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ABSTRACT The article gives an overview of the rapidly evolv-
ing field of magnetic microchip traps (also called ‘atom chips’)
for neutral atoms. Special attention is given to Bose–Einstein
condensation in such traps, to the particular properties of mi-
crochip trap potentials, and to practical considerations in their
design. Scaling laws are developed, which lead to an estimate of
the ultimate confinement that chip traps can provide. Future ap-
plications such as integrated atom interferometers are discussed.

PACS 03.75.Fi; 32.80.Pj; 39.25.+k

1 Introduction

The achievement of Bose–Einstein condensation
(BEC) in a gas of neutral atoms [1–3] brought the quan-
tum and everyday worlds closer together than they ever were.
For example, manifestations of superfluidity, such as vor-
tices and vortex lattices [4–6], can be imaged in momentum
space; interfering matter-wave functions can now be looked
at with a simple video camera [7, 8], etc. Some important
consequences of this development appear very clearly in the
‘atom laser’ [9–12]: its concept underlines the deep analogy
of light and matter and, at the same time, the term suggests
the possibility of new and far-reaching applications. However,
standard BEC experiments still impose formidable technical
challenges, which restrict their use to a few dozen advanced
laboratories and limit the complexity of atom laser experi-
ments to very elementary configurations. Two recent experi-
ments [13, 14] have demonstrated that an alternative way to
BEC exists, which simplifies the apparatus in a dramatic way.
In these experiments, microscopic lithographic conductors on
a chip replace the customary magnetic coils that are used to
confine the atoms in standard BEC experiments. Such a litho-
graphic ‘chip trap’, first demonstrated three years ago [15],
significantly simplifies the trap setup, because modest electric
currents can produce large magnetic field gradients and curva-
tures in close proximity to a planar arrangement of wires [16].
The strong confinement of chip traps also accelerates the con-
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densation process – by more than a factor of 10 [13] com-
pared to typical experiments, and by a factor of three with
respect to the all-optical BEC reported recently [17]. This, in
turn, entails great simplifications in the vacuum system. As
a result, BEC can now be obtained with a setup that is only
slightly more complicated than that of a vapor-cell magneto-
optical trap (MOT), which is routinely used as a tool in many
areas of physics, and is simple enough even for undergraduate
laboratories.

In contrast to traditional BEC experiments, the chip
trap produces a condensate in close proximity to a room-
temperature surface. To date, the interactions of the trapped
atoms with the surface have only been studied theoretic-
ally [18–20]. The high degree of control over the atomic
position in a chip trap may enable surface studies of a new
kind. At the same time, it seems clear that surface effects will
also impose the ultimate limits to the trap–surface distance.
For certain applications, the usefulness of chip traps will de-
pend on how well the surface-induced losses, heating, and
decoherence can be controlled; this is especially true for ap-
plications that require potentials to vary on submicron length
scales. However, even at relatively large distances where
surface effects are negligible, on-chip microconductors can
generate confining potentials with exquisite properties. These
include traps with extremely strong confinement and corre-
spondingly small ground-state size, strongly anisotropic traps
with extreme aspect ratio, fundamental systems such as dou-
ble wells with adjustable barrier height, and devices such as
beam splitters or ring resonators. Most intriguingly, however,
lithographic fabrication techniques make it possible to inte-
grate even complex systems of many microscopic traps, wave-
guides [21, 22], and other atom optical devices [23–25] on
a single trapping chip. The combination of these advantages
– simplicity, modularity, miniaturization, and also robustness
– makes the chip trap technique attractive for a wide range of
situations, including fundamental studies of condensates with
fluctuating phase and in reduced dimensionality [26–29], cav-
ity quantum electrodynamics [30–32] with trapped atoms,
and applications like atom interferometry [33] and quantum
information processing [34, 35].

This article is intended as a practical introduction to the
lively subject of chip traps, with special emphasis on three-
dimensional traps and Bose–Einstein condensation. To keep
its length within reasonable bounds, the scope has been



470 Applied Physics B – Lasers and Optics

limited to three- and two-dimensional confinement (‘traps’
and ‘guides’) using microfabricated conductors on planar
substrates (‘chips’). Thus, experiments with current-carrying
discrete wires such as [36–39], with microfabricated electro-
magnetic or permanent-magnetic mirrors [40–42], and other
innovative experiments with planar techniques, such as atom
transport with magnetic structures written on videotape [43],
all had to be left out. Some subjects that were only scarcely
discussed in previous articles are treated in more detail; thus,
there are sections on scaling laws and ultimate confinement,
and on adiabatic splitting and merging of trapped clouds, for
example. On the other hand, only a short overview is given of
the results that are available in the literature, and the choice of
the emphasized points has of course some personal accents.
Where examples are given, they are mostly taken from the
Munich experiments, but complete references are given to rel-
evant results of three-dimensional chip trap experiments, as
well as chip-based guiding experiments. Thus, while the art-
icle does not attempt do give an exhaustive review, together
with the cited references it should provide a fairly complete
overview, as of early 2002, of the rapidly advancing topic of
chip trap experiments and their applications.

2 Magnetic potentials from planar current
distributions

2.1 Magnetic traps for neutral atoms [44]

The interaction energy of a neutral atom in a mag-
netic field is generally much weaker than the atom’s thermal
energy at room temperature, even in the many-Tesla fields of
superconducting magnets. Therefore, atoms have to be cooled
before they can be magnetically trapped. It is worth noting
that neutrons were magnetically trapped before neutral atoms,
despite their thousand-times-smaller magnetic moment [45].

Magnetic trapping of neutral atoms was first accomplished
in 1985 [46]. Shortly afterwards, orders of magnitude im-
provements in density and number of trapped atoms were
achieved using superconducting traps and different loading
schemes [47–49]. Since then, researchers have continued to
develop novel magnetic traps, thereby enabling new physics
to be explored. Most notably, Bose–Einstein condensation
of atomic gases [1–3] was made possible by the develop-
ment of stable, tightly confining traps. Integrated microtraps,
which are the subject of this article, carry on and extend this
development.

Magnetic forces are comparatively strong for atoms with
an unpaired electron, such as alkalis, resulting in magnetic
moments µm of the order of the Bohr magneton µB. The inter-
action of a magnetic dipole with an external magnetic field is
given by

V(r) = −µm B(r) = −µm B(r) cos θ . (1)

Classically, the angle θ between the magnetic moment and
the magnetic field is constant due to the rapid precession of
µm about the magnetic field axis. Quantum-mechanically, the
energy levels of a particle with angular momentum F and g-
factor g in a magnetic field are E(mF) = gµBmF B, where mF

is the quantum number of the component of F along the direc-
tion of B. The classical term cos θ is now replaced by mF/F;

the classical picture of constant θ is equivalent to the system
remaining in a state with fixed mF .

Depending on the sign of gmF, the particle experiences
a magnetic force either towards minima of the field (gmF > 0,
weak-field-seeking state) or towards maxima (gmF < 0,
strong-field-seeking state). As Maxwell’s equations do not al-
low a maximum of the magnetic field in free space [50, 51],
only weak-field seekers can be trapped. In atomic physics ex-
periments, such states are usually prepared by optical pump-
ing. It is worth noting that the trapped state, being a low-field
seeker, is not the state of lowest energy in the presence of the
trapping field.

2.1.1 Stability against spin-flip losses. Because magnetic
traps only confine weak-field-seeking states, atoms will be
lost from the trap if they make a transition to a strong-field-
seeking state. Such transitions can be induced by the motion
in the trap, because the atom sees a field which is changing in
amplitude and direction. The trap is stable only if the atom’s
magnetic moment adiabatically follows the direction of B.
This requires that the rate of change of the field’s direction θ

(in the reference frame of the moving atom) must be slower
than the precession of the magnetic moment:

dθ

dt
<

µm|B|
h

= ωLarmor. (2)

The upper bound for dθ/dt in a magnetic trap is the trapping
frequency. This adiabaticity condition is violated in regions of
very small magnetic field, creating regions of trap loss due to
‘Majorana transitions’ into untrapped states1 [52].

2.1.2 Quadrupole-type traps. Static magnetic traps can be
subdivided into two classes: those in which the minimum
is a zero crossing of the magnetic field, and those which
have a minimum around a finite field value [53]. In the first
case, the potential near the minimum can usually be ap-
proximated by a linear function, characterized by its gra-
dient: B = B′

xxex + B′
y yey + B′

zzez . Maxwell’s equations re-
quire B′

x + B′
y + B′

z = 0. In macroscopic traps, this configu-
ration is usually realized with two coils in ‘anti-Helmholtz’
configuration. This is the configuration that was first used to
trap neutral atoms magnetically [46].

When quadrupole traps were employed for the first
demonstrations of evaporative cooling with alkali atoms [54,
55], trap loss due to Majorana transitions [46, 52, 56] near the
zero of the magnetic field was encountered. For atoms mov-
ing at a velocity v, the effective size of this ‘hole’ in the trap is√

2hv/πµm B′, which is about 1 µm for µm = µB, v = 1 m/s,
and B′ = 10 T/m. As long as the hole is small compared to
the cloud diameter, the trapping time can be long (even longer
than a minute), and evaporative cooling in such a trap was
used to increase the phase-space density by more than two
orders of magnitude [57]. As the temperature drops, however,
the trap loss due to the hole becomes prohibitive for further
cooling. Although the size of the hole shrinks with the ther-
mal velocity of the atoms, the diameter of the atom cloud

1 In other words, during such a transition, the magnetic field turns, but the
atomic spin does not. Considering this, the expression ‘spin-flip transi-
tion’ is somewhat misleading.
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shrinks even faster, resulting in a T−2 dependence of the loss
rate [57, 58].

2.1.3 Ioffe–Pritchard traps. The lowest-order (and therefore
tightest) trap which can have a nonzero field in the minimum
is a harmonic trap. Indeed, in a linear (quadrupole) trap, the
effect of a bias field is merely to displace the zero crossing.
A harmonic trap with a bias field B0‖ along the x direction has
an axial field of Bx = B0‖ + B′′x2/2. The leading term of the
transverse field component Bz is linear, Bz = B′z. Applying
Maxwell’s equations, and assuming axial symmetry, leads to
the following field configuration [53]:

B = B0‖


1

0
0


+ B′


 0

−y
z


+ B′′

2


x2 − 1

2

(
y2 + z2

)
−xy
−xz


 .

The parabolic trap was first suggested and demonstrated for
atom trapping by Pritchard [47, 59], and is similar to the Ioffe
configuration discussed several decades earlier for plasma
confinement [60]. It has become customary to refer to any trap
of this field configuration as an Ioffe–Pritchard (IP) trap.

2.1.4 Some general properties of magnetic traps.

Trap depth. A trap of finite depth containing a thermal atomic
ensemble (temperature T ) will have losses due to atoms ‘boil-
ing out of the trap’. As a rule of thumb, the trap depth should
be large compared to the mean atomic energy. Neglecting
gravity, this leads to the condition

Vmax = |µm Bmax| > ηkBT, (3)

with η = 5–7 in order to make this loss term negligible.

Compensation of gravity. For the restoring force F ∝ B′ along
the vertical axis, the minimum requirement is to compen-
sate gravity: B′

z ≥ mg/µm. Taking the |F = 2, m = 2〉 state of
87Rb as an example, the minimum field gradient is 0.15 T/m.

Oscillation frequency and ground-state size in a harmonic
trap. The oscillation frequency along the ith eigenaxis of
a harmonic potential V is given by

ωi =
√

1

m

d2V

dx2
i

=
√

µm

m

d2 B

dx2
i

. (4)

For 87Rb, |F = 2, m = 2〉, the frequency νi = ωi/2π is conve-
niently calculated as

νi = 12.7 Hz×
√

d2 B

dx2
i

/
T

m2
.

The ground-state extension (1/e radius of |Ψ |2) is given by

δxi =
√

h

mωi
=
(

mµm

h2

d2 B

dx2
i

)− 1
4

. (5)

For our example state, an oscillation frequency of ν = 1 kHz
corresponds to a ground-state extension δx = 340 nm. To re-
duce δx by a factor α, B′′ must increase by α4, and therefore
very small ground-state sizes become exceedingly difficult to
achieve with macroscopic traps. With present-day microtrap
technology, on the other hand, it is possible to realize sizes
much smaller than an optical wavelength, as will be shown
below.

2.2 Trapping fields from planar current distributions

When a magnetic potential is created by a system
of wires with characteristic size s and carrying a current I ,
the trapping field gradient and curvature respectively scale as
I/s2 and I/s3 when s is decreased [16]. Therefore, traps that
replace the customary field coils by thin wires on substrates
can provide very tightly confining potentials with much less
power dissipation than ‘traditional’ traps using macroscopic
coils. Consequently, much stronger traps become realizable
with this technique. This section shows how trapping fields
are constructed from the fields of coplanar wires, and dis-
cusses some simple configurations.

2.2.1 Thin wires and two-dimensional confinement. The
magnetic field modulus, gradient, and curvature at a distance
r from an infinitely thin wire carrying a current I are

B(r) = µ0

2π

I

r
, (6)

B′(r) = −µ0

2π

I

r2
, (7)

B′′(r) = µ0

π

I

r3
. (8)

Obviously, to achieve strongly confining traps, it is advanta-
geous to locate the trap center as close as possible to the wire,
and this was one of the main motivations for constructing traps
with microscopic wires. The wire field alone does not provide
trapping because it does not possess a minimum, but there are
many ways to construct trapping potentials either with mul-
tiple wires or with a combination of wire fields and uniform
external fields. The strong confinement in these traps results
from the large values of the wire field gradient (7) and cur-
vature (8). A particularly simple and versatile configuration
results when a uniform external field B0⊥ is added perpen-
dicular to the wire axis: a line of zero field forms at a distance
r0 from the wire axis (Fig. 1):

r0 = µ0

2π

I

B0⊥
.

On the transverse axis passing through this line of zero field,
the wire and external field have the same direction, so that the
external field does not affect the field gradient. The transverse
field gradient of the total field at r0 is therefore

B′(r0) = −2π

µ0

B2
0⊥
I

. (9)

Thus, the superposition of the wire and external fields cre-
ates a two-dimensional quadrupole trap, or atom guide, with
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FIGURE 1 Creating a two-dimensional trap with a wire and an external
field. Top: wire field, center: external field, bottom: resulting total field. The
left-hand column shows magnetic field lines and the right-hand column gives
the magnitude of the field at y = 0 for a wire current I = 2 A and an external
field B0⊥ = 4 mT. In this example, the trap forms at a distance r0 = 100 µm
from the wire axis, and the gradient at the trap center is |B′(r0)| = 40 T/m,
assuming an infinitely thin wire

a transverse restoring force proportional to B′(r0). Arrange-
ments of several parallel wires, either with or without external
fields, can also be used to create such guides, and will be dis-
cussed below in Sect. 2.2.4.

These simple thin-wire equations are very useful in prac-
tice. Of the three parameters I , B0⊥, and r0, two can be chosen
independently and the third follows from them. For quick esti-
mates it is convenient to express the equations in the following
form:

B(r) = 200 mT× I/A

r/µm
, (10)

B′(r) = −2 ×105 T m−1 × I/A

(r/µm)2
, (11)

r0 = 200 µm× I/A

B0⊥/mT
, (12)

B′(r0) = −5 T m−1 (B0⊥/mT)2

I/A
. (13)

2.2.2 Three-dimensional wire traps. The two-dimensional
trap described in Sect. 2.2.1 can easily be extended to pro-
vide confinement along the wire axis as well. For this purpose,
the wire is bent at both ends, forming either a ‘U’ or a ‘Z’
(Figs. 2 and 3). The central part of the wire (parallel to ex),
combined with the external field, produces a two-dimensional
quadrupole trap as before. The bent parts of the wire produce
a field which is perpendicular to the external field. The x com-
ponent of this additional field closes the trap along the x axis,
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FIGURE 2 Wire layout for a quadrupole (a) and an Ioffe–Pritchard trap (b),
and magnetic potentials generated by these arrangements for l = 250 µm and
I = 2 A. The bias field along y is B0 = 5.4 mT (dashed lines) and 16.2 mT
(solid lines). The potentials shown in the figure were obtained by numerical
Biot–Savart-type calculations, taking into account a wire width of 50 µm

FIGURE 3 Contour plot showing an example of a very elongated magnetic
potential generated by a Z-shaped wire (as in Fig. 2b) with l = 1.95 mm. The
wire carries a current of 2 A and there is a bias field B = 0.1 mT ·ex +8 mT ·
ey . The field is shown in a plane containing the trap center; the distance
from the wire plane is z = 46 µm. The field of this very elongated trap varies
between 0.1 mT in the center and ∼ 8 mT in the corners of the plot

while the y component merely causes a small displacement
of the minimum. In the ‘U’ case, the contributions of the two
bent parts cancel out in the trap center, leading to a zero field
and a linear variation of the field modulus near the trap center.
In this sense, the ‘U’ trap is a quadrupole trap. In the ‘Z’ case,
the two contributions add up instead of canceling out, so that
the field in the trap center is now nonzero. This new field con-
tribution is perpendicular to the two-dimensional quadrupole
field near r0, and so the two fields add quadratically: the total
field near the trap center is that of an Ioffe–Pritchard trap.

This example shows how the two ‘classical’ types of mag-
netic trapping potentials can be generated in a straightforward
way with a planar wire and a homogeneous external field.
These simple wire traps produce impressively strong con-
finement, as shown in the example of Fig. 2. By increasing
the external field B0⊥ while leaving the wire current I un-
changed, the trap center moves closer to the wire, into regions
of higher field gradient, and transverse confinement becomes
stronger. Indeed, in the compressed trap of Fig. 2b, the trans-
verse curvature is 574 MT/m2, leading to a level spacing (in
the harmonic approximation) of 30.4 kHz for 87Rb atoms in
the F = 2, m = 2 ground state, and to a ground-state size
of δx ∼ 62 nm. Note that the potentially critical parameters
remain well inside the safe zone for this realistic example:
the wire width is 50 µm (much smaller structures have been
used for atom trapping), and the distance of the trap center
from the surface is ∼ 15 µm. Incidentally, the example shows
that it is not necessary to use sophisticated lithographic tech-
niques to obtain trapping in the Lamb–Dicke regime defined
by (νr/ν)

2 < 1, where νr = hk2/(4πm) is the recoil frequency
for absorption or emission of a photon with wave number k.
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Depth of a wire trap. In a wire trap with external bias field
B0, the trap depth is simply given by the bias field: Bmax = B0,
and we have the requirement (cf. (3)) B0 > ηkBT/µm, or B0 >

1.5 T/K×ηT for µm = µB. As an example, for an ensemble
of 87Rb atoms in the |F = 2, m = 2〉 state with a temperature
T = 100 µK, the bias field must be at least B0 ∼ 0.8 mT (for
η = 5).

2.2.3 Effects of finite wire width. For a cylindrical wire, the
field outside the conductor is identical to that of an infinitely
thin wire centered on the cylinder axis. Microfabricated wires,
however, typically have a rectangular cross section and an as-
pect ratio smaller than one (width greater than height). The
field of a long conductor of this kind is well approximated
by that of an infinitely long wire of zero height, but nonzero
width w, for which an analytical formula exists [25, 61]:

B(z) = µ0

π

I

w
arccot

2z

w
= µ0

π

I

w

(
π

2
− arctan

2z

w

)
. (14)

Here, z is the distance from the wire surface. A wire of this
type will be called a ‘broad’ wire in this article. For z �w, the
formula simplifies to

B(z) ≈ µ0

π

I

w

(
π

2
− 2z

w

)
.

In particular, the surface field is

Bs = µ0

2

I

w
. (15)

This field constitutes an upper limit to the trap depth that can
be achieved with a broad wire. It equals the field created by the
same current through an infinitely thin wire at a distance w/2.
The gradient of the field (14) is

B′(z) = −µ0

2π

I

z2 + (w/2)2
. (16)

Instead of the 1/r2 dependence of the thin-wire gradient, the
broad-wire gradient is of Lorentzian form. The gradient at the
surface is

B′
s = −2µ0

π

I

w2
, (17)

which imposes a limit to the achievable trap steepness.

b c d ea

FIGURE 5 Isopotential curves for several magnetic waveguide configurations. The direction of current flow is indicated by ‘+’ and ‘−’; in-plane exter-
nal magnetic fields are indicated by bold arrows. Twelve contours are shown, equally spaced by B0/15 in a and by B0/4 in b–e, where B0 = µ0 I/2πS.
a A single wire with an external field Be perpendicular to the wire axis; here S = µ0 I/2πBe. This is the situation of Fig. 1. b Four-wire guide; here S is
the distance between neighboring wires, and each wire carries a current I . c Two high-aspect-ratio wires, separated by S, with co-propagating currents.
d Two wires, separated by S, with opposing current directions and an external field Be = B0 in the y direction. e Three wires, separated by S, with each
outer wire carrying −1.25 times the inner-wire current (adapted from [62])

Figure 4 shows the result of a measurement in which (14)
was experimentally verified for a conductor with w = 300 µm
and ∼ 10-µm height. The deviation from the thin-wire depen-
dence becomes notable for z �w.
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FIGURE 4 Measured distance z between the center of the trapped atom
cloud and the surface as a function of the bias-field strength B0. The trap-
ping field is generated with a ‘U’-shaped quadrupole wire as in Fig. 2.
The wire width is 300 µm; its current is kept constant at I = 2 A. Circles
are experimental values obtained from absorption images, the solid line is
the calculated position of the potential minimum obtained from (14) for
w = 300 µm, and I = 2 A. For comparison, the gray line gives the theoretical
position for an infinitely thin wire

2.2.4 Other configurations. Magnetic guides can also be cre-
ated with many parallel-wire configurations, with and without
external fields (Fig. 5); [62] gives a good overview of pos-
sible geometries. (That article also discusses the interesting
possibility of constructing single-mode guides.) Most of these
configurations have been used in guiding experiments, see
Sect. 4.2. They can also be used to provide transverse con-
finement in three-dimensional traps. An example of a three-
dimensional trap using the configuration of Fig. 5e is given
below in Fig. 16.

2.2.5 Building blocks for complex potentials. The two config-
urations of Fig. 2 were the first chip traps to be realized ex-
perimentally, but there are many more possible trapping con-
figurations, and a wealth of configurations for more complex
potentials. A systematic approach to constructing many com-
pound potentials from simple building blocks is presented
in [25]; potential design is also discussed in [63]. Two cross-
ing conductors (Fig. 6) form the basis of the systematic ap-
proach given in [25]. Such a conductor crossing, used with
an appropriate external field, constitutes a particularly sim-
ple Ioffe–Pritchard trap as shown in the right-hand column of
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Fig. 6. As a rule of thumb, the stronger of the two currents pro-
vides the transverse confinement, while the weaker one serves
to establish the longitudinal minimum. This configuration has
been used in an experiment to obtain an IP trap with a rotatable
axis orientation. The result is shown in Fig. 7.
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FIGURE 6 Field strength at a wire intersection with parameters I0 = 2 A,
I1 = 0.5 A, B0,y = 160 G. In the left-hand column, no field is applied along
ex , and the total field has a ‘saddle point’, repelling atoms from the conductor
intersection. In the right-hand column, an additional field B0,x = −45 G ex
is applied, creating a three-dimensional trap above the intersection point.
The upper and middle rows show contours of the magnetic field modu-
lus (contour-line spacing 10 G). The conductor configuration is indicated by
shaded lines in the contour plots. The bottom column shows the field modulus
along the transverse center of the potential
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FIGURE 7 Ioffe–Pritchard trap created by two intersecting conductors. The
left-hand column corresponds to I1 > I2 and |B0,y| > |B0,x |; in the right-
hand column both relations are reversed. Top row: conductor pattern; the
thickness of the arrows corresponds to the magnitude of the current. Dashed
arrows indicate the bias-field direction. Middle row: calculated contours
of the magnetic field modulus |B(x, y)| indicating how the long trap axis
turns. The left-hand potential continuously transforms into the right-hand
one when the parameters are changed smoothly. Bottom row: absorption
images corresponding to the two situations. The final trap (right) contains
4.5×105 atoms (adapted from [25])

Multiple wire intersections can be combined to obtain
more complex potentials. The trapped-atom interferometer
potential, shown below in Fig. 12, is an example of this
method.

2.2.6 Ultimate confinement: scaling laws and practical limits.
Part of the motivation for chip traps comes from the excep-
tionally strong confinement which they provide. Today’s ex-
periments are still far from reaching fundamental limits in this
respect, and it is interesting to consider how tight the magnetic
confinement can be made. To obtain the strongest possible
trap with a given wire, the trap center must be located as close
as possible to the wire surface: field gradients are strongest at
the wire surface; the thinner the wire, the higher the maximum
gradient for a given current. Thus, it might seem at first that the
structure-size limit of available microfabrication techniques
(e.g. 130 nm in state-of-the-art mass-production processes)
would limit the confinement in a chip trap. It turns out, how-
ever, that other effects impose much more severe restrictions
on the gradient, limited current density being the most import-
ant one for small structures. Limitations in the trap–surface
distance, which result from interactions of the trapped atoms
with the surface, will be discussed in Sect. 6.1. In the present
section, the boundary conditions due to the chip alone will be
considered.

Practical limits: power and current density. In microelec-
tronics, conventional current-carrying wires are known to fail
due to electromigration, which is the thermally assisted mo-
tion of ions under the influence of an electric field. For short
(∼ 1-µm) gold ‘nanowires’ of 20-nm height and widths be-
tween 60 and 850 nm on silicon substrates, a maximum cur-
rent density of typically 1012 A/m2 has been measured, which
was essentially independent of the wire width [64]. In the
context of chip traps, the maximum sustainable current dens-
ity has been measured by several groups [65]. The thin-film
hybrid conductors used in Munich reproducibly sustain cur-
rent densities of several 1010 A/m2 for a wire cross section
of ∼ 10×10 µm2. Although the results scatter considerably,
and depend on parameters such as substrate thickness and
thermal coupling to the environment, a current density of
j = 1011 A/m2 seems to be an upper limit for micron-sized
gold conductors at room temperature, and can be increased
by roughly an order of magnitude at liquid-nitrogen tempera-
ture [65]. Interestingly, superconductors do not offer higher
current densities [16]. Nevertheless, they may be useful for
long wires to reduce the total power.

The high values of j given above are only reached for
relatively thin (w � 10 µm) wires. Indeed, in a macroscopic
gold wire, with a quadratic 0.1×0.1 mm2 cross section for
example, the current density of 11 A/m2 corresponds to a cur-
rent of 103 A and a dissipated power of 22 kW/cm! When
microtraps are scaled to a smaller size, the length-to-width
ratio β = l/w typically remains constant. The general rela-
tionship of w, j , and the total power P can then be expressed
as

P = � j2w3β, (18)
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where � is the resistivity, and where we have assumed
a quadratic cross section. Even for relatively complex traps, it
should be safe to assume β � 103. (For example, β ∼ 750 in
the ‘atomic conveyor belt’ shown in Fig. 14 below; the thicker
conductors which connect to the microscopic wire contribute
negligibly to the total power.) If the wire width is reduced
at constant j , the total power soon becomes negligible. For
a ‘safe’ total power of 1 W, the turnover from the power-
limited to the current-density-limited regime takes place at
w = 357 nm, a factor 3–10 below the structure size of today’s
smallest chip traps.

For thicker wires, the total power P may limit the sustain-
able current before j does. The maximum P is again a value
that can vary widely, depending on the choice of materials, the
mounting and cooling technique, etc. A power of a few watts
can be maintained without active cooling by providing good
heat conductivity from the substrate to a metal surface outside
the vacuum.

Field gradient. The maximum magnetic field gradient B′
max of

a current-carrying straight wire is reached on the wire surface.
For a wire with circular cross section and diameter w, its value
is |B′

max| = 2µ0/π × I/w2. (This is also the gradient at the sur-
face of a ‘broad’ wire (16).) The current density in this wire is
j = I/π(w/2)2, and the gradient can be written

|B′
max| = µ0

2
j . (19)

Obviously, the proportionality of B′
max to j is a general prop-

erty that is not limited to circular wires, and the prefactor only
slightly depends on the shape of the wire cross section.

To increase the gradient B′
max, one can either (a) reduce

the wire width w at constant current, or (b) increase the
current I for a given w. In both cases, both critical param-
eters are increased: the current density j and the dissipated
power P. It depends on the size of the wire which of the
two actually limits the gradient (see below); for thin wires,
the limitation is due to the limit in j . For j = 1012 A/m2,
we find |B′

max| ∼ 8 ×105 T/m = 8 ×107 G/cm. Reducing
the current density by an order of magnitude for safety,
and the gradient dependence by a factor of two (corres-
ponding to a realistic trap–surface distance of w/2 instead
of 0), one still obtains the impressive value of |B′

max| ∼
4 ×104 T/m = 4 ×106 G/cm. For a wire width w = 1 µm,
this value would be reached with a total current I = 0.1 A and
a surface field Bs ∼ 6 ×10−2 T = 600 G. To check whether
the total power remains within realistic limits, we again as-
sume a length-to-width ratio of β = 103: for a gold conductor
(� = 2.2 ×10−8 Ω m), we find a total power P = 220 mW,
a safe value.

Field curvature and trap frequency. Due to the addition
of a bias field (cf. Sect. 2.1.1), stable traps typically have
a quadratic potential near the trap center. Taking into account
the results of the preceding paragraphs, what is the maximum
curvature and trap frequency in a chip trap? For simplicity,
we restrict ourselves to the case of a very elongated (i.e.
two-dimensional) trap with a transverse field gradient of mag-
nitude B′ and a bias field B0‖ parallel to the trap axis. Near the

trap center, the field is approximated by

B(�) = B0‖ + B′2

2B0‖
�2

(cf. Sect. 2.1.3), and the transverse frequency (4) is given by

ω =
√

µm

m

B′2

B0‖
. (20)

To obtain a stable trap, B0‖ must be chosen in proportion with
the trap frequency:

B0‖ = αω , (21)

with α ∼ 2 ×10−10 T s to obtain a spin-flip probability of
about 10−6 per oscillation period [62, 66]. Eliminating B0‖ in
(20) and assuming a gradient B′ = (µ0/4) j (i.e. half the value
at the surface given by (19)) yields

ω = αj j
2
3 , (22)

with

αj =
(µm

αm

) 1
3
(µ0

4

) 2
3
.

For µm = µB and m = 1.46 ×10−25 kg (mass of 87Rb),
the numerical value of this constant is αj = 2π

×5.0 ×10−2 m4/3 s−1 A−2/3. The maximum possible oscilla-
tion frequency is obtained by inserting the maximum current
density into (22). With j = 1011 A/m2, the result for our ex-
ample state is ωmax = 2π × 1.1 MHz, with a corresponding
ground-state size (5) δx = 10 nm, and results from a gradient
B′ = 3.1 ×104 T/m.

In summary, when scaling down the wire dimensions,
a regime is reached where the current density must be held
constant. As soon as this happens, further reduction of the
wire width does not lead to stronger gradients, because the
maximum field gradient scales as the current density. The
highest reported current densities lie between 1011 A/m2 (at
room temperature) and 1012 A/m2 (with liquid-nitrogen cool-
ing), leading to maximum gradients in the 105 T/m region.
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FIGURE 8 Maximum achievable level spacing in a chip trap as a function
of the structure size, for the case of the 87Rb, |F = 2, m = 2〉 state, assuming
a maximum current density of 1011 A m−2 and a maximum total power of
1 W. Hatched lines mark the inaccessible region according to these bound-
ary conditions. The constant-power curve was calculated from (18) (with
β = 103) and (22)
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Today’s strongest traps only reach ∼ 250 T/m, so that there is
still a lot of room for improvement. Even in the regime of con-
stant current density, further size reduction may be helpful to
obtain potentials with smaller length scales. However, atom–
surface interactions (cf. Sect. 6.1) may impose more severe
limits than the current density does. For 87Rb, the conclusion
is that trapping far into the Lamb–Dicke regime is a realistic
goal, whereas a trapping frequency larger than the line width
of the cooling transition (i.e. resolved sidebands) will be hard
or impossible to reach. Figure 8 summarizes these results.

3 Microfabrication processes for chip traps

A priori, almost all standard microfabrication pro-
cesses can be used in chip trap experiments. Standard con-
ductor metals such as gold or aluminum, semiconductors such
as silicon or gallium arsenide, common ceramic materials
such as aluminum oxide or aluminum nitride, and even some
photoresists and SMD (surface-mounted device) electronic
components possess suitable characteristics: they have fairly
low to excellent outgassing rates, can be baked to 120 ◦C or
more, and do not react strongly with alkalis. This means that
a wealth of well-established methods and devices is avail-
able, which can potentially help atom optics experiments to
break fresh ground. The experiments discussed in this art-

Material Therm. conductivity Lin. expansion Density Transmission
(at 20 ◦C) coefficient range

(W m−1 K−1) (10−6 K−1) (g cm−3) (nm)

BeO 260–300 8.4–9.0 2.86
AlN 170–180 4.4–5.3 3.25 500–3000
Al2O3 35–40 5.8 3.99 200–5500
(sapphire)
Al2O3 26–35 8.0 3.9
(alumina)
SiO2 1.46 0.54 2.2 180–2500
(fused quartz)
BK7 1.11 8 2.51 400–1400
Pyrex 1.13 3.25 2.23 300–2500

Polyimide 0.1–0.35 30–60 1.42

C 200–2000 0.8 3.52 400–300 000
(diamond)
GaAs ∼ 55 6.0 5.3 1500–14 000
Si 80–150 4.7–7.6 2.34 1200–15 000

TABLE 1 Properties of some nonmetallic materi-
als. Of the ceramic materials, BeO has the best heat
conductivity, but is rarely used because of its toxicity.
Polyimide is a ultrahigh vacuum compatible polymer.
It is used in electronics, e.g. as a base material for flex-
ible circuits, and as an insulating layer in multilayer
boards. The properties of diamond, gallium arsenide,
and silicon strongly depend on the purity

Material Resistivity Temp. coeff. Therm. conductivity Lin. expansion Density Melting point
� of � (0–100 ◦C) (0–100 ◦C) coefficient

(10−8 Ω m) (K−1) (W m−1 K−1) (10−6 K−1) (g cm−3) (◦C)

Ag 1.63 0.0041 429 19.1 10.5 961.9
Cu 1.69 0.0043 401 17.0 8.96 1083
Au 2.20 0.0040 318 14.1 19.30 1064.4
Al 2.67 0.0045 237 23.5 2.70 660.4
Na 4.5 0.0055 128 71 0.97 97.8
In 8.8 0.0052 81.8 24.8 7.3 156.6
Fe 10.1 0.0065 80.4 12.1 7.87 1535
Pt 10.58 0.00392 71.6 9.0 21.45 1772
Rb 12.1 0.0048 58.2 9.0 1.53 38.9
Stainless steel 70–78 16.3 15–18 ∼ 7.9 ∼ 1400

TABLE 2 Properties of some metals, ordered by resistivity

icle only use microfabricated conductors – they are most ele-
mentary devices. Nevertheless, their combination with atomic
physics methods has already enabled novel and very promis-
ing experiments. The future will show whether more elaborate
micro- and nanotechniques can be employed to go still further
and realize true ‘integrated atom optics’ [67, 68].

Current implementations of the chip trap method use
relatively large-scale conductors. The thinnest wires that
were used in the experiments published to date were 3-µm
wide [14]. To maintain high currents in these structures, it
is desirable to have a wire height of the same order (i.e.
quadratic cross section). The corresponding layer thickness of
several micrometers is unusually large for direct lithography
techniques. Only the Innsbruck/Heidelberg group has used
a purely lithographic process [69]. All other experiments so
far have used combinations of lithography and electroplating.
A commercial process of this type is thin-film hybrid tech-
nology, used routinely in microwave and high-performance
electronics. A very similar process is described in [65].

A wide variety of substrate base materials exists, and many
of them are used for volume production in electronics and
are inexpensive. For example, alumina (Al2O3), aluminum ni-
tride (AlN), and sapphire are standard substrate materials in
thin-film hybrid technology; passivated Si and GaAs are rou-
tinely used in microelectronics. Tables 1 and 2 list properties
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of nonmetallic and metallic materials, respectively, that are of
potential interest for chip trap fabrication.

For use with a mirror MOT (Sect. 4.1.1 below), the chip
(or a part of it) must have a reflective surface. One method to
achieve this is to metal-coat the whole chip surface with the
exception of narrow etchings separating the conductors. This
was done in [69], achieving a very good overall reflectivity,
but some inevitable diffraction at the etchings. Alternatively,
a replica method [25] can be used to transfer a reflective layer
onto the chip surface. In this case, a layer of epoxy glue sep-
arates the chip/conductor relief from the mirror layer. This
epoxy layer fills the gaps between conductors, so that the mir-
ror layer has no edges and is flat. However, application of
this method requires some training, and it is difficult to obtain
a good overall mirror quality. Mirror quality is not critical for
the MOT, but if fluorescence imaging is desired, low scatter-
ing from the surface is essential.

4 Chip trap experiments I: thermal atoms

In mid-1998, chip traps were just an interesting
idea among many other proposed designs for novel magnetic
traps; of those who cared enough to take notice of the concept,
many were probably doubtful about its chances of success.
One year later, the Munich experiment had shown that rubid-
ium atoms could indeed be trapped as proposed [15]; at about
the same time, atom guiding on a chip was demonstrated in
Boulder [21] and Cambridge [22]. Soon a second trapping
experiment followed suit [69], this time with lithium, set up
by a team in Innsbruck (now in Heidelberg), who had long
experience with discrete-wire experiments. Many more peo-
ple now took notice of the concept thanks to the publicity
effort of that group, which resulted in numerous articles de-
scribing their result and their vision of an ‘atom chip’. In the
following years, experiments started to use the freedom of
lithographic design for demonstrating new magnetic manipu-
lation devices: splitters [23, 24] and a switch [70] for thermal
atomic beams, a magnetic ‘conveyor belt’ [71] for adiabatic
transport of trapped thermal clouds, and more exotic devices
such as a linear collider for atom clouds [25]. Still, many were
doubtful about current noise and surface effects, which might
be too severe to support the fragile state of a Bose–Einstein
condensate. Meanwhile, a group in Tübingen, having gained
wide experience with discrete-wire traps, produced their first
lithographic substrate and loaded it with atoms in early 2001.
Both the Munich and the Tübingen teams now began to study
evaporative cooling in chip traps, and succeeded in obtaining
on-chip Bose–Einstein condensates in the beginning of June
2001 [13, 14], with almost perfect synchronicity: June 08 in
Tübingen, June 12 in Munich.

The present section discusses the key issue of trap loading,
and summarizes the experiments done with thermal atoms in
chip traps and guides. A discussion of the on-chip BEC fol-
lows in Sect. 5.

4.1 Chip trap loading

Trap loading is a crucial issue for chip trap ex-
periments. In experiments with cold atoms – including ‘tra-
ditional’ BEC experiments – the cloud of cooled atoms is
usually kept as far away as possible from material surfaces.

(Evanescent-wave traps [72] are a notable exception to this
rule.) In fact, in 1996 it was known that chip traps would
produce very strong traps ideally suited for evaporative cool-
ing [16], but no suitable loading mechanism was available.
The first successful chip trap experiment [15] solved the load-
ing problem by introducing the ‘mirror-MOT’, and employing
it in a loading sequence similar to a standard BEC experiment.
This approach is now widely employed in surface-trapping
experiments (see e.g. [43, 69]), and is outlined in Sect. 4.1.1
below. Alternatively, the atomic cloud can be first stored and
eventually precooled in a macroscopic trap, and then trans-
ferred into the chip potential by a conservative force, which
may be derived from a magnetic [14] or an optical [73] po-
tential. Both methods have specific advantages, as will be
discussed in the following sections.

Both of the above methods work in a pulsed mode. For
some experiments – especially for interferometers using ‘mat-
ter waveguides’ [74, 75] – continuous loading may be de-
sirable. (Note, however, that integrated atom interferometers
are also possible with trapped atoms, as described below in
Sect. 6.3.) The main problem for continuous loading, outlined
in Sect. 4.1.3, consists in efficient coupling from the cold-
atom source into the waveguide.

A more radically different approach would be to use
a laser-less source of cold atoms. Some pioneering work has
been done in this direction [76, 77]. For the time being, how-
ever, such a solution comes at the price of reduced flux of
sufficiently cold atoms and additional complications in the ex-
perimental setup. It would be interesting to consider whether
a laser-less source can be realized on a chip. In view of future
‘real-life’ applications, a loading solution without lasers has
a lot of appeal.

4.1.1 Direct loading from a mirror-MOT. The standard
magneto-optical trap setup [78, 79] is the combination of six
red-detuned beams along three orthogonal axes with a mag-
netic quadrupole field (Fig. 9a). The sub-Doppler cooling and
trapping mechanisms require a particular choice of beam po-
larizations: all six beams are circularly polarized; the two
beams on the quadrupole axis have equal helicity, which is op-
posite that of the other four beams. The MOT has proven to
be a remarkably robust tool – for example, MOTs have been
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a b
FIGURE 9 a Geometry of the standard magneto-optical trap (MOT).
C: quadrupole field coils. The helicity of the two beams on the quadrupole
axis is equal and opposite to that of the other four beams. b Modified scheme
to enable trapping near a surface (‘mirror-MOT’). M: mirror. The mirror is
placed in such a way that the reflected beams have the same helicity as their
counterparts in the standard setup
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observed to work with divergent beams, with linear instead
of circular polarization in one of the beams, with four beams
in a tetrahedral configuration [80], and in the harsh environ-
ment of an airplane performing parabolic flights [81]. Here,
the goal is to modify the setup in such a way that the cloud
of cold atoms is located in close proximity to a surface – the
trapping chip. The exact value of the required MOT–surface
distance is the maximum distance at which the on-chip current
can produce a stable magnetic trap, and is typically 1 mm or
less.

The mirror-MOT [15] uses four beams and a mirror as
shown in Fig. 9b to reproduce the exact light-field configura-
tion of the standard MOT in the half-space delimited by the
mirror. It is similar (but not identical) to an earlier surface-
MOT scheme using eight beams [82], and has also been re-
lated to the ‘pyramid MOT’ [83], which traps atoms inside
a pyramid formed by four mirror surfaces. Note that, although
other planar mirror orientations exist which reflect beams in
the right directions, the configuration of Fig. 9 is the only one
in which the reflected beams have the correct polarizations
with respect to the magnetic quadrupole field.

To employ the mirror-MOT with a chip trap, the chip sur-
face has to be reflective. This can be achieved either by adding
a mirror layer on top of the conductor structure (cf. Sect. 3),
or by using a chip that is completely metalized with the ex-
ception of narrow (∼ 2–10-µm) gaps separating the conduc-
tors [69]. Remarkably, the deformation of the light field due to
these gaps does not seem to result in a significant degradation
of MOT performance.

The position of the MOT center can be displaced slightly
by superposing an appropriate homogeneous magnetic field
on the quadrupole field. When the center is located sufficiently
far away from the surface (more than about 2 mm), the mirror-
MOT achieves a performance comparable to a standard MOT.
The chip currents are usually not sufficient to create a mag-
netic trap that far from the surface. For smaller distances, how-
ever, the mirror-MOT lifetime and steady-state atom number
decrease, as shown in Fig. 10. To circumvent this problem, the
MOT is loaded far from the surface where the atom number
is high, then shifted and transferred into the chip trap within
a few 10 ms, fast enough to avoid significant losses. To cen-
ter the MOT at the exact location of the magnetic trap, without
having to align the MOT coils with micrometric precision, an
intermediate step can be used in which the MOT quadrupole
field is generated on-chip. To provide higher wire currents for
this on-chip MOT and for initial magnetic trapping, the setup
can be improved by embedding a macroscopic wire below the
chip surface [69]. (For the role of such a high-current wire in
magnetic trap compression, see Sect. 5.1.3.)

Finally, to achieve good initial conditions for evaporative
cooling, short phases of MOT compression, optical molasses,
and optical pumping are inserted immediately before switch-
ing on the magnetic trap, just as in standard BEC experi-
ments [84]. A detailed description with numerical values of all
steps of this loading procedure is given in [15].

4.1.2 Loading by adiabatic transfer after precooling. As an
alternative to direct transfer from a MOT, the chip trap can be
loaded by magnetic transfer from a coil-based, intermediate
magnetic trap. A particular and very effective implementation
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FIGURE 10 Loss coefficient of a mirror-MOT as a function of the distance
from the mirror surface, measured under different conditions. Each point
is extracted from a fit to a MOT charging–discharging curve. Discharging
curves were obtained by first loading the MOT far away from the surface,
then shifting the quadrupole center to the position specified in the graph. The
cold-atom cloud quickly moves to the new position, followed by a slower de-
cay of the atom number to a lower equilibrium value. In the upper graph, the
loss coefficient in a 87Rb MOT is traced for different values of the quadrupole
field gradient. The lower graph shows data for 87Rb and 85Rb MOTs ob-
tained with the same gradient. No significant difference is observed, which
suggests that hyperfine state-changing collisions do not play a significant role
in the loss process

of this method is demonstrated in [14], where it is used to
achieve a Bose–Einstein condensate of 4 ×105 87Rb atoms in
an extremely elongated chip trap. In this experiment, a mul-
tistep procedure – involving two pairs of coils, two auxiliary
wires, and several stages of magnetic transfer – successively
compresses and rf-cools the cloud before it is transferred into
the chip trap. This rf precooling, which increases the phase-
space density before transfer, helps to obtain a large atomic
sample in the small volume of the chip trap.

In a very recent experiment [73], a far-detuned, focussed
laser beam (‘optical tweezers’) has been used to transfer
a sodium BEC from a ‘production chamber’ into a macro-
scopic wire trap located in a ‘science chamber’ 36-cm away.
The same method can be used to load a chip trap. Although the
complexity of such an experiment is considerably higher than
with either magnetic transfer or direct loading, the advantages
are better optical access to the chip trap and easy exchange of
substrates without affecting the ‘production’ part of the setup.

In a comparison of all three methods, the mirror-MOT
loading scheme is probably the simplest one, but it remains
to be shown whether it can be used to obtain large samples.
The need for a mirror layer on the chip may be a disadvan-
tage in some applications, although the atoms can be trans-
ported away from the production region into a noncoated area
by using a magnetic conveyor belt (Sect. 4.3.3). Magnetic
transfer as described in [14] requires a better vacuum and
a more sophisticated magnetic setup, but has been demon-
strated to lead to larger samples, as does transfer by optical
tweezers [73]. The latter method also provides easy sample
exchange and good optical access, but is certainly the most
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complicated of the three. Finally, other methods of magnetic
transfer such as [85] may be adapted to load chip traps.

4.1.3 Continuous loading. To achieve a monochromatic
atomic beam of high density and low transverse temperature,
the experimentalist has at his disposal the same repertoire of
methods that were discussed above (or their two-dimensional
variants): magneto-optical cooling and confinement, optical
pumping, magnetic compression, etc. New challenges arise
because the temporal sequence of steps must be replaced
by a spatial succession of regions along the beam axis. For
methods such as rf-induced evaporative cooling, this means
that the method has to be modified – in this case, the frequency
sweep might be avoided by a variation of the magnetic poten-
tial along the beam axis. No standard has evolved yet for con-
tinuous loading. Although continuous-loading schemes have
been used in a number of chip experiments [21, 23, 70], none
of them aimed at a high coupling efficiency and a substantial
collision rate. Thus, improvements are necessary (and pos-
sible) to achieve evaporative cooling in the waveguide [86],
as may be required for external-state interferometers such
as [74, 75]. Such experiments may benefit from current ex-
periments that aim at evaporative cooling of atomic beams in
macroscopic magnetic guides [87].

4.2 Two-dimensional confinement: guiding
experiments

Because of the analogy with optical fibers, atom
guides are a deceptively natural concept for matter-wave op-
tics, and for atom interferometers in particular. A certain class
of applications – which includes, in particular, gyroscopes –
indeed seem to require the use of guides. But atomic mat-
ter waves can be stopped, and many fundamental operations,
such as splitting and merging of wave packets, can be car-
ried out with atoms of zero mean velocity. Using trapped
atoms wherever possible leads to a smaller setup and avoids
a number of problems that guiding experiments have to deal
with. Indeed, the absence of control over the longitudinal
motion is a complication for guiding experiments in the quan-
tum regime. Moreover, techniques are still to be developed to
achieve an atomic beam in a well-defined vibrational state of
an atom guide, whereas established, reliable methods already
exist for producing the equivalent state in a three-dimensional
trap (i.e. a Bose–Einstein condensate). So far, all guiding
experiments – with microstructures as well as with discrete
wires – have been carried out with thermal atomic ensembles.
However, as experimental techniques evolve, there is little
doubt that the single-mode regime will ultimately be attained,
enabling realization of devices such as integrated atomic gy-
roscopes. At this stage, the advantage of continuous loading
will also come into play.

4.2.1 Demonstrations of guiding on a chip. The two first
demonstrations of on-chip guiding were carried out in
1999 [21, 22], almost simultaneously with the first three-
dimensional chip trap experiment [15]. Similar in their gen-
eral ideas, but with a number of differences in the implementa-
tion, these experiments mainly demonstrated that laser-cooled
atoms could indeed be coupled into the magnetic guides

formed by current-carrying conductors on a chip, and that
they could be transported over centimetric distances. The ex-
periment in Boulder [21] used two parallel copper conductors
(100×100 µm2 cross section, 200-µm distance between cen-
ters) on a glass substrate. The field configuration was that
of Fig. 5c, which allowed the researchers to guide the atoms
around curves along a total distance of 10 cm in a horizontal
direction. Atoms leaving the guide were detected by a hot-
wire detector. The Harvard experiment [22] employed up to
four parallel gold conductors with a spacing of 200 µm on
a transparent sapphire substrate. Guiding was demonstrated
with two different field configurations (Fig. 5b and d). The
guiding direction was nearly vertical and could be adjusted
by rotating the substrate about a horizontal axis normal to
its surface. Atoms were detected by measuring absorption
of a probe beam, which could be scanned below the exit
of the guide. In both experiments, beam stops on the sub-
strate were used to block the large background of unguided
atoms. The effects of guiding were clearly observable in both
experiments.

It is instructive to compare the loading techniques of the
two experiments. The Boulder experiment used continuous
loading of 87Rb atoms from an LVIS (‘low-velocity intense
source’) [88]. Essentially, this source is a MOT with a sub-
mm hole in one of the retroflection mirrors, through which
a cold-atom beam emerges. Its mean longitudinal velocity
and transverse velocity spread were 10.1 m s−1 and 5 cm s−1,
respectively. The guiding substrate was mounted immedi-
ately behind this hole; optical pumping, or molasses cooling,
or a tapered section at the guide entrance were not used.
Consequently, of the initial LVIS flux of 5 ×108 s−1, only
2 ×106 s−1 remained at the guide exit. By contrast, the Har-
vard experiment used a cesium MOT located above the guide
as a pulsed atom source: a cloud of 108 atoms was released
from the MOT to couple into the guide while in free fall. As
pointed out in Sect. 4.1.3, a pulsed scheme facilitates efficient
coupling into a trap or guide. Indeed, several provisions were
made in the Harvard experiment to ameliorate this coupling:
first, a short optical molasses phase further cools the atoms
after release from the MOT. Next, they are optically pumped
into the appropriate Zeeman state in a homogeneous magnetic
field. Finally, this field is transformed into the guiding field in
such a way as to allow adiabatic following of the atomic polar-
ization. Unfortunately, the analysis does not appear to give the
coupling efficiency of this scheme.

4.2.2 Beam switches and splitters. After the initial demon-
strations of guiding, development in the beam experiments
has focussed on beam splitters. As mentioned above, all ex-
periments so far have used thermal atomic ensembles; the
function of the splitters can be understood classically (like
a Y-shaped piece connecting water pipes), and quantum ef-
fects do not contribute significantly to the results. Neverthe-
less, these experiments constitute first tests of some potentials
that are being considered for integrated atom interferometers
(cf. Sect. 6.3).

Both demonstrated beam splitters [23, 24] use the gen-
eral approach of two initially separated guiding potentials
which merge into one and then separate again. Another op-
tion, which has not yet been demonstrated experimentally,
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would be to use a beam splitter based on tunneling as proposed
in [89].

The experiment in Boulder [23] (similar in its setup to the
guiding experiment [21] summarized above) uses two con-
ductors approaching each other (Fig. 11) and the field config-
uration of Fig. 5a with an additional external field component
along the guide axis to prevent spin-flip losses. Where the
transverse spacing between the conductors is large, two sep-
arate minima exist, located above the individual conductors.
For a smaller spacing, the two minima move closer to each
other and merge into one. Thus, the layout of Fig. 11a forms
a four-port device; in the experiment, atoms are initially
coupled into only one of the input ports. The configuration
of Fig. 11a, which was used in the beam-splitting experiment
described in [24], also has four ports despite the appearance
of the conductor layout. Here the fourth port, located on the
input side, leads diagonally towards the surface. In the experi-
ment, the guide was loaded from the three-dimensional chip
trap described above [69]; when the longitudinal confinement
is removed, the atom cloud expands into the Y-shaped wire
due to its longitudinal velocity spread. In both experiments,
a variable splitting ratio was demonstrated; in the Boulder
experiment, interesting additional measurements character-
ize the transverse nonadiabatic heating. Finally, in another
experiment in Boulder [70], a more elaborate guide configura-
tion was used to switch the flux of an input guide between two
outputs.

Quantum-mechanically, the splitting ratio in waveguide
splitters is determined by the dynamic evolution of the wave
functions in the single-guide region as they propagate into the
two-guide region. This ratio will generally depend on both
longitudinal and transverse states, and on the geometry (in
particular, the symmetry) of the splitting potential; moreover,
reflections may also occur. None of the above configurations
is ideal in this respect. The Y-shaped splitter, in particular,
fundamentally suffers from the asymmetry due to the differ-
ent angles between the two output conductors and the external
field, leading to nonsymmetric output ports. The existence of
the fourth port which can cause losses is another complication
in this scheme. These problems are discussed in [24] and in
more detail in [68], where some improved versions are also
proposed. There is little doubt that coherent beam splitting
on a chip will be demonstrated in the near future. The inter-
ferometers that can then be built possess the advantages of

FIGURE 11 Guide configurations that have been used to split guided ther-
mal beams. a Two separate wires with a closely spaced region to induce the
coupling [23]. b A Y-shaped wire [24]

miniaturization that have already been pointed out. Whether
they can become high-precision instruments is an open ques-
tion; the main challenge will certainly be to master magnetic
field fluctuations.

4.3 Experiments with trapped thermal clouds

4.3.1 Three-dimensional trapping on a chip. Three-dimen-
sional trapping is the first step for all experiments with full
control over the spatial degrees of freedom, and for Bose–
Einstein condensation in particular. The first experiments [15,
69] have used the U-shaped and Z-shaped wire configurations
introduced above (Sect. 2.2.2) and the mirror-MOT loading
technique (Sect. 4.1.1). The planar IP trap designs contained
in the 1995 study [16] have been built [65], but have not
been used in any experiment published so far. In these de-
signs, the trap center is located above a conductor-free region
of the chip, which makes them interesting for some future
applications.

4.3.2 Splitting and merging of trapped clouds. An experiment
has been performed in Munich which demonstrates splitting
and merging of thermal clouds, analogous to the experiments
described in Sect. 4.2.2, but with trapped atoms [71, 90]. Here
the mean velocity of the atoms is zero, and instead of a varia-
tion along some spatial guide axis, the potential varies along
the time axis. This allows, for example, long-time splitting to
pick up phase shifts without a growing size of the apparatus
and the associated shielding and stability problems. Arbitrary
numbers of splitting and merging cycles can be performed
with the same simple conductor configuration.

A conductor layout for splitting and merging two Ioffe–
Pritchard traps is shown in Fig. 12. By appropriately choosing

FIGURE 12 a Conductor layout to create the potential for a trapped-atom in-
terferometer. b Potential created by this structure for B0,x = 1.6 mT, B0,y =
2 mT, I0 = 525 mA, and the following values of I1 and I2: left: (140 mA,
0.25 mA); center: (142.04 mA, 3.33 mA); right: (142.91 mA, 4.65 mA)
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FIGURE 13 Left: absorption images of a thermal cloud of Rb atoms being
split, then merged again by a potential similar to the one shown in Fig. 12.
Right: resulting temperature of the atom cloud when the cycle (shown left) is
executed up to five times

the currents, either a single- or a double-potential well is ob-
tained. The potential used in the experiment was obtained
with the conductors of the magnetic conveyor belt [71], and
was used to split and merge two clouds each containing ∼ 105

atoms at a temperature of ∼ 50 µK (Fig. 13). As in the case of
the guiding experiment, this is a ‘multimode’ experiment due
to the thermal distribution of the atoms. However, this experi-
ment gave easy access to the temperature of the atom cloud
by performing time-of-flight measurements. Thus, it was pos-
sible to verify the adiabaticity of the process by measuring
the temperature before and after the splitting. Figure 13 shows
the result for up to five complete splitting and merging cycles.
The number of atoms did not decrease and the temperature
remained constant to within the measurement accuracy of
∼ 1 µK, confirming the adiabaticity within these limits. This
encouraging result raises hopes that a trapped-atom interfer-
ometer (cf. Sect. 6.3 below) can be realized with this splitting
method.

4.3.3 Adiabatic transport with the ‘atomic conveyor belt’.
Trapped atoms can be transported parallel to the substrate sur-
face with the ‘atomic conveyer belt’. The magnetic potential
for this device and the wire layout used to create it are shown
in Fig. 14a and b. When time-dependent currents are applied

FIGURE 14 a Wire layout for the ‘atomic conveyer belt’. The spatial period of the undulating wires is l = 800 µm. b Magnetic potential produced by this lay-
out with a constant field B0 = 3 G ex +16 G ey and the following currents: I0 = 1.5 A, IM1 = 0.8 A cos φ, IM2 = 0.8 A sin φ, IH1 = −0.17 A+0.15 A cos φ,
IH2 = −0.25 A +0.18 A sin φ. (In the experiment the phase is time-dependent, φ = 2πt/T , with period T ). The coordinate q follows the path of the trans-
verse (yz plane) minimum for each value of the longitudinal x coordinate. c Sequence of absorption images showing the transport of cold trapped atoms in
this potential. The probe beam is directed along the y axis (hence, parallel to the substrate surface). The period is T = 100 ms; for each image, the transport
phase is 25 ms longer than for the preceding one

as specified in the figure caption, the minima move to the right
with the average speed l/T .

Figure 14c shows a sequence of absorption images which
experimentally demonstrates the atomic transport in the po-
tential of Fig. 14b. (As the imaging is destructive, the whole
sequence of magneto-optic trapping, transfer to the magnetic
trap, and magnetic transport is repeated for each picture.)
Initially, the two leftmost minima have been populated with
atoms from the MOT. During the transport, the two trapped
clouds move to the right in accordance with the calculated
potential.

This device may prove its usefulness in applications such
as controlled coupling of trapped atoms to the quantized
light field of a high-finesse resonator (e.g. a Fabry–Perot cav-
ity [32] or a silica microsphere [91]). As discussed below in
Sect. 5.3, the device can even transport a Bose–Einstein con-
densed cloud.

4.3.4 Other experiments with trapped thermal clouds. The
wire layout of the atomic conveyor belt has turned out to be
versatile enough for many other atom-manipulation devices
that had not even been thought of when the conveyor sub-
strate was fabricated. One example is an Ioffe–Pritchard trap
with a rotatable axis, shown above in Fig. 7. Other exam-
ples include a ‘linear collider’ for cold neutral atoms [25] and
a mechanism to refill an IP trap without loss of phase-space
density [90].

5 Chip trap experiments II: Bose–Einstein
condensation on a chip

Chip traps have been around since late 1998 [15]
and have shown their versatility in a number of demonstra-
tion experiments (Sect. 4). It was the demonstration of an
on-chip BEC [13, 14], however, which led to an explosion of
interest in this method. Indeed, the chip technique dramat-
ically simplifies the experimental effort that is necessary to
obtain a Bose–Einstein condensate. It eliminates high-power,
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FIGURE 15 Vacuum system used in the Munich chip trap experiment [13].
Because of the efficient evaporation in the chip trap, this very simple setup
is sufficient to achieve a BEC. The substrate is mounted facing downwards,
so that the atom cloud may be released to expand in free fall (time-of-flight
analysis)

water-cooled magnetic coils and large power supplies, and re-
quires neither differential pumping nor (at least in the case of
87Rb) atomic beams [13, 14] (Fig. 15). In combination with
direct loading from a mirror-MOT, it also greatly accelerates
the condensate-production rate – from typically more than
a minute to less than ten seconds – and relaxes the vacuum re-
quirements by about two orders of magnitude [13]. No more
than three diode lasers are required to obtain a coherent matter
wave by this method. Along with these advantages, the wide
array of integrated manipulation capabilities comes for free.

This section presents some specific methods and issues
pertaining to on-chip condensates that were only touched
upon in the two first chip BEC reports [13, 14]. For a more
general introduction to properties of atomic BECs and the
associated techniques, the reader is referred to excellent re-
views, such as [92, 93] and [94, 95], on evaporative cooling.
Likewise, the results of the two chip BEC experiments are
only briefly summarized here; a more exhaustive description
can be found in [13, 14].

5.1 Special techniques

5.1.1 Modulating the background pressure. As an alternative
to a reservoir containing a quantity of an elementary alkali
metal, there exist so-called alkali metal ‘dispensers’, about the
size of a match, which contain some milligrams of the alkali in
a chemical compound, and can be used for MOT loading [36].
When the dispenser is heated by running a current of a few
amperes through its metal housing, the elementary alkali is
evaporated (along with some other contaminating elements).
This method has several advantages. The dispenser can be
stored and installed in air, without most of the safety measures
that are necessary when dealing with elementary alkalis. More
importantly, the vapor pressure can be adjusted on a time scale
of the order of 10 s, much faster than with an oven. When

the base pressure in the cell is low enough to achieve a trap
lifetime significantly longer than this, it becomes possible to
modulate the alkali partial pressure during the experimental
cycle, using a high partial pressure for loading, then switching
off the dispenser to achieve a good trap lifetime [96]. This was
done in the Tübingen experiment [14], where the background
pressure is below 2 ×10−11 mbar. The Munich experiment
has much smaller pumps, and the higher background pressure
leads to a magnetic trap lifetime below 10 s, so that dispenser
switching is not useful. However, it was found that another
technique allowed a still faster modulation of the rubidium
pressure: light-induced desorption [97] using a standard halo-
gen bulb placed close to the glass cell.

5.1.2 Loading large samples into chip traps. In traditional
BEC experiments, care is taken to load as many atoms as
possible into the magnetic trap (often 109 atoms or more),
because this facilitates evaporative cooling, which is a dif-
ficult process even at the typical ultra-low pressures below
10−11 mbar. In chip traps, with their much stronger compres-
sion and correspondingly higher collision rate, evaporative
cooling is a much more robust process. In the Munich ex-
periment, evaporative cooling to condensation succeeds in
spite of an initial atom number of only a few 106 atoms and
a base pressure in the upper 10−10-mbar range. Nevertheless,
a higher initial atom number is obviously useful if a large con-
densate is desired. Some methods for increasing this number
were already discussed in Sect. 4.1. In spite of the obvious
limitation of the chip trap volume (cf. Fig. 2), current experi-
ments remain far below the limits that could achieved with
some straightforward improvements. First of all, the trap vol-
ume strongly depends on the wire current, which can be in-
creased by a large factor by using an embedded, thick wire as
described in [69] (cf. Sect. 4.1.1), or by adding a larger con-
ductor on the chip. Another approach, which does not need
higher currents, would be to start with an elongated MOT
and magnetic trap, followed by longitudinal compression with
a scheme as shown in Fig. 16.

5.1.3 Trap compression. The extreme ‘compressibility’ of
chip traps has already been pointed out. Compression plays
a crucial role in BEC experiments because it increases the col-
lision rate γ , which sets the time scale for evaporative cooling:

γ = nσv̄ , (23)

where n is the density, σ the elastic scattering cross section,
and v̄ the mean velocity. Adiabatic compression increases
both n and v̄. (In fact, even a sudden compression can still in-
crease γ .) This method of increasing the collision rate only
comes to a halt when the density is so high that three-body col-
lisions become an important loss term. In macroscopic traps,
densities that high usually occur only after substantial evap-
orative cooling, whereas chip traps may achieve this by mere
compression immediately after loading. Thus, chip traps can
achieve the fastest evaporation that is fundamentally allowed
by this constraint on density.

Another potential loss factor that has to be considered is
‘spilling over’ of the compressed trap. Obviously, the higher
temperature after compression requires a deeper trap (3).
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FIGURE 16 a Conductor layout for an
Ioffe–Pritchard trap with adjustable as-
pect ratio, requiring no external fields.
b, c, and d Potentials generated by these
conductors. For all curves, IA = IB = 2 A.
Another current of 2 A flows through the
conductors corresponding to the labels of
the individual curves. As this third cur-
rent is blended from I1 to I6, the lon-
gitudinal trap frequency increases from
140 Hz to 320 Hz. At the same time,
the transverse frequency changes from
11 kHz to 3.2 kHz. Note that a similar but
stronger trap can be realized with an ex-
ternal field as in Fig. 2 and IA = IB = 0

While the exact temperature increase in a realistic potential
(such as the one of Fig. 2) is difficult to compute, there exist
analytical results [94] for all relevant quantities in power-law
potentials in d dimensions,

U(r) ∝ r
d
δ . (24)

If the potential is multiplied (‘compressed’) by a factor α, the
temperature scales as

T ∝ α
2δ

2δ+3 . (25)

When a ‘Z-trap’ is compressed adiabatically by slowly in-
creasing the bias field from B0i to B0 f = βB0i as in Fig. 2, the
trap depth (being proportional to B0 if we neglect the small
bias field in the trap center) also increases by a factor β. To
obtain a crude estimate of the concomitant temperature in-
crease, let us approximate the process as the compression of
a two-dimensional, linear potential (d = δ = 2, T ∝ α4/7). If
we further estimate the compression factor by the ratio of the
initial and final transverse gradients near the trap center (9),

α ∼ B′
f (r0)

B′
i(r0)

= β2,

we find a temperature increase T ∝ β8/7, only slightly faster
than the trap depth. Within this crude model, the trap will re-
main about ‘as full’ as it was before compression, and boiling
out of the trap will not become a major loss factor due to the
compression, which is a reassuring result.

Note that, in view of the spill-over problem, compressing
the trap by increasing B0 is certainly a better choice than re-
ducing I . The latter method also leads to trap compression, but
leaves the trap depth unchanged. Thus, unless the initial η was
very large, such a compression will present significant losses.

Limit in trap depth. The simplification made above, to iden-
tify the external field B0 with the trap depth, has some limits
that should not be forgotten. First, the contribution of gravity
to the total potential has been neglected: the restoring force in
the vertical direction vanishes when the magnetic gradient be-
comes as low as B′ = mg/µm (0.15 T/m for our Rb example

state). In steep traps, the effect of this correction is small.
When the trap is very strongly compressed by increasing B0,
on the other hand, the finite field at the wire surface must be
taken into account; for a wire of finite width, this is

Bs = µ0

2

I

w
− B0 . (26)

Thus, Bs limits the trap depth only when z �w.

5.1.4 Surface-induced evaporation. The presence of the chip
surface enables a new evaporation method to be used, first
demonstrated in [15] and called surface-induced evapora-
tion. In this method, atoms with an energy in the z direction
in excess of the potential at the surface are removed from
the trap by collisions with the surface. In its first demon-
stration, a quadrupole trap with a short lifetime was used

FIGURE 17 Surface-induced evaporation. While the wire current is kept
constant at 1.6 A, the bias field is ramped up to a final value Bmax within
100 ms. 2-ms later, the trap is shifted back, within another 100 ms, to a dis-
tance of z = 300 µm from the surface (I = 2 A, B0 = 0.9 mT), where the
trap parameters can be measured as a function of Bmax under identical con-
ditions. a Temperature of remaining atoms after shifting the cloud towards
the surface by increasing B0 up to Bmax, then shifting it back to a constant
measurement position. (Due to decreasing density, thermalization during the
back-shifting process is not complete. The change in trap aspect ratio during
shifting therefore leads to a difference between transverse and longitudinal
temperatures.) b Number of atoms remaining in the trap after the shifting
sequence. The decrease is only partly due to the surface-induced evapora-
tion; in the quadrupole trap, the compression of the trap also results in an
increased loss rate due to Majorana spin flips. Nevertheless, the phase-space
density grows by more than a factor of two. A more detailed description of
this experiment is given in [15]
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(Fig. 17). Current chip BEC experiments have not yet ex-
plored the use of surface-induced evaporation. Although
the dimensionality of the evaporation is reduced, it will be
interesting to explore this method further, because of its
properties which distinguish it from the standard rf-induced
evaporation. Apart from the simplification (no need for rf
source and control), another feature is that it can be applied
locally.

5.2 Experimental results

The two first chip BEC experiments used stan-
dard rf-induced evaporation to achieve condensation. The
detailed experimental sequence for each experiment can be
found in [13, 14]. The final result in the Tübingen experi-
ment, achieved with a total evaporative cooling time of 27 s, is
a condensate containing 4 ×105 atoms in a potential with ra-
dial and axial frequencies of 840 Hz and 14 Hz, respectively.
No heating of the condensate was observed; the condensate
lifetime in a relaxed potential was 1 s, and an rf shield had
no effect. In the Munich experiment, a very short evapora-
tion could be used due to the direct loading, which enabled
strong initial compression (Fig. 18). The condensate forms
despite an observed heating rate of more than 1 µK s−1. This
heating is believed to be mainly due to current noise; in-
deed, the current sources used in Munich have been meas-
ured to produce significantly more noise than the ultra-low-
noise sources used in Tübingen. Nevertheless, condensation
is achieved, and the condensate lifetime is 500 ms without
an rf shield. Two trapping field configurations with differ-
ent aspect ratios were used: one with frequencies νx,y,z =
(20, 3900, 3900) Hz (frequency ratio 200 : 1), the other with
frequencies νx,y,z = (300, 3400, 3500) Hz (ratio 12 : 1). In
both cases, the rf cooling time was typically 2 s and could
be made as short as 700 ms. This is more than an order of
magnitude faster than in the usual BEC experiments; the total
cycle time (including MOT loading, etc.) was 10 s or shorter.
The number of condensed atoms well below the transition
temperature was about 3000 in both configurations. Higher
numbers can be expected if the source of the heating can be
eliminated.

5.3 Condensate transport with the conveyor belt

As a first demonstration of the power of the new
method, an on-chip condensate has been transported over

FIGURE 18 Temporal variation of the external
bias field used for evaporative cooling to a BEC
in the Munich chip trap

FIGURE 19 Transport of a BEC on the magnetic conveyor belt.
a Superposed absorption images taken at fixed time intervals during trans-
port. The distance between the first and last images is 1.6 mm; the transport
time is 100 ms. The line of sight is parallel to the y axis (cf. Fig. 14); the
dashed line marks the edge of the substrate. b Time-of-flight images of the
atom cloud after release at the final position, exhibiting the bimodal struc-
ture characteristic of a BEC. The maximum expansion time (bottom image)
is 19.3 ms

a distance of 1.6 mm with the atomic conveyor belt de-
scribed above in Sect. 4.3.3. This is accomplished simply
by producing a condensate in the starting position of the
conveyor, then applying periodic modulation currents to
move the potential (cf. Sect. 4.3.3). The result is shown in
Fig. 19. The fact that the delicate condensate ‘survives’ this
procedure is a very encouraging result in view of appli-
cations such as the trapped-atom interferometer described
below.

6 Future prospects

Experiments are now under way in many labora-
tories that will explore the new possibilities and applications
of chip potentials. From interferometers to magnetic lattices,
it is easy to imagine wire layouts that create complex and
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FIGURE 20 Photographs of various chip trap substrates (gold on AlN, original size 10.7 mm×7.1 mm each). From left to right: quadrupole traps and Ioffe–
Pritchard traps of various aspect ratios; the atomic conveyor belt; guides with electrical field electrodes between Y-shaped splitting and recombining regions;
magnetic lattice structure. All four substrates were produced in Munich in 1999; to date, only the first two have been used in experiments

possibly useful potentials (Fig. 20). The following paragraphs
briefly discuss some of the applications on which experimen-
tal progress can be expected in the near future.

6.1 Surface interactions

In chip traps, the distance of a coherent matter
wave from a solid-state surface can be controlled with sub-
micrometric precision. This high degree of control enables
a new kind of surface studies. At the same time, surface ef-
fects will also impose the ultimate limits to the trap–surface
distance in matter-wave manipulation experiments. Experi-
mentally, it is still unknown at which distance and by which
mechanisms the surface becomes a dominant source of losses,
heating, and decoherence. In the BEC experiment in Tübin-
gen, no heating was observed at a trap–surface distance of
100 µm, putting an upper limit of 100 nK/s on the heating rate
in this trap. The trap lifetime was 1 s at a trap–surface distance
of 20 µm [98]. A thorough theoretical analysis of trap loss,
heating, and decoherence induced by the surface has been
published in a recent series of articles [18–20]. According to
these results, surface effects become important at distances
between 10 and 1 µm. Experiments will soon be able to verify
these predictions.

6.2 Condensates in unusual potentials

Due to the ease with which elongated traps can
be prepared and adjusted, the chip trap condensates lend
themselves to studies of the interesting regime of fluctuat-
ing phase [27, 28]. Furthermore, effects of reduced dimen-
sionality [26, 29] may become observable in chip traps with
correspondingly optimized parameters. Another fundamen-
tal system to which chip traps are well adapted is a generic
double-well potential with adjustable coupling. In combina-
tion with single-atom detectors, the number of atoms in each
well would be accessible to direct counting. Here, a small
spacing (in the 1-µm range) between the individual wells is
required to achieve substantial coupling. In this and other ap-
plications where a small characteristic size of the potential is
essential, a smaller atom–surface distance than in today’s ex-
periments will probably be required.

6.3 Integrated atom interferometers

Besides its use in fundamental measurements,
atom interferometry is expected to increase the sensitivity
of gravity gradiometers and gyroscopes by several orders
of magnitude over established technologies [99]. For these
applications, robust and portable devices must now be de-
veloped. Chip guides and traps have been considered from

the beginning as possible implementations of such interfer-
ometers. Indeed, miniaturization and robustness are obvi-
ous advantages of this technology. Experiments must show
whether the difficulty of working in a state with nonvanish-
ing magnetic moment can be mastered to a sufficient degree
for such high-precision applications. On-chip interferometers
have also been proposed for other tasks. In an interferome-
ter potential with strong transverse confinement, the phase
shift due to a controlled collision between two atoms could be
measured [34, 35, 100]. Such an interferometer forms the cen-
tral part of a two-qubit ‘phase gate’ for quantum information
processing with neutral atoms in microtraps [34, 35].

Various configurations have been studied theoretically
for observing interferences of vibrational states in miniature
magnetic guides and traps [74, 75, 101, 102]. Now that on-
chip condensates are available, such external-state atom inter-
ferometers become a realistic goal for experiments. In these
schemes, the splitter device of Fig. 12 [102] or a similar device
for guided atoms [74] is used to divide an atomic wave packet,
initially in the vibrational ground state, into two coherent, but
spatially separated lobes, which form the ‘arms’ of the inter-
ferometer. In the most recent proposal [75], an interference
pattern is calculated to persist even when multiple transverse
vibrational modes are populated. The interferometer is sensi-
tive to additional potentials that induce a phase shift between
the two arms, such as electric and magnetic field gradients, or
a local interaction with another atom placed close to one of the
arms. For symmetry reasons, the effect of such a phase shift
is to transfer part of the atomic probability distribution into
an excited vibrational state when the split potential is trans-
formed back into a single well. This mechanism is depicted in
Fig. 21. A crucial issue in such interferometer schemes is the

FIGURE 21 Scheme of the trapped-atom interferometer: one or several
atoms are prepared in the vibrational ground state of the single-well poten-
tial (a). When the well separates, the wave function evolves adiabatically
into a symmetric delocalized state (b). The phase of the wave function in
each potential well evolves independently and monitors sensitively external
electric and magnetic field gradients (c). As the potential wells reunite, the
antisymmetric state evolves into the first exited vibrational state, whereas the
symmetric one transforms back into the ground state
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suppression of unwanted excitations, which could be induced
either by stray-field gradients or by the splitting process itself
if it is not completely adiabatic. The latter contribution can
be reduced by performing the potential transformation suf-
ficiently slowly. One-dimensional simulations [102] indicate
that this can be done without going to unrealistically slow time
scales: the whole process can be performed in less than 100 ms
with a probability for unwanted excitations below 10−3. Thus,
phase noise and decoherence due to stray fields and current
fluctuations remain as the crucial issue. Experiments are re-
quired to show whether sufficient control over these effects
can be achieved.

6.4 Integration of optical resonators

With the magnetic conveyor belt, single atoms and
small condensates can be positioned with a precision much
better than an optical wavelength. By developing optical res-
onators that are compatible with the chip technique, it will be
possible to shift a trapped atom or small condensate into the
resonator and to position it precisely in the standing wave in-
side the resonator [103], achieving well-defined coupling and
long interaction times.

Not only will such techniques lead to robust and simple
detectors with single-atom detection efficiency [104–106] –
it is not unreasonable to envisage, moreover, cavity quantum
electrodynamics experiments using chip technologies [107].

6.5 Outlook

Besides the applications discussed above, a straight-
forward use of the chip technique is as a simple and robust
source of cold atoms and condensates. Such a source can be
of interest in atomic fountain clocks [108], for example. The
field further expands when other techniques are integrated on
the chip – such as optical detectors, or even optical wave-
guides [67]. State-dependent potentials can be constructed by
adding charged wires creating strong electric fields, and well-
developed theoretical studies exist which describe quantum
information processing with neutral atoms in such integrated
traps [34, 35]. Experiments are now starting to explore this
fascinating realm.
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