off the diagonal in 2-D gel Ligation of 116 bp DNA at 100 pM

Circles resist digestion by exonuclease

How do we know circles are monomeric?

•Monomeric circles are favored at low concentration

•Monomer circles run near monomer linears in agarose gels

 Partial restriction digestion yields only linear monomer

•Complete restriction digestion nearby cohesive site yields only linear monomer

Restriction enzyme digestion distinguishes monomers from oligomers

Restriction enzyme digestion distinguishes monomers from oligomers

 Partial digestion by Eag I yields only linear monomer

•Complete restriction digestion by BstU I yields only linear monomer

Cloutier & Widom, 2004

Quantitative measurement of J factor ╋ + Ligase, ATP Λ + Ligase, ATP

Cyclization reactions with 94bp DNAs are first order in ligase concentration

Differing DNA sequences differ in inherent cyclizability

Cloutier & Widom, 2004

Sharply bent DNA appeared to be much softer for sharp looping than predicted

Cloutier & Widom, 2005

DNA may *not* be softer for sharp looping than predicted

Du et al., 2005

Measured J factors are independent of [ligase]

bimolecular joining reactions, too, are first order in [ligase]

J. Dohm

Measured J factors greatly exceed prediction

Measured J factors greatly exceed prediction

Measured J factors greatly exceed prediction

Sharply looped and twisted DNA in vivo

Sharply looped and twisted DNA, in vivo

Becker, et al., 2005

Sharply bent DNA also appears to be much softer for twisting than predicted

Cloutier & Widom, 2005

Formation and stability of sharply looped protein–DNA complexes

Looping vs cyclization

•Sharply looped DNA in the Gal repressosome

Chemical trapping assay for looping equilibria and kinetics

Chemical trapping assay for looping equilibria and kinetics

•94 bp loops

Rapid spontaneous looping of 94 bp DNAs

Structural basis of sharply looped protein–DNA complexes

Luger et al., 1997 Richmond & Davey, 2003 J factors are weakly dependent on temperature

J. Dohm

Basepair steps as fundamental units of DNA mechanics

Zhurkin Olson

Correlated deformations for sharp DNA wrapping

Richmond & Davey, 2003

Structural basis of sharply looped protein–DNA complexes

•Small distortions, and localized larger distortions along the full wrapped DNA length

Acknowledgements

Tim Cloutier Julie Dohm Karissa Fortney Dan Grilley