

IMAGE URL (FOR HOTLINKING/EMBEDDING): HTTP://IMGS.XKCD.COM/COMICS/CORE.PNG

What is turbulence?

Daniel P. Lathrop University of Maryland

Goal: grant an intuitive sense of turbulence and its importance in nature, science, and engineering

Outline:

- 1. Definitions
- 2. Examples
 - 1. Geophysics
 - 2. Astrophysics
 - 3. Engineering
 - 4. Quantum turbulence
 - 5. Optical turbulence

Turbulence: an emergent phenomena

Rivers! Niagra Falls

Reynolds number Ror Re = U L / v

Re \sim Inertia / viscosity Large R \rightarrow Turbulence

Turbulence definitions

Turbulence: A Spatially extended field with a large, continuous range of aperiodic spatial and temporal dynamics

Newtonian fluid turbulence: Turbulence in a classical, Newtonian viscous fluid

Kolmogorov turbulence: Turbulence exhibiting spatial power spectra with $E(k) \sim k^{-5/3}$

Quantum turbulence: A turbulent complex field or interacting set of complex fields

Optical turbulence: A turbulent field of electromagnetic amplitudes

Turbulence at small scale:

strain vorticity

Watson: You have to admit Holmes that a supernatural explanation to this case is theoretically possible. Holmes: Agreed, but it is useless to theorize before one has data. Inevitably one begins to twist facts to suit theories instead of theories to suit facts.

Computational speed of experiments (for equivalent Direct Numerical Simulation)

 $l_{\rm K} = L R^{-3/4}$ $R \sim 5 \ge 10^6$ Finest scale $L / l_{K} \sim 100,000$ linear resolution needed $N_g = (L/l_K)^3 = R^{9/4}$ number of grid points $N_f = 6$ number of fields $1/T = U_{max} / l_{K} = R^{3/4} U_{max} / L$ update rate $U_{max} / L \sim 250 \text{ s}^{-1}$ $N_f N_g / T = 6 R^3 U_{max} / L = 3 \times 10^{23}$ Rate of updating field values .3 yottaflops 300,000 exaflops 300 million petaflops

So many natural flows are necessarily turbulent, but we cannot simulate them.

Turbulence:

Fluctuating in time and space Aperiodic Large range of time and length scales Deterministic So many natural flows are necessarily turbulent, but we cannot simulate them.

Turbulence:

Fluctuating in time and space Aperiodic Large range of time and length scales Deterministic

Anyone who attempts to generate random numbers by deterministic means is, of course, living in a state of sin. John von Neumann

Volcanic eruptions

Eyjafjallajokull 2010

Volcanic eruptions

Cleveland volcano

Cumulous

q

q

Geophysical turbulence

Rivers!

Geophysical turbulence **Rivers!** Missouri River flood

Nonrotating; Spherical

Isothermal T = 2.725 ° K

Zero axial tilt

Quiet atmosphere Quiet crust Quiet mantle Quiet core

Core magnetics $\rightarrow \underline{B} = 0$

Simple Earth

Nonrotating; Spherical

Isothermal T = 2.725 ° K

Zero axial tilt

Quiet atmosphere Quiet crust Quiet mantle Quiet core

Core magnetics $\rightarrow \underline{B} = 0$?

Habitable Home

One Day Period; Oblate spheroid

 $T_{core} / T_{space} \sim 10^3$

23.5°, precessing

Turbulent, zonal atmosphere Brittle quaking crust Complex convecting mantle Turbulent convecting core

Active self-inducing geodynamo

A. Jackson, et al., Phil. Trans. Roy. Soc. A 358, 957 (2000)

Inertial Modes - Low Ro, Low E

Douglas H. Kelley, Santiago Andrés Triana, Daniel S. Zimmerman, Andreas Tilgner, and Daniel P. Lathrop. Geophysical and Astrophysical Fluid Dynamics 101 5/6: 469-487 (2007) Rapidly Rotating -- Coriolis Large

$$\partial_t \vec{\mathbf{v}} + \left(\vec{\mathbf{v}} \bullet \vec{\nabla} \right) \vec{\mathbf{v}} + 2\vec{\Omega} \times \vec{\mathbf{v}} = -\frac{1}{\rho} \vec{\nabla} P + \nu \nabla^2 \vec{\mathbf{v}}$$
$$\vec{\nabla} \bullet \vec{\mathbf{v}} = 0$$

$$\partial_t \vec{v} + 2\vec{\Omega} \times \vec{v} = -\frac{1}{\rho} \vec{\nabla} P$$

 $2\vec{\Omega} \times \vec{v} = -\frac{1}{\rho} \vec{\nabla} P$
 $(\vec{\Omega} \cdot \vec{\nabla}) \vec{v} = 0$ Taylor-Proudman theorem

$$\partial_t \vec{v} + 2\vec{\Omega} \times \vec{v} = -\frac{1}{\rho} \vec{\nabla} P$$

 $\partial_t \vec{\omega} = 2(\vec{\Omega} \cdot \vec{\nabla}) \vec{v} = 2\Omega_0 \partial_z \vec{v}$

Plane wave solutions $\vec{v} = \vec{v}_o e^{i(\vec{k} \cdot \vec{r} - \omega t)}$

$$\omega = \pm 2\Omega_0 \frac{k_z}{k}$$

 $0 < |\omega| < 2\Omega_0$ Modes of Containers

$$Q \sim E^{-1/2} = (v/2\Omega I^2)^{-1/2}$$

Astrophysical turbulence

Galaxy: M51

Solar turbulence:

Magnetorotational instability

Velikhov (1959) Chandrasekhar (1960) Donnelly and Ozima (1960)

Balbus and Hawley Astrophys. J. 374, 214 (1991) Rev. Mod. Phys. 70,1 (1998)

Accretion disks

Active Galactic Nuclei

NGC 7052 van der Marel & van den Bosch HST

Rotation rateΩ(s) with dΩ/ds < 0 Differential motion --> growing magnetic energy Angular momentum moves outward (toward positive s)

Aerospace Engin. turbulence

Turbofan engine design

Boundary layer turbulence

Subcritical instabilities noise driven

Turbulence control: suction!

What is meant by JET in fluid dynamics?

Turbulent jet C. Fukushima and J. Westerweel

Quantum Fluids

A state of matter with long range quantum order

Type of synchronization

partial phase sync of the individual atomic wave functions

E.g. BEC atomic systems ⁴He ³He Cooper pair electrons in superconductors Vacuum

Quantum Turbulence -> turbulence in a quantum fluid Why does it matter?

Background: Superfluid Helium

Two-Fluid Model

- Superfluid helium acts as if it's a mixture of a normal and superfluid component
- Normal and superfluid have separate velocity fields v_n and v_s, respectively

Superfluid Order Parameter

 Order parameter for superfluid helium is a complex field,

 $\Psi(\mathbf{x}) = A e^{i\phi}$

- A is amplitude, and ϕ is the phase
- Superfluid velocity given by

$$v_s = \kappa \nabla \phi \qquad \kappa = \frac{h}{m}$$

h = Planck's constant m = mass of helium atom

Quantized Vortices

- Lowest energy state: n=1, so φ wraps 2π around a defect
- Induces a superflow around the line:

Thermal Counterflow

 Drive the system from equilibrium by applying a heat flux Q/A to the bottom of the channel

$$\frac{dL}{dt} = \alpha \left| \mathbf{v}_{ns} \right| L^{3/2} - \beta \kappa L^2$$

$$L = \frac{\text{vortex line length}}{\text{volume}}, \mathbf{v}_{ns} = \mathbf{v}_n - \mathbf{v}_s$$

The spatially averaged velocites are of: $\langle v_n \rangle$ - the viscous component, $\langle v_s \rangle$ - the superfluid, $\langle v_t \rangle$ - the quantized vortex tangle

Q/A

WF Vinen: Proc. R. Soc. London Ser. A 242, 493 (1957)

What is quantum turbulence?

An evolving set of quantized vortices:

aperiodic large range of length scales and curvatures rings

vortices ending at walls knots

Simulations by Patricio Jeraldo and Nigel Goldenfeld

Superfluid Turbulence from Quantum Kelvin Wave to Classical Kolmogorov Cascades

Jeffrey Yepez,¹ George Vahala,² Linda Vahala,³ and Min Soe⁴

What is turbulence?

Daniel P. Lathrop University of Maryland

Goal: grant an intuitive sense of turbulence and its importance in nature, science, and engineering

Outline:

- 1. Definitions
- 2. Examples:
 - 1. Geophysics
 - 2. Astrophysics
 - 3. Engineering
 - 4. Quantum turbulence
 - 5. Optical turbulence

