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Abstract
We review the theory of vortices in trapped dilute Bose–Einstein condensates
and compare theoretical predictions with existing experiments. Mean-field
theory based on the time-dependent Gross–Pitaevskii equation describes the
main features of the vortex states, and its predictions agree well with available
experimental results. We discuss various properties of a single vortex, including
its structure, energy, dynamics, normal modes, and stability, as well as vortex
arrays. When the nonuniform condensate contains a vortex, the excitation
spectrum includes unstable (‘anomalous’) mode(s) with negative frequency.
Trap rotation shifts the normal-mode frequencies and can stabilize the vortex.
We consider the effect of thermal quasiparticles on vortex normal modes as
well as possible mechanisms for vortex dissipation. Vortex states in mixtures
and spinor condensates are also discussed.

Contents

1. Introduction
2. The time-dependent Gross–Pitaevskii equation

2.1. Unbounded condensate
2.2. Quantum-hydrodynamic description of the condensate
2.3. Vortex dynamics in two dimensions
2.4. Trapped condensate

3. Static vortex states
3.1. Structure of a single trapped vortex
3.2. Thermodynamic critical angular velocity for vortex stability
3.3. Experimental creation of a single vortex
3.4. Vortex arrays

4. Bogoliubov equations: stability of small-amplitude perturbations
4.1. General features for nonuniform condensate
4.2. Uniform condensate
4.3. Quantum-hydrodynamic description of small-amplitude normal modes
4.4. A singly quantized vortex in an axisymmetric trap

0953-8984/01/120135+60$30.00 © 2001 IOP Publishing Ltd Printed in the UK R135



R136 A L Fetter and A A Svidzinsky

5. Vortex dynamics
5.1. Time-dependent variational analysis
5.2. The method of matched asymptotic expansions
5.3. Normal modes of a vortex in a rotating two-dimensional TF condensate
5.4. Normal modes of a vortex in a rotating three-dimensional TF condensate

6. The effect of thermal quasiparticles, vortex lifetime, and dissipation
6.1. Bogoliubov and Hartree–Fock–Bogoliubov theories
6.2. Dissipation and vortex lifetimes

7. Vortex states in mixtures and spinor condensates
7.1. Basic phenomena
7.2. Stability theory

8. Conclusions and outlook

1. Introduction

The recent dramatic achievement of Bose–Einstein condensation in trapped alkali-metal gases
at ultralow temperatures [1–3] has stimulated intense experimental and theoretical activity.
The atomic Bose–Einstein condensates (BECs) differ fundamentally from the helium BEC
in several ways. First, BECs in helium are uniform. In contrast, the trapping potential that
confines an alkali-metal-atom vapour BEC yields a significantly nonuniform density. Another
difference is that in bulk superfluid 4He, measurements of the momentum distribution have
shown that the low-temperature condensate fraction is ∼0.1, with the remainder of the particles
in finite-momentum states [4, 5], whereas the low-temperature atomic condensates can be
prepared with essentially all atoms in the Bose condensate. Finally, the condensates of alkali
vapours are pure and dilute (with mean particle density n̄ and n̄|a|3 � 1), so the interactions
can be accurately parametrized in terms of a scattering length a (in current experiments,
alkali-metal-atom BECs are much less dense than air at normal pressure). This situation
differs from that for superfluid 4He, where the relatively high density and strong repulsive
interactions greatly complicate the analytical treatments. As a result, a relatively simple
nonlinear Schrödinger equation (the Gross–Pitaevskii equation) gives a precise description of
the atomic condensates and their dynamics (at least at low temperatures). One should mention,
however, that unlike the spinless 4He atoms, alkali atoms have nonzero hyperfine spins, and
various forms of spin-gauge effects can be important [6].

Bulk superfluids are distinguished from normal fluids by their ability to support
dissipationless flow. Such persistent currents are intimately related to the existence of quantized
vortices, which are localized phase singularities with integer topological charge. The super-
fluid vortex is an example of a topological defect that is well known in liquid helium [7,8] and
in superconductors [9]. The occurrence of quantized vortices in superfluids has been the focus
of fundamental theoretical and experimental work [10–14]. Vortex-like excitations exist in the
Earth’s atmosphere [15], in superfluid hadronic matter (neutron stars) [16], and even in rotating
nuclei [17]. Examples of other topological defects that could exist in dilute gas condensates
are ‘textures’ found in Fermi superfluid 3He [18], skyrmions [19,20], and spin monopoles [21].
Vortices in the A and B phases of 3He are discussed in detail in the review articles [22, 23].
In superfluid 3He the Cooper pairs have both orbital and spin angular momentum. These
internal quantum numbers imply a rich phase diagram of allowed vortex structures, including
nonquantized vortices with continuous vorticity (see also references [24, 25]).

In the framework of hydrodynamics, the vortices obtained from the Gross–Pitaevskii
(GP) equation are analogous to vortices in classical fluids [26]. Also the GP equation
provides an approximate description of some aspects of superfluid behaviour of helium,
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such as the annihilation of vortex rings [27], the nucleation of vortices [28], and vortex-line
reconnection [29, 30].

The initial studies of trapped Bose condensates concentrated on measuring the energy and
condensate fraction, along with the lowest-lying collective modes and quantum-mechanical
interference effects (see, for example, reference [31]). Although the possibility of trapped
quantized vortices was quickly recognized [32], successful experimental verification has taken
several years [33–37]. This review focuses on the behaviour of quantized vortices in trapped
dilute Bose condensates, emphasizing the qualitative features along with the quantitative
comparison between theory and experiment.

The plan of the paper is the following. In section 2 we discuss the basic formalism of
mean-field theory (the time-dependent Gross–Pitaevskii equation) that describes dilute Bose–
Einstein condensates in the low-temperature limit. We summarize properties of vortices in a
uniform condensate and also introduce relevant length and energy scales of a condensate in
a harmonic trap. In section 3 we discuss the structure of stationary vortex states in trapped
condensates. We analyse the energy of a straight vortex as a function of displacement from
the trap centre and consider conditions of vortex stability when the trap rotates. Also we
discuss the recent experimental creation of a single vortex and vortex arrays. In section 4 we
introduce the concept of elementary excitations (the Bogoliubov equations) and analyse the
lowest (unstable) mode of the vortex for different values of the interaction parameter. We also
consider the splitting of the condensate normal modes due to the presence of a vortex line.

In section 5 we investigate the general dynamical behaviour of a vortex, on the basis of a
time-dependent variational analysis and on the method of matched asymptotic expansions.
The latter method allows us to take into account effects of both nonuniform condensate
density and vortex curvature. We consider normal modes of a vortex in two- and three-
dimensional condensates. Also we discuss the energy of a curved vortex line and a nonlinear
tilting of a vortex in slightly anisotropic condensates. In section 6 we analyse the effect
of thermal quasiparticles on the vortex normal modes and discuss possible mechanisms of
vortex dissipation. Also we discuss the influence of vortex generation on energy dissipation in
superfluids. In section 7 we consider vortices in multicomponent condensates and analyse
various spin-gauge effects. In particular, we focus on the successful method of vortex
generation in a two-component system that was recently used by the JILA group to create
a vortex. In section 8 we draw our conclusions and discuss perspectives in the field.

2. The time-dependent Gross–Pitaevskii equation

Bogoliubov’s seminal treatment [38] of a uniform Bose gas at zero temperature emphasized
the crucial role of (repulsive) interactions both for the structure of the ground state and for
the existence of superfluidity. Subsequently, Gross [39,40] and Pitaevskii [41] independently
considered an inhomogeneous dilute Bose gas, generalizing Bogoliubov’s approach to include
the possibility of nonuniform states, especially quantized vortices.

An essential feature of a dilute Bose gas at zero temperature is the existence of a
macroscopic wave function (an ‘order parameter’) � that characterizes the Bose condensate.
For a uniform system with N particles in a stationary box of volume V , the order parameter
� = √

N0/V reflects the presence of a macroscopic number N0 of particles in the zero-
momentum state, with the remaining N ′ = N − N0 particles distributed among the various
excited states with k 	= 0. The single-particle states for periodic boundary conditions are
plane waves V −1/2eik·r labelled with the wave vector k, and the corresponding creation
and annihilation operators a

†
k and ak obey the usual Bose–Einstein commutation relations
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[ak, a
†
k′ ] = δk,k′ . In the presence of a uniform Bose condensate with k = 0, the ground-state

expectation value 〈a†
0a0〉0 = N0 is macroscopic, whereas the ground-state expectation value

of the commutator of these zero-mode operators 〈[a0, a
†
0]〉0 necessarily equals 1. Hence the

commutator is of order 1/
√
N0 relative to each separate operator, and they can be approximated

by classical numbers a0 ≈ a
†
0 ≈ √

N0. This ‘Bogoliubov’ approximation identifies such a
classical field as the order parameter for the stationary uniform condensate. In contrast, the
ground-state expectation value for all of the other normal modes 〈a†

kak〉0 is of order unity, and
the associated operators a†

k and ak require a full quantum-mechanical treatment.
The existence of nonuniform states of a dilute Bose gas can be understood by considering

a second-quantized Hamiltonian

Ĥ =
∫

dV
[
ψ̂†(T + Vtr)ψ̂ + 1

2gψ̂
†ψ̂†ψ̂ψ̂

]
(1)

expressed in terms of Bose field operators ψ̂(r) and ψ̂†(r) that obey the Bose–Einstein
commutation relations

[ψ̂(r), ψ̂†(r′)] = δ(r − r′) [ψ̂(r), ψ̂(r′)] = [ψ̂†(r), ψ̂†(r′)] = 0. (2)

Here T = −h̄2∇2/2M is the kinetic energy operator for the particles of mass M , Vtr(r) is
an external (trap) potential, and the interparticle potential has been approximated by a short-
range interaction ≈gδ(r − r′), where g is a coupling constant with the dimensions of energy
× volume. For a dilute cold gas, only binary collisions at low energy are relevant, and these
collisions are characterized by a single parameter, the s-wave scattering length a, independently
of the details of the two-body potential. An analysis of the scattering by such a potential (see,
for example [42, 43]) shows that g ≈ 4πah̄2/M . Determinations of the scattering length for
the atomic species used in the experiments on Bose condensation give: a = 2.75 nm for
23Na [44], a = 5.77 nm for 87Rb [45], and a = −1.45 nm for 7Li [46]. In a uniform bulk
system, a must be positive to prevent an instability leading to a collapse, but a Bose condensate
in an external confining trap can remain stable for a < 0 as long as the number of condensed
atoms N0 remains below a critical value Ncr ∼ d/|a|, where d is the oscillator length [31,43].
If the interparticle potential is attractive (a < 0), the gas tends to increase its density in the
trap centre to lower the interaction energy. The kinetic energy opposes this tendency, and the
resulting balance can stabilize inhomogeneous gas. A vortex line located along the trap axis
reduces the peak central density in the cloud of atoms. Thus a vortex can help stabilize a larger
trapped condensate with attractive interactions in the sense that it can contain a larger number
of atoms [47].

The time-dependent Heisenberg operator ψ̂(r, t) = exp(iĤ t/h̄)ψ̂(r) exp(−iĤ t/h̄)

obeys the equation of motion ih̄ ∂ψ̂(r, t)/∂t = [ψ̂(r, t), Ĥ ], which yields a nonlinear operator
equation

ih̄
∂ψ̂(r, t)

∂t
= (T + Vtr)ψ̂(r, t) + gψ̂†(r, t)ψ̂(r, t)ψ̂(r, t). (3)

The macroscopic occupation of the condensate makes it natural to write the field operator as a
sum ψ̂(r, t) = �(r, t)+ φ̂(r, t) of a classical field �(r, t) that characterizes the macroscopic
condensate and a quantum field φ̂(r, t) referring to the remaining noncondensed particles. To
leading order, the Bogoliubov approximation omits the quantum fluctuations entirely, giving
the time-dependent Gross–Pitaevskii (GP) equation [39, 41]

ih̄
∂�(r, t)

∂t
= [

T + Vtr + g|�(r, t)|2]�(r, t) (4)

for the condensate wave function�(r, t). Since ψ̂(r, t) reduces the number of particles by one,
its off-diagonal matrix element 〈N − 1|ψ̂(r, t)|N〉 oscillates at a frequency corresponding to
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the chemical potentialµ ≈ E0(N)−E0(N−1) associated with removing one particle from the
ground state. Thus the stationary solutions take the form �(r, t) = �(r)e−iµt/h̄, where �(r)

obeys the stationary GP equation (frequently identified as a nonlinear Schrödinger equation,
although the eigenvalue µ is not the energy per particle)

(T + Vtr + g|�|2)� = µ�. (5)

Apart from very recent work on 85Rb using a Feshbach resonance to tune a to large positive
values [48], essentially all studies of trapped atomic gases involve the dilute limit (n̄|a|3 � 1,
where n̄ is the average density of the gas), so the depletion of the condensate is small with
N ′ = N −N0 ∝

√
n̄|a|3N � N . Typically n̄|a|3 is always less than 10−3. Hence most of the

particles remain in the condensate, and the difference between the condensate number N0 and
the total number N can usually be neglected. In this case, the stationary GP equation (5) for
the condensate wave function follows on minimizing the Hamiltonian functional

H =
∫

dV
[
�∗(T + Vtr)� + 1

2g|�|4] (6)

subject to a constraint of fixed condensate number N0 = ∫
dV |�|2 ≈ N (readily included

with a Lagrange multiplier that is simply the chemical potential µ).

2.1. Unbounded condensate

The nonlinear Schrödinger equation (5) contains a local self-consistent Hartree potential energy
VH(r) = g|�(r)|2 arising from the interaction with the other particles at the same point. In
an unbounded condensate with Vtr = 0, the left-hand side of equation (5) involves both the
kinetic energy T and this repulsive Hartree potential g|�|2 = gn for a uniform medium with
bulk density n. On dimensional grounds, the balance between these two terms implies a
‘correlation’ or ‘healing’ length

ξ = h̄√
2Mng

= 1√
8πna

. (7)

This length characterizes the distance over which the condensate wave function heals back
to its bulk value when perturbed locally (for example, at a vortex core, where the density
vanishes).

For a uniform system in a box of volume V , the condensate wave function is � =√
N0/V ≈ √

N/V , and equation (6) shows that the ground-state energy E0 arises solely
from the repulsive interparticle energy of the condensate Eint ≈ 1

2gN
2/V . The bulk chemical

potential is then given by

µ =
(
∂E0

∂N

)
V

= gn = 4πah̄2n

M
. (8)

The corresponding pressure follows from the thermodynamic relation

p = −
(
∂E0

∂V

)
N

= 1
2gn

2 = Eint

V
. (9)

Finally, the compressibility determines the bulk speed of sound s:

s2 = 1

M

(
∂p

∂n

)
= gn

M
= µ

M
= 4πah̄2n

M2
or, equivalently, s = h̄√

2Mξ
. (10)

Equations (7) and (10) both indicate that a bulk uniform Bose condensate requires a repulsive
interaction (a > 0), since otherwise the healing length and the speed of sound become
imaginary.
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2.2. Quantum-hydrodynamic description of the condensate

It is often instructive to represent the condensate wave function in an equivalent ‘quantum-
hydrodynamic’ form:

�(r, t) = |�(r, t)|eiS(r,t) (11)

with the condensate density

n(r, t) = |�(r, t)|2. (12)

The corresponding current density j = (h̄/2Mi)[�∗ ∇� − (∇�∗)�] automatically assumes
a hydrodynamic form

j(r, t) = n(r, t)v(r, t) (13)

with an irrotational flow velocity

v(r, t) = ∇!(r, t) (14)

expressed in terms of a velocity potential

!(r, t) = h̄S(r, t)

M
. (15)

Substitute equation (11) into the time-dependent GP equation (4). The imaginary part
yields the familiar continuity equation for compressible flow

∂n

∂t
+ ∇ · (nv) = 0. (16)

Correspondingly, the real part constitutes the analogue of the Bernoulli equation for this
condensate fluid:

1
2Mv2 + Vtr +

1√
n
T

√
n + gn + M

∂!

∂t
= 0. (17)

To interpret this equation, note that the assumption of a zero-temperature condensate
implies vanishing entropy; furthermore, the conventional Bernoulli equation for irrotational
compressible isentropic flow can be rewritten as [49, 50]

1
2Mv2 + U +

e + p

n
+ M

∂!

∂t
= 0 (18)

where U is the external potential energy, e is the energy density, and e + p is the enthalpy
density. Comparison with equations (6) and (9) shows that equation (17) for the condensate
dynamics indeed incorporates the appropriate constitutive relations for the enthalpy per particle
(e + p)/n = (

√
n)−1T

√
n + gn.

As a result, the hydrodynamic form of the time-dependent Gross–Pitaevskii equation in
equations (16) and (17) necessarily reproduces all the standard hydrodynamic behaviour found
for classical irrotational compressible isentropic flow. In particular, the dynamics of vortex
lines at zero temperature follows from the Kelvin circulation theorem [49, 50], namely that
each element of the vortex core moves with the local translational velocity induced by all of
the sources in the fluid (self-induced motion for a curved vortex, other vortices, and net applied
flow). The only explicitly quantum-mechanical feature in equation (17) is the ‘quantum kinetic
pressure’ (

√
n)−1T

√
n; as seen from equation (7), this contribution determines the healing

length ξ that will fix the size and structure of the vortex core.
In classical hydrodynamics, the flow can be considered incompressible when the velocity

|v| is small compared to the speed of sound. More generally, classical compressible flow
becomes irreversible when the flow becomes supersonic because of the emission of sound
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waves (which are still part of the hydrodynamic formalism). In a dilute Bose gas, however,
equations (16) and (17) neglect the normal component entirely. As discussed below in
section 4.2, the system becomes unstable with respect to the emission of quasiparticles once
the flow speed exceeds the Landau critical velocity (which here is simply the speed of sound).
The normal component then plays an essential role and must be included in addition to the
condensate. In this sense, a dilute Bose gas is intrinsically more complicated than a classical
compressible fluid.

2.3. Vortex dynamics in two dimensions

Vinen’s experiment [12] on the dynamics of a long fine wire in rotating superfluid 4He strikingly
confirmed Onsager’s and Feynman’s theoretical prediction of quantized circulation [10, 11].
These remarkable observations stimulated the study of the nonlinear stationary GP equation
(5) in the absence of a confining potential, building on an earlier analysis by Ginzburg and
Pitaevskii of vortex-like solutions for superfluid 4He near Tλ [51]. Gross and Pitaevskii
independently investigated stationary two-dimensional solutions of the form�(r) = √

nχ(r),
where n is the bulk density far from the origin. Specifically, they considered axisymmetric
solutions

χ(r) = eiφf

(
r⊥
ξ

)
(19)

where (r⊥, φ) are two-dimensional cylindrical polar coordinates, and f → 1 for r⊥ � ξ .
Equations (14) and (15) immediately give the local circulating flow velocity

v = h̄

Mr⊥
φ̂ (20)

which represents circular streamlines with an amplitude that becomes large as r⊥ → 0.
Comparison of equations (10) and (20) shows that the circulating flow becomes supersonic
(v ≈ s) when r⊥ ≈ ξ .

The particular condensate wave function (19) describes an infinite straight vortex line with
quantized circulation

κ =
∮

dl · v = h

M
(21)

precisely as suggested by Onsager and Feynman [10, 11]. Stokes’s theorem then yields
h/M = ∫

dS · ∇ × v, with the corresponding localized vorticity

∇ × v = h

M
δ(2)(r⊥)ẑ. (22)

Hence the velocity field around a vortex in a dilute Bose condensate is irrotational except for
a singularity at the origin.

The kinetic energy per unit length is given by∫
d2r⊥ �∗

(
− h̄2∇2

2M

)
� = h̄2

2M

∫
d2r⊥ |∇�|2 = h̄2n

2M

∫
d2r⊥

[(
df

dr⊥

)2

+
f 2

r2
⊥

]
(23)

and the centrifugal barrier in the second term forces the amplitude to vanish linearly within a
core of radius ≈ξ (see figure 1). This core structure ensures that the particle current density
j = nv vanishes and the total kinetic energy density remains finite as r⊥ → 0. The presence
of the vortex produces an additional energy Ev per unit length, both from the kinetic energy of
circulating flow and from the local compression of the fluid. Numerical analysis with the GP
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Figure 1. The radial wave function f (r⊥/ξ) obtained by numerical solution of the stationary GP
equation for a straight vortex line.

equation [51] yields Ev ≈ (πh̄2n/M) ln(1.46R/ξ), where R is an outer cut-off; apart from
the additive numerical constant, this value is simply the integral of 1

2Mv2n.
To illustrate that the time-dependent GP equation indeed incorporates the correct classical

vortex dynamics, consider a state of the form

�(r, t) = √
neiq·rχ(r − r0)e

−iµt/h̄ (24)

where χ is the previous stationary solution (19) of the GP equation for a quantized vortex, now
shifted to the instantaneous position r0(t), and µ is now a modified chemical potential. The
total flow velocity is the sum of a uniform velocity v0 = h̄q/M and the circulating flow around
the vortex. Substitute this wave function into the time-dependent GP equation (4). Since χ

itself obeys the stationary GP equation (5) with chemical potential µ = gn, a straightforward
analysis shows thatµ = 1

2Mv2
0 +gn, where the first term arises from the centre-of-mass motion

of the condensate. The remaining terms yield

ih̄
∂χ(r − r0)

∂t
≡ −ih̄

dr0

dt
· ∇χ(r − r0) = −ih̄v0 · ∇χ(r − r0). (25)

This equation shows that dr0(t)/dt = v0, so the vortex wave function moves rigidly with the
applied flow velocity v0, correctly reproducing classical irrotational hydrodynamics.

A similar method applies to the self-induced motion of two well-separated vortices at r1

and r2 with |r1 − r2| � ξ ; in this case,

�(r, t) = √
nχ(r − r1)χ(r − r2)e

−iµt/h̄ (26)

represents an approximate solution with µ = ng because there is no net flow velocity at
infinity. The density n|f (r − r1)|2|f (r − r2)|2 is essentially constant except near the two
vortex cores, and the phase is the sum S(r − r1) + S(r − r2) of the two azimuthal angles
for the variable r measured from the local vortex cores. Substitution into the time-dependent
GP equation readily shows that each vortex moves with the velocity induced by the other; for
example,

dr1

dt
≈ h̄

M
∇S(r − r2)

∣∣
r=r1

. (27)

This method also describes the two-dimensional motion of many well-separated line vortices
[52, 53]. The dynamics of the many-vortex case in 2D was also studied in [54–56].
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2.4. Trapped condensate

The usual condition for a uniform dilute gas requires that the interparticle spacing ∼n−1/3

be large compared to the scattering length (n−1/3 � a or na3 � 1). The situation is more
complicated in the case of a dilute trapped gas, because of the three-dimensional harmonic
trapping potential Vtr = 1

2M(ω2
xx

2 +ω2
yy

2 +ω2
zz

2). The stationary GP equation (5) provides a
convenient approach for studying the structure of the condensate in such a harmonic confining
potential.

For an ideal noninteracting gas (with g = 0), the states are the familiar harmonic
oscillator wave functions with the characteristic spatial scale set by the oscillator lengths
dj = √

h̄/Mωj (j = x, y, and z). In particular, the ground-state wave function can be
obtained by optimizing the competition between the kinetic energy Ekin = 〈T 〉 and the
confining energy Etr = 〈Vtr〉, where 〈· · ·〉 = N−1

∫
dV �∗ · · ·� denotes the expectation

value for the state with the condensate wave function �. The situation is more complicated
for an interacting system, however, because the additional interaction energy Eint = 〈 1

2g|�|2〉
provides a new dimensionless parameter. The ratio Eint/Nh̄ω0 serves to quantify the effect
of the interactions, where ω0 = (ωxωyωz)

1/3 is the mean oscillator frequency. It is not
difficult to show that this ratio is of order Na/d0 for Na/d0 � 1 where d0 = √

h̄/Mω0 is
the mean oscillator length [31, 32, 43], and of order (Na/d0)

2/5 for Na/d0 � 1. Thus the
presence of the confining trap significantly alters the physics of the problem, for the additional
characteristic length d0 and energy h̄ω0 now imply the existence of two distinct regimes of
dilute trapped gases.

2.4.1. The near-ideal regime. In the limitNa/d0 � 1, the condensate states are qualitatively
similar to those of an ideal gas in a three-dimensional harmonic trap, with ground-state wave
function �(r) ∝ exp

[− 1
2 (x

2/d2
x + y2/d2

y + z2/d2
z )

]
. The repulsive interactions play only a

small role, and the condensate dimensions are comparable with the oscillator lengths dj .

2.4.2. The Thomas–Fermi regime. In the opposite limit Na/d0 � 1, which is relevant
to current experiments on trapped Bose condensates, the repulsive interactions significantly
expand the condensate, so the kinetic energy associated with the density variation becomes
negligible compared to the trap energy and interaction energy. As a result, the kinetic energy
operator T can be omitted in the stationary GP equation (5), which yields the Thomas–Fermi
(TF) parabolic profile for the ground-state density [32]:

n(r) ≈ |�TF (r)|2 = 1

g
[µ − Vtr(r)]0 [µ − Vtr(r)]

= n(0)

(
1 −

∑
j=x,y,z

x2
j

R2
j

)
0

(
1 −

∑
j=x,y,z

x2
j

R2
j

)
(28)

where n(0) = µ/g is the central density and 0(x) denotes the unit positive step function. The
resulting ellipsoidal three-dimensional density is characterized by two physically different
types of parameter: (a) the central density n(0) fixed by the chemical potential (note that n(0)
plays essentially the same role as the bulk density n does for the uniform condensate, where
µ = gn), and (b) the three condensate radii

R2
j = 2µ

Mω2
j

. (29)
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The normalization integral
∫

dV n(r) = N yields the important TF relation [32]

N = 8π

15
n(0)R3

0 = R5
0

15ad4
0

or, equivalently,
R5

0

d5
0

= 15
Na

d0
� 1 (30)

where R0 = (RxRyRz)
1/3 is the mean condensate radius. This last equality shows that the

repulsive interactions expand the mean TF condensate radius R0 proportionally to N1/5. The
TF chemical potential becomes

µ = 1
2Mω2

0R
2
0 = 1

2 h̄ω0
R2

0

d2
0

(31)

so µ � h̄ω0 in this limit. The corresponding ground-state energy E0 = 5
14 h̄ω0(R

2
0/d

2
0 )N =

5
7µN follows immediately from the thermodynamic relation µ = ∂E0/∂N .

The TF limit leads to several important simplifications. For a trapped condensate, it is
natural to define the healing length (7) in terms of the central density, with ξ = [8πn(0)a]−1/2.
In the TF limit, this choice implies that

ξR0 = d2
0 or, equivalently,

ξ

d0
= d0

R0
� 1. (32)

Thus the TF limit provides a clear separation of length scales ξ � d0 � R0, and the (small)
healing length ξ characterizes the small vortex core. In contrast, the healing length (and
vortex-core radius) in the near-ideal limit are comparable with d0 and hence with the size of
the condensate.

The quantum-hydrodynamic equations also simplify in the TF limit, because the quantum
kinetic pressure in equation (17) becomes negligible. For the static TF ground-state density
given in equation (28), the small perturbations n′ in the density and !′ in the velocity potential
can be combined to yield the generalized wave equation [57]

M
∂2n′

∂t2
= ∇ · [

(µ − Vtr)∇n′] or, equivalently,
∂2n′

∂t2
= ∇ · [

s2(r)∇n′] (33)

where s2(r) = [µ − Vtr(r)] /M defines a spatially varying local speed of sound. Stringari has
used this equation to analyse the low-lying normal modes of the TF condensate, and several
experimental studies have verified these predictions in considerable detail (see, for example,
reference [31]).

3. Static vortex states

In the context of rotating superfluid 4He, Feynman [11] noted that solid-body rotation with
vsb = Ω×r has constant vorticity ∇×vsb = 2Ω. Since each quantized vortex line in rotating
superfluid 4He has an identical localized vorticity associated with the singular circulating flow
(22), he argued that a uniform array of vortices can ‘mimic’ solid-body rotation on average,
even though the flow is strictly irrotational away from the cores. He then considered the
circulation 1 = ∮

C
dl · v along a closed contour C enclosing a large number Nv of vortices.

The quantization of circulation ensures that 1 = Nvκ , where κ = h/M is the quantum of
circulation. If the vortex array mimics solid-body rotation, however, the circulation should
also be 1 = 23Av , where Av is the area enclosed by the contour C. In this way, the areal
vortex density in a rotating superfluid becomes

nv = Nv

Av

= 23

κ
. (34)
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Equivalently, the area per vortex is simply 1/nv = κ/23, which decreases with increasing
rotation speed. Note that equation (34) is directly analogous to the density of vortices (flux
lines) nv = B/!0 in a type-II superconductor, where B is the magnetic flux density and
!0 = h/2e is the quantum of magnetic flux in SI units (see, for example, reference [58]).

3.1. Structure of a single trapped vortex

3.1.1. The axisymmetric trap. Consider an axisymmetric trap with oscillator frequencies ωz

and ω⊥ and axial asymmetry parameter λ ≡ ωz/ω⊥ (note that λ � 1 yields an elongated cigar-
shaped condensate, and λ � 1 yields a flattened disc-shaped condensate). The conservation
of angular momentum Lz allows a simple classification of the states of the condensate. For
example, the macroscopic wave function for a singly quantized vortex located along the z-axis
takes the form

�(r) = eiφ|�(r⊥, z)|. (35)

The circulating velocity is identical to equation (20), and the centrifugal energy (compare
equation (23)) gives rise to an additional term 1

2Mv2 = h̄2/2Mr2
⊥ in the GP equation (5). In

principle, a q-fold vortex with � ∝ eiqφ also satisfies the GP equation, but the corresponding
energy increases like q2 (compare the discussion below equation (23)); consequently, a
multiply quantized vortex is expected to be unstable with respect to the formation of q singly
quantized vortices.

For a noninteracting gas in an axisymmetric trap, the condensate wave function for a singly
quantized vortex on the symmetry axis involves the first excited radial harmonic oscillator state
with the noninteracting condensate vortex wave function

�(r) ∝ eiφr⊥ exp

[
−1

2

(
r2
⊥
d2

⊥
+
z2

d2
z

)]
(36)

of the anticipated form (35). The inclusion of interactions for a singly quantized vortex in small-
to-medium axisymmetric condensates with Na/d0 � 1 requires numerical analysis [47, 59].
Some phases of rotating BEC in a spherically symmetric harmonic well in the near-ideal-gas
limit (ξ � d0) were considered by Wilkin and Gunn [60]. By exact calculation of wave
functions and energies for small number of particles, they show that the ground state in a
rotating trap is reminiscent of those found in the fractional quantum Hall effect. These states
include ‘condensates’ of composite bosons of the atoms attached to an integer number of quanta
of angular momenta, as well as the Laughlin and Pfaffian [61] states. In addition, low-lying
states with a given angular momentum Lz (analogous to the ‘yrast’ states in nuclear physics)
have been studied in references [62, 63].

In general, the density for a central vortex vanishes along the symmetry axis, and the core
radius increases away from the centre of the trap, yielding a toroidal condensate density (see
figure 2). This behaviour is particularly evident for a vortex in the TF limit Na/d0 � 1, when

n(r⊥, z) ≈ n(0)

(
1 − ξ 2

r2
⊥

− r2
⊥

R2
⊥

− z2

R2
z

)
0

(
1 − ξ 2

r2
⊥

− r2
⊥

R2
⊥

− z2

R2
z

)
. (37)

Here, the density differs from equation (28) for an axisymmetric vortex-free TF condensate
only because of the dimensionless centrifugal barrier ξ 2/r2

⊥. This term forces the density to
vanish within a core whose characteristic radius is ξ in the equatorial region |z| � Rz and then
flares out with increasing |z|. The TF separation of length scales ensures that the vortex affects
the density only in the immediate vicinity of the core [47, 64, 65]; this behaviour can usually
be approximated with a short-distance cut-off. For such a quantized TF vortex, the chemical
potential µ1 differs from µ0 for a vortex-free TF condensate by small fractional corrections of
order (d0/R0)

4 ln(R0/d0).
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Figure 2. A contour plot in the xz-plane for a condensate with 104 87Rb atoms containing a
vortex along the z-axis. The trap is spherical and distances are in units of the oscillator length
d = 0.791 µm. The interaction parameter is Na/d = 72.3. Luminosity is proportional to density,
the white area being the most dense. (Taken from reference [31].)

3.1.2. The nonaxisymmetric trap. If a singly quantized vortex is oriented along the z-axis of
a nonaxisymmetric trap (Rx 	= Ry) the condensate wave function is no longer an eigenfunction
of the angular momentum operator Lz. In the TF limit near the trap centre the phase S of the
condensate wave function has the form [66]

S ≈ φ − 1

4

(
1

R2
x

− 1

R2
y

)
r2
⊥ ln

(
r⊥
R⊥

)
sin(2φ) (38)

and the condensate velocity is

v ≈ h̄

M

{
φ̂

r⊥
− 1

2

(
1

R2
x

− 1

R2
y

)
r⊥ ln

(
r⊥
R⊥

) [
cos(2φ)φ̂ + sin(2φ)r̂⊥

]}
(39)

where R2
⊥ = 2R2

xR
2
y/(R

2
x + R2

y). Near the vortex core the condensate wave function and the
condensate velocity possess cylindrical symmetry, while far from the vortex core the condensate
velocity adjusts to the anisotropy of the trap and becomes asymmetric.

3.2. Thermodynamic critical angular velocity for vortex stability

If the condensate is in rotational equilibrium at an angular velocity 3 around the ẑ-axis, the
integrand of the GP Hamiltonian (6) acquires an additional term −�∗3Lz� [67], where
Lz = xpy − ypx = −ih̄(x ∂y − y ∂x) is the z-component of the angular momentum operator.
Thus the Hamiltonian H ′ in the rotating frame becomes

H ′ = H − 3Lz =
∫

dV
[
�∗(T + Vtr − 3Lz)� + 1

2g|�|4] (40)

where the variables in the integrand are now those in the rotating frame. Similarly, the GP
equations (4) and (5) acquire an additional term −3Lz�.

3.2.1. The axisymmetric trap. The situation is especially simple for an axisymmetric trap,
where the states can be labelled by the eigenvalues of Lz. For example, the energy of a vortex-
free condensate E′

0(3) in the rotating frame is numerically equal to the energy E0 in the
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laboratory frame because the corresponding angular momentum vanishes. A singly quantized
vortex along the trap axis has the total angular momentum Nh̄, so the corresponding energy
of the system in the rotating frame is E′

1(3) = E1 −Nh̄3. The difference between these two
energies is the increased energy

7E′(3) = E′
1(3) − E′

0(3) = E1 − E0 − Nh̄3 (41)

associated with the formation of the vortex at an angular velocity 3. In the laboratory frame
(3 = 0), it is clear that E1 > E0 because of the added kinetic energy of the circulating flow.
If the condensate is in equilibrium in the rotating frame, however, E′

1(3) decreases linearly
with increasing 3, and the relative energy of the vortex vanishes at a ‘thermodynamic’ critical
angular velocity 3c determined by 7E′(3c) = 0. Equation (41) immediately yields

3c = E1 − E0

Nh̄
(42)

expressed solely in terms of the energy of a condensate with and without the vortex evaluated
in the laboratory frame.

For a noninteracting trapped gas, the difference E1 − E0 = Nh̄ω⊥ follows immediately
from the excitation energy for the singly quantized vortex in equation (36) relative to the
stationary ground state. In this noninteracting case, equation (42) gives 3c = ω⊥, so
the noninteracting thermodynamic critical angular velocity is just the radial trap frequency.
Indeed, the same critical angular velocity value also applies to a q-fold vortex in a non-
interacting condensate, because of the special form of the noninteracting excitation energy
Eq −E0 = Nqh̄ω⊥ and the corresponding angular momentum Nqh̄. Thus the noninteracting
condensate becomes massively degenerate as 3 → ω⊥ [68, 69]. Physically, this degeneracy
reflects the cancellation between the centrifugal potential − 1

2M32r2
⊥ and the radial trap

potential 1
2Mω2

⊥r
2
⊥ as 3 → ω⊥.

Numerical analysis [47] for small and medium values of Na/d0 shows that 3c/ω⊥
decreases with increasing N , and a perturbation analysis [69, 70] confirms this behaviour
for a weakly interacting system, with the analytical result 3c/ω⊥ ≈ 1 − [1/(2

√
2π)](Na/dz)

for small values of the interaction parameterNa/dz. Figure 3 shows the behaviour of3c(N) in
a spherical trap, derived from numerical analysis of the GP equation with parameters relevant
for 87Rb [47].

In the strongly interacting (TF) limit, the chemical potential µ1(N) for a condensate
containing a singly quantized vortex can be evaluated with equation (37), and the thermo-
dynamic identity µ1 = ∂E1/∂N then yields E1(N). Use of the corresponding expressions for
the vortex-free condensate gives the approximate expression [64, 71, 72]

3c ≈ 5

2

h̄2

MR2
⊥

ln

(
0.67R⊥

ξ

)
for a TF condensate. (43)

This expression exceeds the usual estimate [14] 3c ≈ (h̄/MR2
⊥) ln(1.46R⊥/ξ) for uniform

superfluid in a rotating cylinder of radius R⊥ because the nonuniform density in the trapped
gas reduces the total angular momentum relative to that for a uniform fluid. Equation (43) has
the equivalent form

3c

ω⊥
≈ 5

2

d2
⊥

R2
⊥

ln

(
0.67R⊥

ξ

)
. (44)

This ratio is small in the TF limit, because d2
⊥/R

2
⊥ ∼ ξ/R⊥ � 1. For an axisymmetric

condensate with axial asymmetry λ ≡ ωz/ω⊥, the TF relation d2
⊥/R

2
⊥ = (d⊥/15Naλ)2/5

shows how this ratio scales with N and λ.
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____Ωc
ω⊥

N

Figure 3. Thermodynamic critical angular velocity 3c for the formation of a singly quantized
vortex in a spherical trap with d0 = 0.791 µm and N atoms of 87Rb. (Taken from reference [31].)

In contrast to the case for repulsive interactions, the thermodynamic critical angular
velocity 3c for the vortex state with attractive interactions increases as the number of atoms
grows [47,73]. Since3c = ω⊥ for a noninteracting condensate,3c for a vortex in a condensate
with attractive interactions necessarily exceeds ω⊥. The stability or metastability of such a
vortex is unclear because 3 = ω⊥ is also the limit of mechanical stability for a noninteracting
condensate.

Approximately the same functional relationship holds between the thermodynamic critical
frequency 3c and the number of atoms in the condensate N0 [74] for nonzero temperatures.
A new feature, however, is that the number of atoms in the condensate becomes temperature
dependent:

N0

N
= 1 −

(
T

Tc

)3

(45)

where Tc is the critical temperature of Bose condensation. If the trap rotates at an angular
velocity 3, the distribution function of the thermal atoms changes due to the centrifugal force.
As a result the critical temperature decreases according to [74]

Tc(3)

T 0
c

=
(

1 − 32

ω2
⊥

)1/3

(46)

where T 0
c is the critical temperature in the absence of rotation. Equations (44)–(46) allow

one to calculate the critical temperature Tv(3), below which the vortex corresponds to a stable
configuration in a trap rotating with frequency3. In figure 4 we show the critical curves Tc(3)
and Tv(3). For temperatures below Tc(3) the gas exhibits Bose–Einstein condensation. Only
for temperatures below Tv(3) does the vortex state become thermodynamically stable. From
figure 4 one can see that the critical temperature for the creation of stable vortices exhibits a
maximum as a function of 3.

3.2.2. The nonaxisymmetric trap. A rotating nonaxisymmetric trap introduces significant
new physics, because the moving walls induce an irrotational flow velocity even in the absence
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Ω/ω⊥

Figure 4. The phase diagram for vortices in a harmonically trapped Bose gas, N = 104,
a/d⊥ = 7.36 × 10−3 and λ = 1. (Taken from reference [74].)

of a vortex [49,75–78]. In the simplest case of a classical uniform fluid in a rotating elliptical
cylinder, the instantaneous induced velocity potential in the laboratory frame is [49, 75]

!cl = 3xy
A2 − B2

A2 + B2
(47)

where A and B are the semi-axes of the elliptical cylinder. The induced angular momentum
and kinetic energy are reduced from the usual solid-body values by the factor I0/Isb =
[(A2 −B2)/(A2 +B2)]2. In the extreme case B � A, the moment of inertia can approach the
solid-body value, even though the flow is everywhere irrotational.

The thermodynamic critical angular velocity 3c for vortex creation in the same uniform
classical fluid depends on the asymmetry ratio B/A [76], and experiments on superfluid
4He confirm the theoretical predictions in considerable detail [79]. In the limit B � A,
a detailed calculation shows that 3c ≈ (h̄/2MB2) ln(B/ξ); the appearance of B here is
readily understood from Feynman’s picture of a vortex occupying an area ≈h/2M3 (compare
equation (34)) and hence having to fit the area πB2 fixed by the smaller lateral dimension B.

The preceding analysis for an axisymmetric dilute trapped Bose gas can be generalized
to treat the TF limit in a totally anisotropic disc-shaped harmonic trap with ω2

x + ω2
y � ω2

z ,
starting from equation (40) for the Hamiltonian in the rotating frame [80]. The presence of
a vortex leaves the TF condensate density essentially unchanged, and this Hamiltonian can
serve as an energy functional to determine the phase S and hence the superfluid motion of the
condensate. Since Rx , Ry � Rz, the curvature of the vortex is negligible. Hence we consider
a singly quantized straight vortex displaced laterally from the centre of the rotating trap to a
transverse position r0 = (x0, y0) that serves as a new origin of coordinates. The condensate
wave function then has the form

� = |�|eiφ+iS0 (48)

where φ is the polar angle around the vortex axis and S0 is a periodic function of φ. Varying
the Hamiltonian gives an Euler–Lagrange equation for S0, and it can be well approximated
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by the solution for a vortex-free condensate, which is M/h̄ times the classical expression (47)
with A and B replaced by the TF radii Rx and Ry given in equation (29), and with x and y

shifted to the new origin.
As in equation (41) for an axisymmetric trap, 7E′(x0, y0, 3) gives the increased energy

in the rotating frame associated with the presence of the straight vortex. A detailed calculation
with logarithmic accuracy yields [80]

7E′(x0, y0, 3) = 8π

3
µRzξ

2n(0)(1 − ζ 2
0 )

3/2

[
ln

(
R⊥
ξ

)
− 8

5

µ3

h̄(ω2
x + ω2

y)
(1 − ζ 2

0 )

]
(49)

where ζ 2
0 ≡ x2

0/R
2
x + y2

0/R
2
y � 1 is a dimensionless displacement of the vortex from the trap

centre. Here, the mean transverse condensate radius R⊥ is given by the arithmetic mean of the
inverse squared radii:

1

R2
⊥

= 1

2

(
1

R2
x

+
1

R2
y

)
= M(ω2

x + ω2
y)

4µ
. (50)

Figure 5 shows the behaviour of 7E′(ζ0, 3) as a function of ζ0 for various fixed values
of 3. Curve (a) for 3 = 0 shows that the corresponding energy 7E′(ζ0, 3 = 0) decreases
monotonically with increasing ζ0, with negative curvature at ζ0 = 0. In the absence of
dissipation, energy is conserved and the vortex follows an elliptical trajectory at fixed ζ0

around the centre of the trap along a line Vtr = constant. At low but finite temperature,
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Figure 5. Energy (49) (in units of 7E′(0, 0)) associated with a singly quantized straight vortex in
a rotating asymmetric trap in the TF limit as a function of a fractional vortex displacement ζ0 from
the symmetry axis. Different curves represent different fixed values of the external angular velocity
3: (a) 3 = 0 (unstable); (b) 3 = 3m (given in equation (51)) (the onset of metastability at the
origin); (c) 3 = 3c (given in equation (52)) (the onset of stability at the origin); (d) 3 = 3

23c ,
where the thin barrier hinders vortex tunnelling from the surface.
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however, the vortex experiences weak dissipation; thus it slowly reduces its energy by moving
outward along curve (a), executing a spiral trajectory in the xy-plane.

With increasing fixed rotation speed3, the function7E′(ζ0, 3) flattens. Curve (b) shows
the special case of zero curvature at ζ0 = 0. It corresponds to the rotation speed

3m = 3

2

h̄

MR2
⊥

ln

(
R⊥
ξ

)
for a disc-shaped condensate (51)

at which angular velocity a central vortex first becomes metastable in a large disc-shaped
condensate. For 3 < 3m, the negative local curvature at ζ0 = 0 means that weak dissipation
impels the vortex to move away from the centre. For 3 > 3m, however, the positive local
curvature means that weak dissipation now impels the vortex to move back toward the centre of
the trap. In this regime, the central position is locally stable; it is not globally stable, however,
because 7E′(0, 3) is positive for 3 ≈ 3m.

Curve (c) shows that 7E′(0, 3c) vanishes at the thermodynamic critical angular velocity

3c = 5

2

h̄

MR2
⊥

ln

(
R⊥
ξ

)
= 5

3
3m for a disc-shaped condensate. (52)

As expected, this expression (52) reduces to equation (43) in the limit of an axisymmetric disc-
shaped condensate. For3 > 3c, the central vortex is both locally and globally stable relative to
the vortex-free state, and the energy barrier near the outer surface of the condensate becomes
progressively narrower. Curve (d) illustrates this behaviour for 3 = 3

23c. Eventually, the
barrier thickness becomes comparable with the thickness of the boundary layer within which
the TF approximation fails [81], and it has been suggested that a vortex might then nucleate
spontaneously through a surface instability [78, 82, 83]. For a two-dimensional condensate, a
phase diagram for different critical velocities of trap rotation versus the system parameter anz
(nz is the area density) is given in [83].

3.3. Experimental creation of a single vortex

The first experimental detection of a vortex involved a nearly spherical 87Rb TF condensate
containing two different internal (hyperfine) components [33] that tend to separate into
immiscible phases. The JILA group in Boulder created the vortex through a somewhat intricate
coherent process that controlled the interconversion between the two components (discussed
below in section 7). In essence, the coupled two-component system acts like an SU(2) spin- 1

2
system whose topology differs from the usual U(1) complex one-component order parameter
� familiar from superfluid 4He (and conventional BCS superconductivity). Apart from the
magnitude |�| that is fixed by the temperature in a uniform system, a one-component order
parameter has only a phase that varies between 0 and 2π . This topology is that of a circle
and yields quantized vorticity to ensure that the order parameter is single valued [10, 11].
In contrast, a two-component system has two degrees of freedom in addition to the overall
magnitude; its topology is that of a sphere and does not require quantized vorticity. The
qualitative difference between the two cases can be understood as follows: the single degree of
freedom of the one-component order parameter is like a rubber band wrapped around a cylinder,
while the corresponding two degrees of freedom for the two-component order parameter are
like a rubber band around the equator of a sphere. The former has a given winding number
that can be removed only be cutting it (ensuring the quantization of circulation), whereas the
latter can be removed simply by pulling it to one of the poles (so that there is no quantization).

The JILA group was able to spin up the condensate by coupling the two components.
They then turned off the coupling, leaving the system with a residual trapped quantized vortex
consisting of one circulating component surrounding a nonrotating core of the other component,
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whose size is determined by the relative fraction of the two components. By selective tuning,
they could image either component nondestructively [37]; figure 6 shows the precession of the
filled vortex core around the trap centre. In addition, an interference procedure allowed them
to map the variation of the cosine of the phase around the vortex, clearly showing the expected
sinusoidal variation (figure 7).
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Figure 6. (a) Successive images of a condensate with a vortex. The recorded profile of each trapped
condensate is fitted with a smooth TF distribution (b). The vortex core is the dark region within
the bright condensate image. (c) The azimuthal angle of the core is determined for each image,
and plotted versus time held in the trap. A linear fit to the data gives a precession frequency of
1.3(1) Hz. (Taken from reference [37].)

Figure 7. The cosine of the phase around the vortex, showing the sinusoidal variation expected for
the azimuthal angle. (Taken from reference [33].)

The JILA group were also able to remove the component filling the core, in which case
they obtained a single-component vortex [37]. This one-component vortex has a small core size
and can only be imaged by expanding both the condensate and the core, which becomes visible
through its reduced density [72, 84]. They first make an image of the two-component vortex,
next remove the component filling the core, and then make an image of the one-component
vortex after a variable time delay. In this way, they can measure the precession rate of the one-
component empty-core vortex and compare it with theoretical predictions [85]. The data show



Vortices in a trapped dilute Bose–Einstein condensate R153

no tendency for the core to spiral outward, suggesting that the thermal damping is negligible
on the timescale of ∼1 s.

Separately, the ENS group in Paris observed the formation of one and more vortices in a
single-component 87Rb elongated cigar-shaped TF condensate with a weak nonaxisymmetric
deformation that rotates about its long axis [34–36]. In essence, a static cylindrically sym-
metric magnetic trap is augmented by a nonaxisymmetric attractive dipole potential created
by a stirring laser beam. The combined potential produces a cigar-shaped harmonic trap with
a slightly anisotropic transverse profile. The transverse anisotropy rotates slowly at a rate
3 � 200 Hz. In the first experiments [34], the trap was rotated in the normal state and
then cooled, with the clear signal of the vortex shown in figure 8 (the trap was turned off,
allowing the atomic cloud to expand so that the vortex core becomes visible). This order was
reversed (cool first, then rotate) in a later series of runs [36]. In both cases, the observed critical
angular velocity ∼0.7ω⊥ for creating the first (central) vortex was roughly 70% higher than the
predicted thermodynamic value 3c in equation (43). These observations agree qualitatively
with the suggestion that a surface instability might nucleate a vortex [78, 82, 83]. Alternative
explanations of this discrepancy involve the bending modes of the vortex (discussed below in
sections 4.4.4 and 5.4.2).

�� ��

Figure 8. The optical thickness of the expanded clouds in the transverse direction showing the
difference between the states (a) without and (b) with a vortex. (Taken from reference [34].)

3.4. Vortex arrays

Under appropriate stabilization conditions, such as steady applied rotation, vortices can form
a regular array. In a rotating uniform superfluid, the quantized vortex lines parallel to the
axis of rotation form a lattice. This lattice rotates as a whole around the axis of rotation, thus
simulating rigid rotation [86]. At nonzero temperature, dissipative mutual friction from the
normal component ensures that the array rotates with the same angular velocity as the container.
Early experiments on rotating superfluid 4He [13, 87, 88] provided memorable ‘photographs’
of vortex lines and arrays with relatively small numbers of vortices, in qualitative agreement
with analytical [89, 90] and numerical [91, 92] predictions. A triangular array is favoured for
vortices near the rotation axis of rapidly rotating vessels of superfluid helium [89]. Vortex
lattices also occur in the neutron superfluid in rotating neutron stars [16].

Even before the recent observation of vortex arrays in an elongated rotating trapped
condensate [34,35], several theoretical groups had analysed many of the expected properties. In
a weakly interacting (near-ideal) axisymmetric condensate, the thermodynamic critical angular
velocity3c for the appearance of the first vortex is already close to the radial trap frequencyω⊥,
so the creation of additional vortices involves many states φm(r⊥) ∝ eimφrm⊥ exp(− 1

2 r
2
⊥/d

2
⊥)
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with low energy mh̄(ω⊥ − 3) per particle in the rotating frame. Butts and Rokhsar [69]
used a linear combination of these nearly degenerate states as a variational condensate wave
function, minimizing the total energy in the laboratory frame Elab subject to the condition of
fixed number N of particles and fixed angular momentum l per particle. As expected from
the theoretical and experimental results for liquid helium, the system undergoes a sequence
of transitions between states that break rotational symmetry. Several of these have p-fold
symmetry where p is a small integer. Each vortex represents a node in the condensate wave
function, and their positions can vary with the specified angular momentum. Indeed, as l

increases from 0 to 1, the first vortex moves continuously from the edge of the condensate to
the centre. For larger number of vortices, the centrifugal forces tend to flatten and expand the
condensate in the radial direction. In this approach of keeping l fixed, the angular velocity
follows from the relation h̄3 = ∂Elab/∂l. Figure 9 shows the angular momentum versus the
angular velocity for the first several states. Reference [93] has carried out more detailed studies
of the states for relatively small values of the angular momentum per particle l � 2.

Figure 9. Dimensionless angular momentum l per particle versus dimensionless angular velocity
3/ω⊥. In the figure, γ = (2/π)1/2aN/dz. Black lines show stable states and grey lines show
metastable states. There are no stable or metastable states in the forbidden ranges l = 0–1 and
l = 1–1.70. The rotational symmetry of each branch is indicated. The total angular momentum
diverges as 3 approaches the maximum angular velocity ω⊥. Three-dimensional plots of constant
density show states with twofold and sixfold symmetry. Reprinted by permission from Nature
1999 397 327 ©1999 Macmillan Magazines Ltd.

These analyses work at fixed angular momentumNl, in which case the angular velocity3
must be determined from the resulting Elab(l). In contrast, the ENS experiments fix 3 (as do
experiments on superfluid helium) and then measure Lz from the splitting of the quadrupole
modes [36] (see section 4.4.3). The JILA group [94] also uses this technique to detect the
presence of a vortex in a nonrotating condensate. The transition from fixed Lz to fixed 3 can
be considered a Legendre transformation to the Hamiltonian (40) in the rotating frame. Even
though it is easier to work at fixed 3 (because there is no constraint of fixed Lz/N = l), no
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such analysis has yet been carried out in the weak-coupling limit.
In the strong-coupling (TF) limit, Castin and Dum [72] have performed extensive

numerical studies of equilibrium vortex arrays in two and three dimensions, based on
the Hamiltonian in the rotating frame (thus working at fixed 3). They also propose an
intuitive variational calculation based on a factorization approximation that is very similar
to equation (26), apart from a different analytic form of the radial function [52, 53].

The nucleation of vortices and the resulting structures of vortex arrays in zero-temperature
BECs were also investigated numerically by Feder et al [78]. In their simulations, vortices
are generated by rotating a three-dimensional, nonaxisymmetric harmonic trap. Vortices
first appear at a rotation frequency significantly larger than the critical frequency for vortex
stabilization. At higher frequencies, the trap geometry strongly influences the structure of the
vortex arrays, but the lattices approach triangular arrays at large vortex densities.

The ENS experiments [34, 35] have produced remarkable images of vortex arrays.
Figure 10 shows three different arrays with up to 11 vortices (obtained after an expansion
of 27 ms). The initial condensate is very elongated (along with the vortices), so the radial
expansion predominates once the trap is turned off. As a result, the expanded condensate
acquires a pancake shape similar to that in figure 9.

Figure 10. Arrays of vortices in a Bose–Einstein condensate stirred with a laser beam. (Taken
from reference [35].)

4. Bogoliubov equations: stability of small-amplitude perturbations

This section considers only the behaviour of a dilute one-component Bose gas, for which
the analysis of the eigenfrequencies is particularly direct. In the more general case of two
interpenetrating species, even a uniform system can have imaginary frequencies for sufficiently
strong interspecies repulsion [95, 96]; this dynamical instability signals the onset of phase
separation.

4.1. General features for nonuniform condensate

The special character of an elementary excitation in a dilute Bose gas largely arises from
the role of the Bose condensate that acts as a particle reservoir. This situation is especially
familiar in the uniform system, where an elementary excitation with wave vector k can arise
from the interacting ground state �0 either through the creation operator a†

k or through the
annihilation operator a−k (in the thermodynamic limit, these two states a†

k�0 and a−k�0 differ
only by a normalization factor). The true excited eigenstates are linear combinations of the two
states, and the corresponding operator for the Bogoliubov quasiparticle is a weighted linear
combination [38, 42, 43]

α
†
k = uka

†
k + vka−k (53)
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where uk and vk are the (real) Bogoliubov coherence factors. This linear transformation (53) is
canonical if the quasiparticle operators also obey Bose–Einstein commutation relations, which
readily yields the condition

u2
k − v2

k = 1 for all k 	= 0. (54)

More generally, the second-quantized Bose field operator ψ̂ in equation (2) can be written
as ψ̂(r) ≈ �(r)+φ̂(r), where φ̂ is an operator giving the small deviation from the macroscopic
condensate wave function �. These deviation operators obey the approximate Bose–Einstein
commutation relations[

φ̂(r), φ̂†(r′)
]

≈ δ(r − r′)
[
φ̂(r), φ̂(r′)

]
=

[
φ̂†(r), φ̂†(r′)

]
≈ 0. (55)

Since ψ̂(r) does not conserve particle number, it is convenient to use a grand canonical
ensemble, with the new Hamiltonian operator K̂ = Ĥ−µN̂ instead of the Hamiltonian (1). To
leading (second) order in the small deviations, the perturbation in K̂ contains not only the usual
‘diagonal’ terms involving φ̂†φ̂, but also ‘off-diagonal’ terms proportional to φ̂φ̂ and φ̂†φ̂†.
Consequently, the resulting Heisenberg operators φ̂ and φ̂† obey coupled linear equations of
motion (it is here that the role of the condensate is evident, for this coupling vanishes if �
vanishes). Pitaevskii [41] developed this approach for the particular case of a vortex line in
unbounded condensate, and the formalism was subsequently extended to include a general
nonuniform condensate [97, 98].

In direct analogy to the Bogoliubov transformation for the uniform system, assume the
existence of a linear transformation to quasiparticle operators αj and α

†
j for a set of normal

modes labelled by j :

φ̂(r, t) =
∑
j

′ [
uj (r)αj (t) − v∗

j (r)α
†
j (t)

]
(56a)

φ̂†(r, t) =
∑
j

′ [
u∗
j (r)α

†
j (t) − vj (r)αj (t)

]
(56b)

where the primed sum means to omit the condensate mode. Here, the quasiparticle operators
αj andα†

k obey Bose–Einstein commutation relations [αj , α
†
k ] = δjk and have simple harmonic

time dependences αj (t) = αj exp(−iEj t/h̄) and α
†
j (t) = α

†
j exp(iEj t/h̄). Comparison with

the equations of motion for φ̂ and φ̂† shows that the corresponding spatial amplitudes obey a
set of coupled linear ‘Bogoliubov equations’

Luj − g(�)2vj = Ejuj (57a)

Lvj − g(�∗)2uj = −Ejvj (57b)

where

L = T + Vtr − µ + 2g|�|2 (58)

is a Hermitian operator.
Straightforward manipulations with the Bogoliubov equations show thatEj

∫
dV (|uj |2 −

|vj |2) is real. If the integral
∫

dV (|uj |2 − |vj |2) is nonzero, then Ej itself is real. Like
equation (54) for a uniform condensate, the Bose–Einstein commutation relations (55) for
the deviations from the nonuniform condensate can be shown to imply the following positive
normalization [97]:∫

dV (|uj |2 − |vj |2) = 1. (59)

For each solution uj , vj with eigenvalue Ej and positive normalization, the Bogoliubov equ-
ations always have a second solution v∗

j , u
∗
j with eigenvalue −Ej and negative normalization.
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The only exception to the requirement of real eigenvalues arises for zero-norm solutions with∫
dV (|uj |2 − |vj |2) = 0. In this case the character of the eigenvalue requires additional

analysis. Numerical investigations [99] of vortices in nonuniform trapped condensates have
reported imaginary and/or complex eigenfrequencies for doubly quantized vortices but only
real eigenfrequencies for singly quantized vortices. Specifically, for a repulsive interparticle
interaction, Pu et al [99] found that singly quantized vortices are always intrinsically stable; in
contrast, multiply quantized vortices have alternating stable and unstable regions with complex
excitation energy as the interaction parameter Na/d increases. The most unstable vortex
state decays after several periods of the harmonic trapping potential. In the case of multiply
quantized vortices (q > 1), the vortex core contains localized quasiparticle bound states
with small exponential tails; these modes have complex frequencies and are responsible for
splitting the multicharged core [100]. For an attractive interaction, stable vortices exist only
for the singly quantized case in the weak-interaction regime; a multiply quantized vortex
state is always unstable. Similar imaginary and complex solutions have been found for dark
solitons [101–103]. For additional results on complex eigenfrequencies, see reference [104]
and the appendix of reference [105].

In terms of the quasiparticle operators, the approximate perturbation Hamiltonian operator
takes the simple intuitive form

K̂ ′ ≈
∑
j

′
Ejα

†
j αj (60)

apart from a constant ground-state contribution of all of the normal modes. Here, the sum
is over all of the states with positive normalization, and it is clear that the sign of the energy
eigenvalues Ej is crucial for the stability. If one or more of the eigenvalues is negative, the
Hamiltonian is no longer positive definite, and the system can lower its energy by creating
quasiparticles in the unstable modes.

The present derivation of the Bogoliubov equations and their properties emphasizes the
quantum-mechanical basis for the positive normalization condition (59) and the sign of the
eigenvalues. It is worth noting an alternative purely ‘classical’ treatment [31, 106] based
directly on small perturbations of the time-dependent GP equation (4) around the static
condensate �(r). The solution is assumed to have the form

�(r, t) = e−iµt/h̄
[
�(r) + u(r)e−iωt − v∗(r)eiωt

]
(61)

and the appropriate eigenvalue equations then reproduce equations (57).

4.2. Uniform condensate

For a uniform condensate, the solutions of equations (57) are plane waves, and the cor-
responding energy is the celebrated Bogoliubov spectrum [38]

Ek =
√
gnh̄2k2/M + (h̄2k2/2M)2 (62)

where k is the wave vector of the excitation and n is the condensate density. For long
wavelengths kξ � 1, equation (62) reduces to a linear phonon spectrum Ek ≈ h̄sk with
the speed of compressional sound s = √

gn/M given by equation (10). In the opposite limit
kξ � 1, the spectrum reduces to the free-particle form plus a mean-field Hartree shift from
the interaction with the background condensate Ek ≈ (h̄2k2/2M) + gn.

To understand the importance of the sign of the eigenfrequency, it is instructive to consider
the case of a condensate that moves uniformly with velocity v0. As noted in connection with
equation (24), the condensate wave function is �(r) = √

neiq·r, where q = Mv0/h̄ and the



R158 A L Fetter and A A Svidzinsky

chemical potential becomes µ = 1
2Mv2

0 + gn. The Bogoliubov amplitudes for an excitation
with wave vector k relative to the moving condensate have the form(

uk(r)

vk(r)

)
=

(
eiq·rukeik·r

e−iq·rvkeik·r

)
(63)

where the different signs ±iq · r arise from the different phases ±i 2q · r in the off-diagonal
coupling terms in the Bogoliubov equations (57). The solution with positive norm has the
eigenvalue

Ek(v0) = h̄k · v0 + Ek (64)

as expected from general considerations [107, 108]. In the long-wavelength limit, this
excitation energy reduces to Ek(v0) ≈ h̄k(v0 cos θ + s), where θ is the angle between k

and v0. For v0 < s, the quasiparticle energy is positive for all angles θ , but for v0 > s,
the quasiparticle energy becomes negative for certain directions, indicating the onset of an
instability. This behaviour simply reflects the well-known Landau critical velocity for the
onset of dissipation, associated with the emission of quasiparticles. It has many analogies with
supersonic flow in classical compressible fluids [109] and Cherenkov radiation of photons in
a dielectric medium [110, 111]. For v0 > s, the GP description becomes incomplete because
the excitation of quasiparticles means that the noncondensate is no longer negligible.

4.3. Quantum-hydrodynamic description of small-amplitude normal modes

The quantum-hydrodynamic forms (16) and (17) of the time-dependent GP equation provide
a convenient alternative basis for studying the small-amplitude normal modes. The small
perturbations in the density n′e−iωt and the velocity potential !′e−iωt obey coupled linear
equations [98,112,113] that reduce to equation (33) in the TF limit for a static condensate [57].
A comparison with equations (56a) shows that the quantum-hydrodynamic amplitudes

n′
j = �∗uj − �vj = |�|(e−iSuj − eiSvj ) (65a)

!′
j = h̄

2Mi|�|2 (�
∗uj + �vj ) = h̄

2Mi|�| (e
−iSuj + eiSvj ) (65b)

are simply linear combinations of the Bogoliubov amplitudes uj and vj in the presence of the
given condensate solution � = eiS |�|. The positive normalization condition (59) yields the
equivalent quantum-hydrodynamic form∫

dV i(n′
j

∗
!′

j − !′
j

∗
n′
j ) = h̄

M
. (66)

For many purposes, the quantum-hydrodynamic modes provide a clearer picture of the
dynamical motion.

4.4. A singly quantized vortex in an axisymmetric trap

Early numerical studies for small and medium values of the interaction parameter Na/d0 � 1
examined the small-amplitude excitations of a condensate with a singly quantized vortex [114].
In particular, the spectrum contained an ‘anomalous’ mode with a negative excitation frequency
and positive normalization associated with a large Bogoliubov amplitude u localized in the
vortex core (see also relevant comments in reference [65] concerning the relationship between
the sign of the normalization and the sign of the eigenfrequency). The anomalous mode
corresponds to a precession of the vortex line around the z-axis. As seen from the general
discussion of the Bogoliubov equations, this anomalous mode indicates the presence of an
instability.
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Since the condensate wave function has an explicit phase �(r) = eiφ|�(r⊥, z)|, the
Bogoliubov amplitudes for an excitation with angular momentum mh̄ relative to the vortex
condensate take the form(

um(r)

vm(r)

)
=

(
eiφeimφũm(r⊥, z)
e−iφeimφṽm(r⊥, z)

)
. (67)

analogous to those in equation (63) for a condensate in uniform motion. Here, the azimuthal
quantum numberm characterizes the associated density and velocity deformations of the vortex
proportional to eimφ (for example, n′

m = |�|(ũm−ṽm)eimφ , as is clear from equation (65a)). The
numerical studies [114] found that the anomalous mode has an azimuthal quantum number
ma = −1. Its frequency ωa is negative throughout the relevant range of Na/d0 � 1; in
the noninteracting limit, ωa approaches −ω⊥, and ωa increases toward 0 from below with
increasing Na/d0.

To understand the particular valuema = −1, it is helpful to recall the noninteracting limit,
when the negative anomalous mode for the vortex condensate signals the instability associated
with Bose condensation in the first excited harmonic oscillator state with excitation energy
h̄ω⊥ and unit angular momentum. A particle in the condensate can make a transition from
the vortex state back to the true harmonic oscillator ground state, with a change in frequency
−ω⊥ and a change in angular momentum quantum number −1. More generally, the density
perturbation n′

a for the anomalous mode with negative frequency −|ωa| is proportional to
exp[i(|ωa|t − φ)] and hence precesses in the positive sense (namely anticlockwise) at the
frequency |ωa|. Thus the anomalous mode describes the JILA observations of the precession
frequency of a one-component vortex [37, 85].

4.4.1. The near-ideal regime. An explicit perturbation analysis [70,115] of the GP equation
for the condensate wave function in the weakly interacting limit found the thermodynamic
critical angular velocity

3c

ω⊥
= 1 − 1√

8π

Na

dz
+ 3(2)

c (λ)

(
Na

dz

)2

+ · · · (68)

where the second-order correction depends explicitly on the axial asymmetry λ = ωz/ω⊥.
Similarly, a perturbation expansion of the Bogoliubov equations in the weak-coupling limit
verified the numerical analysis and found the explicit expression for the frequency of the
anomalous mode:

ωa

ω⊥
= −1 +

1√
8π

Na

dz
+ ω(2)

a (λ)

(
Na

dz

)2

+ · · · . (69)

It is evident that3c +ωa vanishes at first order, and the detailed analysis shows that the second-
order contribution to the sum is positive for all values of the axial asymmetry parameter λ.

The physics of the anomalous mode can be clarified by considering an axisymmetric
condensate in rotational equilibrium at an angular velocity 3 around the ẑ-axis. In the rotating
frame, the Hamiltonian becomes H −3Lz, and the Bogoliubov amplitudes have frequencies
ωj(3) = ωj−mj3, whereωj is the frequency in the nonrotating frame andmj is the azimuthal
quantum number (see equation (67)). For the anomalous mode with ma = −1, the resulting
frequency in the rotating frame is

ωa(3) = ωa + 3 (70)

which is directly analogous to equation (64) for uniform translation. Since ωa is negative, the
anomalous frequency in a rotating frame increases linearly toward zero with increasing 3; in
particular, ωa(3) vanishes at a characteristic rotation frequency

3∗ = −ωa = |ωa| (71)
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that signals the onset of the regime 3 � 3∗ for which the singly quantized vortex becomes
locally stable. Equation (69) gives an explicit expression for 3∗ in the weak-coupling limit,
and detailed comparison with equation (68) indicates that 3∗ < 3c for any axial asymmetry
λ (but only because of the second-order contributions). It is natural to identify 3∗ with the
angular velocity for the onset of local stability with respect to small perturbations; this quantity
was denoted as 3m in connection with the equilibrium energy in the TF limit (see figure 5).

4.4.2. The Thomas–Fermi regime for a disc-shaped trap. The anomalous negative-frequency
mode exists only because the condensate contains a vortex. Hence it cannot be analysed by
treating the vortex itself as a perturbation. In the TF limit, however, it is possible to use
Gross’s and Pitaevskii’s [39, 41] solution (19) for a vortex in a laterally unbounded fluid as
the basis for a perturbation expansion. A detailed analysis of the Bogoliubov equations for
an axisymmetric rotating flattened trap in the TF limit yields the explicit expression for the
anomalous mode [116]

ωa(3) = 3 − 3h̄ω2
⊥

4µ
ln

(
R⊥
ξ

)
= 3 − 3

2

h̄

MR2
⊥

ln

(
R⊥
ξ

)
. (72)

As in equation (71) for the weak-coupling limit, equation (72) yields

3∗ = 3

2

h̄

MR2
⊥

ln

(
R⊥
ξ

)
= 3m = 3

5
3c (73)

where the last two equalities follow from (51) and (52). This relation further supports the
identification of 3∗ with the metastable rotation frequency 3m associated with local stability
of a vortex for small lateral displacements from the centre of the trap. Note that 3m < 3c for a
disc-shaped condensate (in the TF limit) (see equations (51) and (52)), similar to the behaviour
for the weak-coupling regime.

4.4.3. Quantum-hydrodynamic analysis of condensate normal modes in the Thomas–Fermi
regime. In addition to the anomalous mode described above, the condensate has a sequence of
normal modes that occur both with and without a vortex. Indeed, one of the early triumphs of the
quantum-hydrodynamic description [57] was the detailed agreement between the theoretical
predictions and the measured frequencies of the lowest few collective normal modes [31]. For
an axisymmetric condensate, the normal modes can be classified by their azimuthal quantum
number m, and modes with ±m are degenerate for a stationary condensate.

When the condensate contains a vortex, however, the various collective modes are
perturbed. In particular, the vortex breaks time-reversal symmetry by imposing a preferred
sense of rotation, so modes with ±m are split (this behaviour is analogous to the Zeeman effect
in which an applied magnetic field splits the magnetic sublevels). In fact, the splitting of these
degenerate hydrodynamic modes has been used to detect the presence of a vortex [36,94] and
to infer its circulation and angular momentum.

In the context of the quantum-hydrodynamic description, the principal effect of the vortex
arises through its circulating velocity field v, which shifts the time derivative ∂t → ∂t + �v · �∇.
For a normal mode ∝eimφ with azimuthal quantum numberm, the perturbation in the frequency
has the formmh̄/Mr2

⊥. A detailed analysis shows that the fractional splitting of the modes is of
order (ω+ −ω−)/ω+ ∼ |m|d2

⊥/R
2
⊥, with a numerical coefficient that depends on the particular

mode in question [64, 113]. Independently, Zambelli and Stringari [117] used sum rules to
calculate the vortex-induced splitting of the lowest quadrupole mode with m = ±2; the two
approaches yield precisely the same expressions. In the absence of a vortex, the |m| = 2 mode
simply involves an oscillating quadrupole distortion, but the vortex-induced splitting means
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that the quadrupole distortion precesses slowly in a sense determined by the circulation around
the vortex. The angular frequency of precession of the eigenaxes of the quadrupole mode is
equal to (ω+ − ω−)/2|m| = (ω+ − ω−)/4 = 7

4ω⊥d2
⊥/R

2
⊥. Figure 11 shows the difference

between the two cases (with and without a vortex) for a condensate with ≈3.7 × 105 87Rb
atoms in an elongated trap with ω⊥/2π = 171 Hz. In the ENS experiment [36], when one
vortex is nucleated at the centre of the condensate, the measured frequency splitting of the
quadrupole mode (ω+/2π = 250 Hz) is (ω+ − ω−)/2π = 66(±7) Hz. For the experimental
parameters (R⊥ = 3.8 µm), theory predicts (ω+ − ω−)/2π = 7h̄/2πMR2

⊥ = 56 Hz. The
result holds in the TF limit and is valid with an accuracy of order d2

⊥ ln(R⊥/ξ)/R2
⊥ ∼ 0.15.

With this uncertainty, the theoretical prediction 56(±8)Hz agrees with the experimental value.

a) b) c)

d) e) f)
Figure 11. Transverse oscillations of a stirred condensate with 3.7×105 atoms in an elongated trap
with ω⊥/2π = 171 Hz. For (a)–(c), the stirring frequency 3/2π = 114 Hz is below the threshold
for vortex nucleation, whereas for (d)–(f ), the stirring frequency 3/2π = 120 Hz has nucleated
a vortex (visible at the centre of the condensate). The sequences of pictures correspond to time
delays τ = 1, 3, and 5 ms for which the ellipticity in the xy-plane is maximum. The fixed axes
indicate the excitation basis of the quadrupole mode and the rotating ones indicate the condensate
axes. (Taken from reference [36].)

One should note that the vortex-induced splitting of the condensate modes is maximum
if the vortex is located at the trap centre. If a straight vortex line is displaced a distance
ζ0 = r0/R⊥ from the z-axis of the TF condensate, then the splitting of the quadrupole mode
(m = ±2) is given by the expression

ω+ − ω− = 7ω⊥
d2

⊥
R2

⊥

(
1 − 5

4
ζ 2

0

[
1 +

1

2
ζ 4

0 − ζ 6
0 +

3

10
ζ 8

0

])
. (74)

The splitting goes to zero if the vortex moves out of the condensate (ζ0 = 1).

4.4.4. Numerical analysis for general interaction parameter. Garcı́a-Ripoll and Pérez-
Garcı́a [104] have performed extensive numerical analyses of the stability of vortices in
axisymmetric traps with an axial asymmetry parameter λ = ωz/ω⊥ = 1 (a sphere) and λ = 1

2
(one particular cigar-shaped condensate). They conclude that a doubly quantized vortex line
has normal modes with imaginary frequencies and that an external rotation cannot stabilize it.
For a singly quantized vortex in a spherical trap, however, they confirm the presence of one
negative-frequency (anomalous) mode with |ωa| < 3c. For their cigar-shaped condensate,
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they find additional negative-frequency modes and suggest that such elongated condensates
are less stable than spherical or disk-shaped ones. More recent numerical work [85, 118]
confirms these findings for other geometries, especially that for the ENS experiment [34],
where the axial asymmetry is large (ω⊥/ωz ≈ Rz/R⊥ ≈ 14). It is expected that a vortex in
an elongated condensate becomes stable only for an external angular velocity 3m = max|ωa|,
where max|ωa| is the absolute value of the most negative of these anomalous modes. For only
modestly elongated traps, the metastable frequency 3m exceeds the thermodynamic critical
value 3c; these results provide an alternative explanation of the ENS observation that the first
vortex appears at an applied rotation ≈70% higher than 3c. Independently, an analysis of the
bending modes of a trapped vortex [119] in the TF limit finds that a vortex in a spherical or
disc-shaped condensate has only one negative frequency (anomalous) mode, but the number
of such modes in an elongated condensate increases with the axial asymmetry ratio Rz/R⊥
(discussed below in section 5.4.2).

5. Vortex dynamics

The preceding sections considered the equilibrium and stability of a vortex in a trapped Bose
condensate, using the stationary GP equation and the Bogoliubov equations that characterize
the small perturbations of the stationary vortex. These approaches are somewhat indirect, for
they do not consider the dynamical motion of the vortex core. The present section treats two
different methods that address such questions directly.

5.1. Time-dependent variational analysis

Consider a variational problem for the action
∫

dt L(t) obtained from the Lagrangian

L(t) =
∫

dV

[
ih̄

2

(
�∗ ∂�

∂t
− �

∂�∗

∂t

)
− �∗(T + Vtr − 3Lz)� − 1

2g|�|4
]
. (75)

It is easy to verify that the Euler–Lagrange equation for this action is precisely the time-
dependent GP equation in the rotating frame.

If, instead of �(r, t), we substitute a trial function that contains different variational
parameters (for example, the location of the vortex core), the resulting time evolution of
these parameters characterizes the dynamics of the condensate. This method is not exact,
but it provides an appealing physical picture. For example, it determined the low-energy
excitations of a trapped vortex-free condensate at zero temperature [120, 121] for general
values of the interaction parameter. In the TF limit, this work reproduced the expressions
derived by Stringari [57] based on equation (33).

5.1.1. The near-ideal regime. In the near-ideal limit, only the axisymmetric case has been
studied, and it is natural to start from the noninteracting vortex state (36), incorporating small
lateral displacements of the vortex and the centre of mass of the condensate, along with a
phase that characterizes the velocity field induced by the motion of the condensate [122]. In
addition to the rigid-dipole mode (in which the condensate and the vortex oscillate together
at the transverse trap frequency ω⊥), an extra normal mode arises at the anomalous (negative)
frequency ωa given in equation (69) omitting the second-order corrections that are beyond the
present approximation. In this weak-coupling limit, the resulting displacement of the vortex
is twice that of the centre of mass, so both must be included to obtain the correct dynamical
motion. Detailed analysis confirms the positive normalization and relative displacements found
from the Bogoliubov equations for the same axisymmetric trap [115].
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5.1.2. The Thomas–Fermi regime for a straight vortex in a disc-shaped trap. For a non-
axisymmetric trap in the TF regime, only the nonrotating case (3 = 0) has been analysed,
using the fully anisotropic TF wave function as an appropriate trial state, again with parameters
describing the small displacements of the straight vortex and the centre of mass of the
condensate [80]. The trial wave function was chosen in the form

�(r, t) = B(t)f [r − r0(t)]F [r − η0(t)]
∏

j=x,y,z

exp
[
ixjαj (t) + ix2

j βj (t)
]
. (76)

Here the function f (r) characterizes the vortex line inside the trap, and far away from the
vortex core has the approximate form f (r) = eiφ ; the function F(r) is the TF condensate
density. The time-dependent vector η0(t) = (η0x, η0y, η0z) describes the motion of the centre
of the condensate, while r0(t) = (x0, y0, 0) describes the motion of the vortex line in the
xy-plane. The other variational parameters are the amplitude B(t) and the set αj (t) and βj (t).
Substitution of the trial wave function into (75) yields an effective Lagrangian as a function of
the variational parameters (and their first time derivatives). The resulting Lagrangian equations
have a solution that corresponds to the motion of the vortex relative to the condensate. For this
solution the vortex motion is described by

x0 = ε0Rx sin(ωat + φ0) y0 = ε0Ry cos(ωat + φ0) (77)

while the displacement of the condensate is given by

η0x = −15ε0ξ
2

2Ry

ln

(
R⊥
ξ

)
Rx

Rx + Ry

sin(ωat + φ0) (78)

η0y = −15ε0ξ
2

2Rx

ln

(
R⊥
ξ

)
Ry

Rx + Ry

cos(ωat + φ0) (79)

where

ωa = −3h̄ωxωy

4µ
ln

(
R⊥
ξ

)
= − 3h̄

2MRxRy

ln

(
R⊥
ξ

)
(80)

in agreement with that found in equation (72). The quantity x2
0/R

2
x + y2

0/R
2
y = ε2

0 remains
constant as the vortex line follows an elliptic trajectory around the centre of a trap along the
line Vtr = constant, and the energy of the system is conserved (as follows from equation (49)).
The condensate also precesses with the relative phase shift π at the same frequency, but
the amplitude of the condensate motion is smaller than that of the vortex line by a factor
∼ξ 2 ln(R⊥/|q|ξ)/RxRy .

For an axisymmetric TF condensate in rotational equilibrium at an angular velocity
3, the Lagrangian (75) provides a more general result for the precession frequency.
With the hydrodynamic variables � = eiS |�|, the first term of the Lagrangian becomes
−h̄

∫
dV |�|2 ∂S/∂t . Since the TF condensate density vanishes at the surface, the particle

current also vanishes there, and it usually suffices to assume a single straight vortex displaced
laterally to r0(t), with S(r, r0) = arctan[(y − y0)/(x − x0)] and no image vortex. The
Lagrangian becomes

L =
∫

dV Mn(r)ṙ0 · v0(r) − E(r0) + 3Lz(r0) (81)

where

v0(r) = h̄

M
∇S(r, r0) = − h̄

M
∇0S(r, r0) = (κ/2π)

ẑ × (r − r0)

|r − r0|2 (82)

is the circulating velocity field about the vortex line. In the special case of a two-dimensional
condensate with the TF densityn(r) = n(0)(1−r2

⊥/R
2
⊥) per unit length, equation (81) becomes

L2 = (φ̇0 + 3)Lz2(r0) − φ̇0Lz2(0) − E2(r0) (83)
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where φ0 is the azimuth angle describing the position of the vortex line,

Lz2(r0) = 1
2n(0)πR

2
⊥h̄(1 − ζ 2

0 )
2 (84)

and

E2(r0) = κ2Mn(0)

8π

[
2(1 − ζ 2

0 ) ln

(
R⊥
ξ

)
+ (1 − ζ 2

0 ) ln(1 − ζ 2
0 ) − 1 + 2ζ 2

0

]
(85)

with ζ0 = r0/R⊥ (note that 1
2n(0) is the mean particle density n per unit length). These

expressions differ from the classical results for a uniform fluid in a rotating cylinder [90,123]
because of the parabolic TF density; in particular, the TF angular momentum per unit length
Lz2 here is proportional to (1 − ζ 2

0 )
2, whereas that for a uniform density is proportional to

1 − ζ 2
0 .

The Lagrangian dynamical equations show that the vortex precesses at fixed r0 with the
angular frequency

φ̇0 = −3 +
∂E2/∂r0

∂Lz2/∂r0
= −3 − ∂E2/∂r0

κMr0n(r0)
. (86)

This result is just that expected from the Magnus force on a straight vortex [124–126]. For small
displacements from the centre, the precession frequency in a nonrotating two-dimensional
condensate reduces to φ̇0 ≈ (κ/2πR2

⊥) ln(R⊥/ξ) ≈ 1
23c [72], but φ̇0 increases with increasing

r0 and eventually diverges near the edge of the condensate where the density vanishes.
The corresponding results for a three-dimensional disc-shaped TF condensate follow from

equations (49) and (81). In particular, the integration over z means that the total angular
momentum Lz3 = Nh̄(1 − ζ 2

0 )
5/2 associated with the presence of the vortex differs from the

two-dimensional result proportional to (1 − ζ 2
0 )

2. Apart from numerical factors reflecting the
three-dimensional geometry, equation (86) remains correct. For a straight vortex, it yields

φ̇0 = −3 +
3m

1 − r2
0/R

2
⊥

(87)

where 3m = 3
2 (h̄/MR2

⊥) ln(R⊥/ξ) is the metastable frequency (51) for the appearance
of a central vortex in a disc-shaped condensate. In the special case of a vortex near the
centre (r0 → 0), this precession frequency reduces to (minus) the corresponding anomalous
frequency ωa(3) in equation (72) for a condensate with a single central vortex line. To
understand why the precession frequency φ̇0 is the negative of the anomalous frequency,
recall that the linearized perturbation in the density for the anomalous mode is proportional to
exp i[maφ−ωa(3)t] = exp i[−φ−ωa(3)t] because ma = −1; this latter form shows clearly
that the normal mode propagates around the symmetry axis at an angular frequency −ωa(3),
with the sense of rotation fixed by the sign of −ωa(3).

According to (87), for a nonrotating trap the precession velocity of a displaced vortex
increases with the vortex displacement as v = 3mr0/(1 − r2

0/R
2
⊥). It is interesting to estimate

at what displacement the vortex velocity becomes supersonic [127]. Assuming that the speed
of sound varies radially with the local density as

c = c0

√
1 − r2

0/R
2
⊥ where c0 =

√
µ/M = ω⊥R⊥/

√
2

we obtain

v/c = (
√

23mr0/ω⊥R⊥)(1 − r2
0/R

2
⊥)

−3/2.

As a result, the vortex velocity becomes supersonic if

r0

R⊥
>

ω⊥√
23m

(
1 − r2

0

R2
⊥

)3/2

=
√

2R⊥
3ξ ln(R⊥/ξ)

(
1 − r2

0

R2
⊥

)3/2

. (88)

For parameters of JILA experiments [37] R⊥/ξ ≈ 33, this gives a critical displacement of
r0/R⊥ ≈ 0.82 where the precession vortex velocity becomes supersonic.
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5.2. The method of matched asymptotic expansions

At zero temperature, the dynamics of a condensate in a rotating nonaxisymmetric trap follows
from the appropriate time-dependent GP equation

ih̄
∂�

∂t
=

(
− h̄2∇2

2M
+ Vtr + g|�|2 − µ(3) + ih̄Ω · (r × ∇)

)
�. (89)

A vortex line in the condensate will, in general, move in response to the effect of the non-
uniform trap potential and the external rotation, as well as self-induced effects caused by its
own local curvature. This problem can be solved in the case of a large condensate, where the
TF separation of length scales means that the vortex-core radius ξ is much smaller than the
condensate radii Rj . The relevant mathematics involves the method of matched asymptotic
expansions [128–130].

5.2.1. Dynamics of a straight vortex in the Thomas–Fermi regime for a disc-shaped trap.
As an introduction to these techniques, it is helpful first to concentrate on the case of a
straight singly quantized vortex line [80], which is applicable to disc-shaped condensates
with Rz � R⊥; this analysis generalizes two-dimensional results found by Rubinstein and
Pismen [129]. Assume that the vortex is located near the centre of the trap at a transverse
position r⊥0(t). In this region, the trap potential does not change significantly on a length
scale comparable with the vortex-core size ξ . The method of matched asymptotic expansions
compares the solution of equation (89) on two very different length scales:

• First, consider the detailed structure of the vortex core. Assume that the vortex moves with
a transverse velocity V ⊥ ẑ, and transform to a co-moving frame centred at the vortex
core. Away from the trap centre, the trap potential exerts a force proportional to ∇⊥Vtr

evaluated at the position r⊥0(t). The resulting steady solution includes the ‘asymptotic’
region |r⊥ − r⊥0| � ξ .

• Second, consider the region far from the vortex (on this scale, the vortex core is effectively
a singularity). The short-distance behaviour of this latter solution also includes the region
ξ � |r⊥ − r⊥0|. The requirement that the two solutions match in the overlapping region
of validity determines the translational velocity V of the vortex line.

Unfortunately, the details become rather intricate, but the final answer is elegant and
physical:

V = 3h̄

4Mµ

[
ln

(
R⊥
ξ

)
− 8µ3

3h̄(ω2
x + ω2

y)

]
(ẑ × ∇⊥Vtr)

= 3h̄

4Mµ

[
ln

(
R⊥
ξ

)
− 2MR2

⊥3
3h̄

]
(ẑ × ∇⊥Vtr) (90)

where R⊥ for an asymmetric trap is defined in equation (50). This expression has several
notable features.

(a) The motion is along the direction ẑ×∇⊥Vtr and hence follows an equipotential line of Vtr .
Thus the trajectory conserves energy, which is expected because the GP equation omits
dissipative processes. In the present case of an anisotropic harmonic trap, the trajectory
is elliptical.

(b) For a nonrotating trap (3 = 0), the motion is anticlockwise in the positive sense at the
frequency given by equation (80), proportional to ωxωy .
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(c) With increasing applied rotation 3, the translational velocity V decreases and vanishes
at the special value

3m = 3h̄(ω2
x + ω2

y)

8µ
ln

(
R⊥
ξ

)
= 3h̄

2MR2
⊥

ln

(
R⊥
ξ

)
(91)

proportional to 1
2 (ω

2
x + ω2

y). This value precisely reproduces equation (51) associated
with the onset of metastability for small transverse displacements of the vortex from the
trap centre.

(d) For 3 > 3m, the motion is clockwise as seen in the rotating frame. A detailed analysis
based on the normalization of the Bogoliubov amplitudes shows that the positive-norm
state has a frequency (compare equation (80))

ωa(3) = 2ωxωy

ω2
x + ω2

y

(3 − 3m). (92)

Note that this expression differs somewhat from equation (70) because the trap here is
anisotropic. The normal-mode frequency is negative and hence unstable for 3 < 3m, but
it becomes positive and hence stable for 3 > 3m.

This direct analysis of the motion of a straight vortex reproduces the physics of the onset of
(static) metastability (51) studied with the GP Hamiltonian and the (dynamic) anomalous mode
(73) and (80) studied with the Bogoliubov equations and with the Lagrangian method.

5.2.2. Dynamics of a curved vortex in the Thomas–Fermi regime. Consider a non-
axisymmetric trap that rotates with an angular velocity Ω (for convenience, Ω is often taken
along the z-axis). At low temperature in a frame rotating with the same angular velocity, the
trap potential is time independent, and equation (89) describes the evolution of the condensate
wave function. In the TF limit, the method of matched asymptotic expansions again yields
an approximate solution for the motion of a singly quantized vortex line with instantaneous
configuration r0(z, t). Let t̂ be the local tangent to the vortex (defined with the usual right-hand
rule), n̂ be the corresponding normal, and b̂ ≡ t̂ × n̂ be the binormal. A generalization of
the work of Pismen and Rubinstein [128,129] eventually yields the explicit expression for the
local translational velocity of the vortex [119]:

V (r0) = − h̄

2M

(
t̂ × ∇Vtr(r0)

g|�TF |2 + kb̂

)
ln

(
ξ

√
1

R2
⊥

+
k2

8

)
+

2 ∇Vtr(r0) × Ω
7⊥Vtr(r0)

(93)

where k is the local curvature (assumed small, with kξ � 1) and 7⊥ is the Laplacian operator
in the plane perpendicular to Ω.

This vector expression holds for general orientation of the gradient of the trap potential,
the normal to the vortex line, and the angular velocity vector. Near the TF boundary of the
condensate, the denominator of the first term becomes small, implying that the numerator
t̂ × ∇Vtr(r0) must also vanish near the boundary. As a result, the axis of the vortex line t̂ is
parallel to ∇Vtr at the surface and hence obeys the intuitive boundary condition that the vortex
must be perpendicular to the condensate surface.

5.3. Normal modes of a vortex in a rotating two-dimensional TF condensate

This very general equation (93) applies in many different situations [119]. The simplest case
is an initially straight vortex in a two-dimensional asymmetric TF condensate with Ω = 3ẑ

and ωz = 0 (hence no confinement in the z-direction). For small displacements, the x- and
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y-coordinates of the vortex core execute harmonic motion ∝ exp[i(κz − ωt)] that can vary
between helical and planar depending on the relative phase of the x- and y-motion. The
dispersion relation ωκ(3) depends on the continuous parameter κ and the rotation frequency
3, along with the TF radii Rx and Ry [119]:

ωκ(3) = ± h̄

2MRxRy

√
(2 − κ2R2

x − 3̃)(2 − κ2R2
y − 3̃) ln

(
ξ

√
1

R2
⊥

+
|κ|2

8

)
(94)

where

3̃ = 4MR2
xR

2
y

h̄(R2
x + R2

y) ln
(
ξ

√
1/R2

⊥ + |κ|2/8
)−1

3 (95)

is a dimensionless rotation speed.
Of all the various normal modes, a straight vortex line (κ = 0) has the most negative

(anomalous) frequency

ωa(3) = − h̄

2MRxRy

[
ln

(
R⊥
ξ

)
− 4µ3

h̄(ω2
x + ω2

y)

]
(96)

where an analysis similar to that for equation (92) shows that the minus sign corresponds to
the Bogoliubov solution with positive norm. For 3 = 0, the vortex precesses anticlockwise
about the z-axis in the positive sense. With increasing rotation frequency 3, the precession
frequency decreases and vanishes at 3 = 3m, where the metastable rotation frequency in two
dimensions is

3m = h̄(ω2
x + ω2

y)

4µ
ln

(
R⊥
ξ

)
= h̄

MR2
⊥

ln

(
R⊥
ξ

)
. (97)

As expected, this value is the precession frequency 1
23c discussed below equation (86)

(compare equation (51) for3m in a three-dimensional disc-shaped TF condensate; the different
numerical coefficient arises from the integration over the parabolic density in the z-direction).

More generally, for κ2 > 0 and a nonaxisymmetric trap (Rx > Ry), the oscillation
frequency can be imaginary (and hence unstable) within a range of axial wave numbers
determined by √

(2 − 3̃)/Rx < |κ| <
√
(2 − 3̃)/Ry.

For sufficiently fast rotation, however, the frequencies become real, and the small oscillations
become stable at a rotation frequency 3̃ > 3̃m = 2. In the limit of a uniform unbounded
condensate (Rx,Ry → ∞), the general dispersion relation reduces to the familiar one for
helical waves on a long straight vortex line [7]

ω = ± h̄

2M
κ2 ln(|κ|ξ). (98)

Using this dispersion relation, Barenghi [131] estimated the amplitude of the vortex waves
due to thermal excitation (the cloud is assumed to rotate at an angular velocity 3 > 3c, so the
vortex is stable). He showed that finite-temperature effects in a Bose condensate can distort the
vortex state significantly, even at the very low temperatures relevant to the experiments. For
T = 10−7 K, n̄ ≈ 1012–1013 cm−3, and R ≈ 5 µm, the amplitude of vortex oscillations can
be 4–14 times the size of the vortex core. At the same time, the thermal excitation of vortex
waves in superfluid 4He is negligible (much smaller than the corresponding vortex-core size).
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5.4. Normal modes of a vortex in a rotating three-dimensional TF condensate

Consider a three-dimensional TF condensate with ωz > 0, confined within a TF region
z2 � R2

z = 2µ/Mω2
z .

5.4.1. General formalism. For a vortex that initially lies along the z-axis, it is straightforward
to find the pair of coupled equations for the small transverse displacements of the vortex x(z, t)
and y(z, t). In particular, we seek solutions of the form

x = x(z) sin(ωt + ϕ0) y = y(z) cos(ωt + ϕ0) (99)

in which case the amplitudes x(z) and y(z) describe the vortex shape and obey coupled ordinary
differential equations. Introducing dimensionless scaled coordinates x → Rxx, y → Ryy,
z → Rzz, we find from equation (93)

ω̃(1 − z2)x = − d

dz

[
β(1 − z2)

dy

dz

]
− y + 3̃(1 − z2)y (100)

ω̃(1 − z2)y = − d

dz

[
α(1 − z2)

dx

dz

]
− x + 3̃(1 − z2)x (101)

where

α = R2
x

R2
z

β = R2
y

R2
z

(102)

characterize the trap anisotropy and

ω̃ = 2MRxRy

h̄ ln(R⊥/ξ)
ω 3̃ = 4MR2

xR
2
y

h̄(R2
x + R2

y) ln(R⊥/ξ)
3 (103)

are dimensionless angular velocities.
These equations (100) and (101) constitute a two-component Sturm–Liouville system

with natural boundary conditions [132] because the factor 1 − z2 vanishes at z = ±1.
Consequently, the eigenfunctions merely must remain bounded at the surface of the condensate.
A straightforward generalization of the usual analysis shows that the eigenfunctions obey the
orthogonality condition∫ 1

−1
dz (1 − z2)xmyn ∝ δmn. (104)

5.4.2. Special solutions. In the general case of a nonaxisymmetric trap, the resulting
equations remain coupled, but they separate in the particular case of stationary solutions with
ω = 0. For a nonrotating trap, such configurations reflect a balance between the effects of
curvature and the nonuniform trap potential. For example, the small-amplitude stationary
solutions xn(z) remain finite at the surface z = ±1 only for certain special values of the trap
anisotropy

α = αn = 2

n(n + 1)
(105)

where n � 0 is an integer. The corresponding solutions have the form xn(z) ∝ Pn(z),
where Pn is the familiar Legendre polynomial. The solutions have n nodes and cross the
z-axis n times. If α differs from one of these special values (105), there is no stationary
configuration. Similarly, the equation for the y-displacement has stationary solutions only if
β ≡ R2

y/R
2
z = 2/[m(m + 1)].
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This classification of the solutions according to the number of nodes remains more
generally valid. In the special case of an axisymmetric condensate (α = β), we can consider
the precession frequency ωn of the mode with n nodes as a function of the axial trap anisotropy
α. Evidently, the function ωn changes sign at the special value α = αn = 2/[n(n + 1)]. This
observation allows us to determine the number of modes with negative frequencies at a fixed
value of the anisotropy parameter α. For α � 1 (a spherical or disc-shaped condensate), only
one mode has a negative frequency. If 1

3 < α < 1, there are two such anomalous modes, and
so on. If αn < α < αn−1, a nonrotating axisymmetric TF condensate has n anomalous modes
with negative frequency.

The special case of a nearly disc-shaped anisotropic rotating TF condensate is particularly
tractable because α−1 and β−1 provide small expansion parameters. There is only one relevant
normal mode, with frequency

ωa(3) = −3m + 3 (106)

where

3m = h̄(ω2
x + ω2

y)

8µ

[
3 +

1

10

(
1

α
+

1

β

)]
ln

(
R⊥
ξ

)
for nearly disc-shaped TF condensate.

(107)

If 3 < 3m = |ωa(0)|, the frequency is negative, and the mode is therefore unstable. This
value generalizes that found previously in equations (51) and (91) for the angular velocity at
which a straight vortex at the centre of a thin disc-shaped condensate becomes metastable, now
including the first corrections of order α−1 and β−1.

This result (107) remains approximately correct for a spherical condensate (α = β = 1),
which is the geometry used in recent JILA experiments [37]. Since 3m is numerically equal to
the frequency |ωa| of the one anomalous mode in the nonrotating condensate, equation (107)
also yields the precession frequency of a nearly straight vortex moving anticlockwise around the
centre of the condensate [80,85]. In particular, we find |ωa|/ω = 8

5 (ξ/R) ln(1.96R/ξ), where
ω is the isotropic trap frequency and the additional numerical factor 1.96 in the logarithm is the
next correction to the logarithmic accuracy (see, for example, reference [129]). With the JILA
parameters R ≈ 22 µm and ξ ≈ 0.67 µm, this expression yields |ωa|/2π = 1.58 ± 0.16 Hz,
where the uncertainty reflects the omission of corrections of relative order (ξ/R) ln(R/ξ) ≈
0.1. For comparison, the experimental value 1.8 ± 0.1 Hz for the precession frequency is
somewhat larger, but the theoretical prediction is sensitive to the number N of atoms in the
condensate and, as seen in equation (87), to the radial displacement of the vortex [85, 125].

The situation is very different for an elongated cigar-shaped condensate with Rz � R⊥,
where the solutions for the precessing normal-mode amplitudes grow exponentially with |z|. In
contrast to the two-dimensional case, such solutions are now possible because the condensate
is bounded along the z-axis. In the simplest case of an axisymmetric trap withRx = Ry = R⊥,
the mode with no nodes has a frequency ωa(3) = −3m + 3. Although this expression has
the same form as equation (106) for a disc-shaped condensate, the physical behaviour is very
different because the metastable angular velocity

3m = h̄

2MR2
⊥

R2
z

R2
⊥

ln

(
R⊥
ξ

)
≈ R2

z

5R2
⊥
3c (108)

becomes large for a highly elongated TF condensate. For the ENS geometry [34, 36], where
ω⊥/ωz ≈ Rz/R⊥ ≈ 14.4, equation (108) is far too large to fit the observations and can even
exceed the limit of rotational mechanical stability 3 = ω⊥ that occurs when the centrifugal
force cancels the confining trap potential.
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For a harmonic transverse external potential ∝r2
⊥, the method of matched asymptotic

expansions is valid if the vortex displacement r from the z-axis satisfies the condition r � ξ

(in the vicinity of the vortex core, the trap potential is approximated as a linear function). For a
long cigar-shaped condensate, the solution for the lowest mode has the form r = r0 cosh(z/α),
where r0 is the vortex displacement at z = 0. The condition of small vortex displacement
implies that r0 cosh(1/α) � R⊥, while the condition of small vortex curvature kξ � 1
implies that r0ξ cosh(1/α)/R2

zα
2 � 1. A combination of these conditions gives the following

restriction on the validity of equation (108): exp(1/α) � 2R⊥/ξ . For the ENS experiments,
1/α ≈ 200 and R⊥/ξ ≈ 21, so this condition fails.

As mentioned in section 4.4.4, the frequency for the onset of metastability 3m in
equation (108) can be larger than the thermodynamic critical angular velocity 3c in
equation (43). This behaviour is readily understandable because3c characterizes the energy of
a straight vortex along the symmetry axis (compare equation (42)), whereas the most unstable
normal-mode amplitude explicitly involves the small-amplitude distortion with no nodes. For
a very elongated condensate, the resulting vortex dynamics is particularly sensitive to the large
curvature of the condensate surface near the two ends of the symmetry axis (in contrast to the
small curvature for the flattened condensate).

Recent numerical studies [85, 118] of the most negative anomalous modes for a trap
geometry corresponding to the ENS experiments [34, 36] yield values of 3m that are
significantly smaller than the prediction given in equation (108). Reference [118] mentions
the possible failure of the TF picture in the transverse direction, even though the conventional
TF ratio R⊥/ξ is large, at least near the plane z = 0. As confirmation of the validity of the
GP equation and the particular role of the anomalous modes, the numerically determined [85]
3m/2π ≈ 0.73ν⊥ ≈ 124 Hz agrees well with the ENS value 3obs/2π ≈ 120 Hz for the
appearance of the first vortex.

For an axisymmetric trap (α = β), we can seek normal-mode solutions in the form
x(z) = y(z), leaving a single equation

[
ω̃(3̃) − 3̃

]
(1 − z2)x = − d

dz

[
α(1 − z2)

dx

dz

]
− x (109)

that depends only on the Doppler-shifted frequency ω̃(3̃) − 3̃ = ω̃(0). The eigenfunctions
are even or odd functions of z and can be classified according to the number of times the vortex
crosses the z-axis (the number of nodes), m = 0, 1, 2, . . .. Figure 12 shows the dimensionless
frequency ω̃(0) as a function of the trap anisotropy α = R2

⊥/R
2
z for m = 0, 1, and 2. In

agreement with the analytical results, a disc-shaped trap (α � 1) has only a single mode with
negative frequency ω̃0. For 1

3 < α < 1, there are two such modes (m = 0 and m = 1) and
successively more negative-frequency modes appear for smaller α. As noted previously, the
critical frequency 3̃m for metastability is |ω̃0|, which is smaller than 3̃c for disc-shaped traps
and for moderately elongated traps. Our numerical analysis for the present TF limit predicts
that 3̃m � 3̃c for α = R2

⊥/R
2
z � 0.26, which is somewhat larger than the value 0.2 implied

by the limiting expression in equation (108).
As in the case of a two-dimensional condensate, the frequency of the anomalous modes

can become imaginary for an anisotropic trap with Rx 	= Ry [119]. To demonstrate that result,
let us consider equations (100) and (101) for a trap close to axisymmetric with |α − β| � α.
The eigenfrequencies of the axisymmetric trap (with α = β = α0 = 1

2 (α + β)) are real and
have the form ω̃m(3̃) = ω̃m + 3̃, where m = 0, 1, 2, . . . denotes the various modes. For an
anomalous mode, the frequency ω̃m is negative, and the eigenfrequency ω̃m(3̃) is equal to zero
if the trap rotates with the angular velocity 3̃ = |ω̃m|. One can rewrite equations (100) and
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Figure 12. Dimensionless frequencies ω̃ ≡ ω̃(3 = 0) for the first three normal modes of a vortex
in an axisymmetric trap as a function of the axial anisotropy α = R2

⊥/R
2
z . The lower horizontal

line is the negative of the dimensionless thermodynamic critical angular velocity 3̃c = 5. Note
that |ω̃0| > 3̃c for α < 0.26.

(101) as follows:

ω̃(1 − z2)

(
x

y

)
= Ĥ0

(
x

y

)
+ V̂

(
x

y

)
(110)

where

Ĥ0 = {−2 − α0 ∂z[(1 − z2) ∂z] + (1 − z2)|ω̃m|}(
0 1
1 0

)

V̂ = −∂z[(1 − z2) ∂z]

(
0 β − α0

α − α0 0

)
+ (1 − z2)(3̃ − |ω̃m|)

(
0 1
1 0

)
.

Considering V̂ as a perturbation, we obtain the following expression for the normal-mode
frequency in a nonaxisymmetric trap:

ω̃ = ±
√
(|ω̃m| − |α − β|Im − 3̃)(|ω̃m| + |α − β|Im − 3̃) (111)

where

Im =
(∫ 1

−1
dz (1 − z2)(∂zxm)

2

)/(
2

∫ 1

−1
(1 − z2)x2

m dz

)
> 0 (112)

and xm = xm(z) describes the shape of the mth vortex mode. As we increase the trap rotation,
the eigenfrequency is real for 3̃ < |ω̃m|−Im|α−β| . Then, when |3̃−|ω̃m|| < Im|α−β|, the
frequency becomes imaginary. Finally, if 3̃ > |ω̃m|+ Im|α−β|, the frequency again becomes
real. For a given trap anisotropy (given α and β), one or several normal modes of the vortex
have negative frequency. The trap rotation 3̃ shifts the frequencies in the positive direction.
When the frequency of a normal mode in the rotating frame approaches zero, the frequency
becomes imaginary until |ω̃m + 3̃| = Im|α − β|. If we increase the trap rotation further, the
frequency (in the rotating frame) becomes positive.

For a disk-shaped condensate (with α0 � 1) there is only one anomalous mode, with
xa = ya = ε(1 + z2/2α0) and ω̃a = −3 − 1

5α
−1
0 . For a nonaxisymmetric rotating trap, the
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frequency of this mode becomes imaginary in the interval |3̃ − |ω̃a|| < ε|ω̃a|/(15α0), where
ε = |Rx − Ry |/Rx is the trap anisotropy in the transverse direction. Thus for a disc-shaped
condensate (with α0 � 1), the solution has an imaginary frequency in a relatively narrow
range of trap rotation.

For a cigar-shaped condensate, several normal modes have negative frequencies. In the
limitα0 � 1, the solution for the lowest anomalous mode has the form xa = ya = ε cosh(z/α0)

and ω̃a ≈ −1/α0. Consequently, the frequency is imaginary if |3̃ − |ω̃a|| < ε|ω̃a|, i.e. over
a relatively wide range of trap rotation. If the transverse trap anisotropy is large enough,
several different anomalous normal modes can have imaginary frequencies in the same range
of angular velocities. In this case a vortex along the z-axis is stable (there are no normal modes
with imaginary frequencies) only if the trap rotates slightly faster than the frequency of the
lowest anomalous mode. This behaviour could be relevant to ENS experiments.

5.4.3. The energy of a curved trapped vortex. Consider a trap that contains a singly quantized
vortex and rotates with angular velocity3 about the z-axis. At zero temperature, equation (93)
governs the dynamics of each element of the line:

V (r) = − h̄

2M

(
t̂ × ∇Vtr(r)

g|�TF |2 + kb̂

)
ln

(
ξ

√
1

R2
⊥

+
k2

8

)
+

2 ∇Vtr(r) × Ω
7⊥Vtr(r)

(113)

where r = (x(z), y(z), z) determines the shape of the line. Correspondingly, equation (40)
serves as the energy functional

E(�) =
∫

dV

(
h̄2

2M
|∇�|2 + Vtr|�|2 + 1

2g|�|4 + �∗ ih̄3
∂�

∂φ

)
(114)

in the rotating frame (for simplicity, we now use E instead of E′). In section 3.2, a physically
motivated wave function served to evaluate equation (114), yielding equation (49) for the
energy of a straight vortex displaced laterally from the trap axis. As noted previously, the
assumption of a straight vortex restricted the analysis to a disk-shaped condensate.

To find the energy of a curved vortex, one can first find the condensate wave function
� and then substitute it into the functional (114). For a curved vortex line, however, this
approach is complicated. Instead, one can use equation (113) to find the vortex energy directly.
As we know, the stationary Gross–Pitaevskii equation can be obtained by varying the energy
functional (114). The dynamical equation (113) is, in fact, the time dependent Gross–Pitaevskii
equation, written in a way suitable to describe the vortex motion. Consequently, if we formally
put V (r) = 0 in equation (113) (i.e. omit the time derivatives), then the resulting stationary
equation must be an extremum of the energy functional EV associated with the presence of the
vortex and considered as a functional of the vortex shapeEV = EV (x(z), y(z)). An equivalent
energy functional has the form (in the TF limit)

EV (x(z), y(z)) = πh̄2

M

∫
dz

[
|�TF |2

√
1 + (x ′)2 + (y ′)2 ln

(
R⊥
ξ

)
− 2M

h̄

g|�TF |43
7⊥Vtr

]
(115)

where the prime denotes the derivative with respect to z. Variation of equation (115) with
respect to x(z) and y(z) gives equation (113) with V (r) = 0, apart from terms of higher order
xx ′2, xy ′2, . . .. Hence equation (115) provides an energy functional for the small deformations
of a vortex about a straight configuration along the z-axis (when the fourth-order terms in the
displacement can be omitted) or for arbitrary displacements of a straight vortex. Note that
equation (115) involves only a one-dimensional line integral instead of the three-dimensional
expression in equation (114), which is a significant simplification. In scaled dimensionless
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units x → Rxx, etc, this energy functional becomes

EV (x(z), y(z)) = 2πµRzξ
2n(0)

∫
dz

[
(1 − x2 − y2 − z2)

√
1 + α(x ′)2 + β(y ′)2 ln

(
R⊥
ξ

)

− 2µ3(1 − x2 − y2 − z2)2

h̄(ω2
x + ω2

y)

]
(116)

where n(0) = µ/g is the density at the centre of the vortex-free condensate, ξ 2 = h̄2/2Mµ,
and the integration is restricted to the region 1 − x2 − y2 − z2 � 0. Using equation (116) one
can obtain a simple expression for the angular momentum of the condensate in the presence
of a curved vortex line:

Lz = −∂EV

∂3
= 15

8
h̄N

RxRy

R2
x + R2

y

∫
dz (1 − x2 − y2 − z2)2 (117)

where N = 8πRxRyRzn(0)/15 is the total number of particles in the condensate.
The integration in equation (116) is particularly easy for a straight vortex and readily

reproduces equation (49). An expansion for small lateral displacements yields equations (51)
and (52) for 3m and 3c for a disc-shaped TF condensate. In the more general case of arbitrary
small displacements, equation (116) can be expanded to second order in the amplitudes x and
y and their derivatives. Use of the dynamical equations that lead to (100) and (101) gives the
simple expression

EV (x(z), y(z)) = 8π

3
µRzξ

2n(0)

[
ln

(
R⊥
ξ

)
− 8

5

µ3

h̄(ω2
x + ω2

y)

]

+
15

8
h̄N

∫ 1

−1
dz (1 − z2)(xẏ − yẋ) (118)

The first term of equation (118) reproduces the value of 3c for a general TF condensate, and
the second term becomes a sum over all normal modes of the form (99)

EV (x(z), y(z)) = 8π

3
µRzξ

2n(0)

[
ln

(
R⊥
ξ

)
− 8

5

µ3

h̄(ω2
x + ω2

y)

]

+
15

8
N

∑
n

h̄ωn(3)

∫ 1

−1
dz (1 − z2)xn(z)yn(z) (119)

where the orthogonality condition equation (104) eliminates the cross terms for different
normal modes. If any one of the normal modes is anomalous (i.e. has negative frequency),
then the system is unstable with respect to excitation of that mode. This analysis confirms
the interpretation of 3m as the applied rotation frequency at which the frequency of the last
anomalous mode vanishes in the rotating frame. At this applied 3 the location of the vortex
line along the z-axis becomes a local minimum of energy. Note that this conclusion is wholly
equivalent to that in equation (60) based on the Bogoliubov quasiparticles.

One should note that for a cigar-shaped condensate with Rz � 2R⊥, there is an interval
of angular velocity of trap rotation when 3c < 3 < 3m. In this interval, the frequency of (at
least) the lowest vortex mode remains negative, but penetration of a vortex into the condensate
is energetically favourable. Under such a condition, the vortex line can lower its energy by
undergoing a finite-amplitude deformation, and the ground state of the system corresponds to
a curved vortex line displaced from the trap axis (see also [118]).
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5.4.4. Precession and tilting of a straight vortex line in a nearly spherical TF condensate.
The preceding discussion of vortex dynamics in a three-dimensional confined condensate has
focused on the small-amplitude displacements from equilibrium. In the special case of a
spherical trap, however, the presence of a zero-frequency precessing mode (section 5.4.2)
allows a more general analysis of the nonlinear dynamics, which is directly relevant to recent
JILA experiments on the evolution of an initially straight vortex in a nearly spherical TF
condensate [94]. In practice, the trap deviates slightly from spherical with Rx 	= Ry 	= Rz.

For a spherical condensate, a motionless straight singly quantized vortex through the centre
of a trap satisfies the general equation (93) for the velocity of a vortex line because the axis of
the vortex t̂ lies along ∇Vtr . Let

x = γxs y = γys z = γzs (120)

specify the axis of the vortex line, where s is the arc length measured from the trap centre and
(γx , γy , γz) are the direction cosines relative to the principal axes of the anisotropic trap. For
small anisotropy, the vortex remains approximately straight, but the direction cosines become
time dependent. To first order in the anisotropy, the curvature k can be omitted in equation (93)
and |�TF |2 can be approximated by the TF density for a spherical vortex-free condensate with
TF radius R. Standard perturbation theory yields the nonlinear dynamical equations

γ̇x = 5h̄

4µ
ln

(
R

ξ

)
(ω2

z − ω2
y)γyγz (121)

γ̇y = 5h̄

4µ
ln

(
R

ξ

)
(ω2

x − ω2
z )γzγx (122)

γ̇z = 5h̄

4µ
ln

(
R

ξ

)
(ω2

y − ω2
x)γxγy. (123)

This set of equations is familiar in classical mechanics as Euler’s equations for the torque-
free motion of a rigid body [133–135], where they describe the motion of the angular velocity
vector as seen in the body-fixed frame. In the present context, this set of three coupled nonlinear
equations has two first integrals:

γ 2
x + γ 2

y + γ 2
z = 1 (124)

which verifies that the first-order anisotropy simply rotates the vortex axis; and

ω2
xγ

2
x + ω2

yγ
2
y + ω2

zγ
2
z = constant (125)

which is the condition of energy conservation.
The simplest situation is an axisymmetric trap with ωx = ωy = ω⊥, in which case the

vortex line precesses uniformly about the z-axis (the symmetry axis) at a fixed polar angle
arccos γz(0) at a frequency [119]

ω = 5h̄(ω2
z − ω2

⊥)
4µ

γz(0) ln

(
1.96R

ξ

)
= 5h̄

2M

(
1

R2
z

− 1

R2
⊥

)
γz(0) ln

(
1.96R

ξ

)
(126)

where the numerical factor 1.96 inside the logarithm is the same as that discussed below
equation (107). For positive (negative) ω, the precession is anticlockwise (clockwise). Recent
experiments at JILA have observed two recurrences of such precessional motion in a slightly
flattened trap with ωz − ω⊥ ≈ 0.1ωz and a polar tipping angle of 45◦ from the z-axis. In this
case, equation (126) predicts ω/2π ≈ 0.33 ± 0.03 Hz, in an agreement with the observed
value 0.25 ± 0.02 Hz [94].

More generally, for an anisotropic trap (with ωx > ωy > ωz), the vortex executes closed
trajectories (see figure 13). For initial positions close to the x- and z-axes (the smallest
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and largest TF radii), the motion is ‘stable’, remaining nearby, but small-amplitude motion
about an initial position close to the y-axis (the intermediate TF radius) yields imaginary
frequencies. Thus such trajectories deviate far from the initial neighbourhood, even though
they eventually return (this periodic behaviour is familiar from the corresponding solutions
of the Euler equations [133–135]). Reference [119] gives explicit solutions for the resulting
dynamical motion of a nearly straight vortex in a totally anisotropic trap.

X

Y

Z

O .

Figure 13. Typical trajectories of the end of a straight vortex line (that passes through the condensate
centre) during its motion in a slightly nonspherical trap with Rx < Ry < Rz.

6. The effect of thermal quasiparticles, vortex lifetime, and dissipation

In previous sections we considered a Bose condensate within the Bogoliubov approximation,
which omits the effect of thermal quasiparticles. At finite temperatures, however, these
noncondensate atoms can modify the frequencies of the vortex modes and dissipate energy.

6.1. Bogoliubov and Hartree–Fock–Bogoliubov theories

Let us consider a condensate in thermal equilibrium at temperature T . Within the Hartree–
Fock–Bogoliubov (HFB) theory, the condensate wave function � satisfies the following
generalized Gross–Pitaevskii equation (in a frame rotating with the angular velocity3ẑ) [136]:(

− h̄2

2M
∇2 + Vtr + g|�|2 + 2gρ(r) − µ(3) + ih̄3 ∂φ

)
� + g7(r)�∗ = 0 (127)

where φ is the azimuthal angle in cylindrical polar coordinates, ρ(r) is the density of the
noncondensed gas, and 7(r) is the anomalous average of two Bose field operators describing
the noncondensate (as in section 4.1, ψ̂ = � + φ̂ is the quantum field operator, with 7 = 〈φ̂φ̂〉
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and ρ = 〈φ̂†φ̂〉). The collective excitation energies E of the system are the eigenvalues of the
generalized Bogoliubov equations for the coupled amplitudes u(r) and v(r):(

− h̄2

2M
∇2 + Vtr + 2g|�|2 + 2gρ(r) − µ(3)

) (
u

v

)

+

(
ih̄3 ∂φ −g

[
7(r) + �2

]
−g

[
7∗(r) + �∗2

] −ih̄3 ∂φ

) (
u

v

)
= E

(
u

−v

)
. (128)

Equation (128) is valid at least for temperatures much less than the chemical potential µ when
resonant contributions (the so-called Szepfalusy–Kondor processes) to the self-energies are
not substantial [137]. In addition, we have self-consistency relations for the noncondensate
density ρ(r):

ρ(r) =
∑
n

[ |un(r)|2 + |vn(r)|2
exp(En/kBT ) − 1

+ |vn(r)|2
]

(129)

and for the anomalous average 7(r):

7(r) = −
∑
n

[
2un(r)v∗

n(r)

exp(En/kBT ) − 1
+ un(r)v

∗
n(r)

]
(130)

where n denotes quantum numbers specifying the excited states with energies En (n =
0, 1, 2, . . .). The eigenfunctions un(r) and vm(r) satisfy the normalization condition:∫ [

u∗
n(r)um(r) − v∗

n(r)vm(r)
]

dr = δnm. (131)

Equations (127)–(131) constitute a complete set of the self-consistent equations for the
HFB theory. Within this theory, the quasiparticle eigenvalues En in equations (128)–(130)
must be positive because the condensate is defined to have zero energy. Thus a negative
eigenvalue means a failure of the self-consistency and the associated thermal equilibrium of
the system. If ρ(r) and 7(r) are set to zero, we recover the Bogoliubov theory. If we set
only 7(r) = 0, we obtain the Popov approximation. For a vortex-free condensate in the low-
temperature limit, the Popov and Bogoliubov theories give identical excitation spectra [140].
The excitation spectrum in the HFB theory has an unphysical gap because it does not treat
all condensate–condensate interactions consistently [136]. Gapless modifications of the HFB
theory, the so-called G1 and G2 approximations, are discussed in [141, 142]. Normally, the
zero-temperature limit of the Popov, G1, and G2 theories should be the Bogoliubov theory
(which does not take into account noncondensate atoms). For a nonrotating condensate with
a vortex, however, this is not the case because the vortex is unstable.

Within the Bogoliubov theory, an isolated vortex in a nonrotating harmonic trap has at
least one normal mode with negative energy. Let us apply the HFB theory for a condensate
with a vortex. To find a self-consistent solution for the lowest eigenvalue at low temperatures,
one can use a perturbation method analogous to those developed in reference [116]. We
consider a condensate in an axisymmetric trap that rotates with an angular velocity 3 around
the z-axis. We assume that the condensate contains a singly quantized vortex along the z-
axis. For simplicity we consider a disk-shaped condensate, so one can omit vortex curvature in
investigating the lowest normal mode. The condensate wave function has the form� = eiφ|�|,
with 7 = e2iφ|7|, and we can rewrite the generalized Bogoliubov equations as

Ĥ0

(
u

v

)
+ V̂

(
u

v

)
= E

(
u

−v

)
(132)

where

Ĥ0 =
(

− h̄2

2M
∇2 +

1

2
Mω2

zz
2 + 2g|�0|2 − µ(3)

) (
1 0
0 1

)
+

(
ih̄3 ∂φ −g�0

2

−g�∗
0

2 −ih̄3 ∂φ

)
(133)
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and V̂ includes the remaining part of equation (128). Here, �0 is the wave function for an
unbounded condensate in the xy-plane with the same chemical potential; its excitations obey
the equation

Ĥ0

(
u0

v0

)
= E

(
u0

−v0

)
. (134)

Equation (134) has an exact pair of solutions (see reference [116]) with positive norm and
energy

E0 = h̄3. (135)

Let us now make the following assumption: E0 � kBT � E1, E2, . . ., where E0 is the
energy of the lowest normal mode, which can depend on T . Then the term with n = 0 gives
the main contribution in the sum in equations (129), (130), and we obtain

ρ(r) ≈ kBT

E0

[|u0(r)|2 + |v0(r)|2
]

(136)

7(r) ≈ −2kBT

E0
u0(r)v

∗
0(r). (137)

For a singly quantized vortex one can derive the expression

ρ(r⊥ = 0, z) ≈ 1.44µkBT

E0I 2gξ 2

(
1 − z2

R2
z

)
(138)

where

I 2 ≈ 16
√

2πµ3/2/3gωz

√
M

is a normalization integral, and

|7(r⊥ = 0, z)| ≈ 0. (139)

In first-order perturbation theory, the lowest energy eigenvalue E0 is defined by the
equation

E0 = h̄3 + Ea

(
γ kBT

E0
− 1

)
(140)

where Ea = (3h̄2ω2
⊥/4µ) ln(R⊥/ξ) and γ = 0.077R4

⊥/Nξ 4 are positive with N =
8
15πn(0)RzR

2
⊥ the total number of particles in the condensate, and µ can be taken as the

chemical potential for a nonrotating trap. Equation (140) has two solutions, one with positive
energy and one with negative energy that reproduces the previous anomalous mode with
E0 = h̄3 − Ea as T → 0. The negative solution can be formally omitted, satisfying the
requirement of self-consistency. The positive solution has the form

E0 = 1

2

[√
(Ea − h̄3)2 + 4Eaγ kBT − (Ea − h̄3)

]
. (141)

For a nonrotating trap (3 = 0), we find

E0 = Ea

2

[√
1 +

4γ kBT

Ea

− 1

]
. (142)

If T → 0, we obtain E0 ≈ γ kBT , so E0 is proportional to T in the low-temperature limit. In
fact our method generalizes the Beliaev theory [138] for the vortex state. Recently Pitaevskii
and Stringari actually generalized the Beliaev approach (in the density-phase representation)
for the trapped Thomas–Fermi condensate [139].
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Virtanen et al made numerical calculations of vortex normal modes at finite T within
the Popov, G1, and G2 approximations and demonstrated that for a singly quantized vortex
there is a self-consistent solution with only positive frequencies in the limit T → 0 [143].
Their lowest-energy solution corresponds to our equation (142). The vortex mode (142)
arises from the presence of quasiparticles (an external pinning potential can also result in such
motion [144]). At low temperatures, the quasiparticles are mostly localized in the vortex-
core region and provide an extra repulsive potential (the term 2gρ(r) in equation (128)) that
affects the elementary excitations. At T = 0, the residual localized noncondensate fraction
arises from the interaction between particles; this result follows from equation (138) if we
take E0 ∝ T at low temperatures. The additional potential has a peak at the vortex core and
the vortex line precesses around the quasiparticle potential centre with a positive excitation
energy.

However, this does not mean that quasiparticles stabilize the vortex in a trap. The physics
of the problem is the following. At any moment during the vortex motion, quasiparticles fill
the vortex core (the relaxation time of quasiparticles is much less than the period of the vortex
precession). The vortex line participates in two motions: first, the vortex precesses around the
trap centre with the frequency h̄ωa = −Ea < 0 (3 = 0). The trap potential is responsible for
this unstable mode. The quasiparticles are localized in the vortex core and move together with
the vortex; their presence simply slightly changes the chemical potential and slightly decreases
the normal-mode frequency. In secondary motion, the vortex line moves around the centre of
mass of the quasiparticles in a locally uniform condensate (in the xy-plane). The amplitude
of this motion is less than ξ and the frequency can be found from equation (142) in the limit
Rx,Ry → ∞ or Ea → 0:

h̄ωT =
√
γEakBT = 0.37

√
µkBT

n0Rzξ 2
ln

(
R⊥
ξ

)
(143)

where n0 is the density of the vortex-free condensate at the vortex location (in the plane z = 0).
For JILA parameters, γ ≈ 0.3, Ea ≈ 1.58 Hz; then for T = 0.8Tc we obtain ωT ≈ 13.6 Hz.
If this mode is thermally excited, its amplitude is given by

A = ξ

(
6a

Rz

)1/2(
kBT

h̄ωT

)1/2

(144)

where a is the scattering length. For parameters of JILA experiments, A = 0.16ξ . Taking
into account ωT ∝ √

T we obtain the following temperature dependence: A ∝ T 1/4. It is
interesting to note that the thermal mode (143) exists only in the 3D condensate; in the limit
Rz = ∞, both the mode frequency and the amplitude go to zero.

Recent measurements of the lowest vortex modes in the JILA experiments are in good
quantitative agreement with the solutions of the time-dependent Gross–Pitaevskii equation
[37,85,119]. The JILA experiments measure, in fact, not only the absolute value, but also the
sign of the lowest vortex mode. The negative value of the anomalous-mode frequency means
that the vortex precesses in the same direction as the superfluid flow around the vortex core,
which is seen in the experiments. An experimental observation of the thermal mode (143)
could be the next challenging problem for future investigations.

6.2. Dissipation and vortex lifetimes

It is valuable to consider dissipation and its role in the vortex lifetime. In a nonrotating
trap, the ground state of the system is a vortex-free condensate, so a condensate with a
vortex necessarily constitutes an excited state. In the absence of dissipation, however, the
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vortex line moves along trajectories of constant energy, remaining inside the condensate.
The condensate with a vortex will be unstable only if there is a mechanism to transfer the
system to the lower-energy vortex-free state [99]. The dissipative dynamics of a straight
vortex due to its interaction with the thermal cloud in a trapped Bose-condensed gas was
discussed by Fedichev and Shlyapnikov [145]. If the vortex line moves with respect to the
normal component, scattering of elementary excitations by the vortex produces a friction force,
like that in superfluid 4He (see chapter 3 of reference [14]). Such a mechanism can transfer
energy and momentum to the thermal cloud. The friction force F can be decomposed into
longitudinal and transverse components: F = −Du − D′(u × n̂), where u is the velocity
of the vortex line with respect to the normal component, D and D′ are the longitudinal and
transverse friction coefficients, respectively, and n̂ is a local tangent vector to the vortex line.
The transverse friction coefficient is independent of the scattering amplitude and is given by
the universal expression D′ = h̄ρn/M , where ρn is the local mass density of the normal
component [146]. The longitudinal friction coefficient depends on the scattering process. In
the limit kBT � µ, one can treat the elementary excitations as single particles, with the
result that ρn ≈ 0.1M5/2T 3/2/h̄3 and the longitudinal friction coefficient is proportional to
the temperature: D ≈ h̄n(na3)1/2T/µ, where n = |�|2 is the superfluid density for the
vortex-free condensate and a is the s-wave scattering length [145].

In the presence of dissipation, the vortex line moves toward a (local) minimum of the
energy. In a nonrotating condensate, an off-centre vortex precesses around the trap centre
and is expected to spiral out to the condensate boundary due to the dissipation. Once the
vortex reaches the boundary, it presumably decays by emitting phonons and single-particle
excitations. The radial motion of the vortex is governed by the longitudinal friction coefficient:
vr ≈ Du/h̄n ≈ (na3)1/2T u/µ � u, where u is the precessional speed. Using this expression,
one can estimate the characteristic lifetime of the vortex state [145]. At present, no dissipation
of the moving vortex has been observed in the JILA experiments [37]. The characteristic
decay time for the dissipative mechanism of Fedichev and Shlyapnikov in the JILA conditions
is significantly larger than the lifetime of the condensate. The temperature and density are too
small to see the dissipation.

Another factor that can influence the vortex lifetime is the possibility that a moving vortex
can emit phonons. It is known that a moving vortex in an infinite compressible fluid emits
phonons, leading to a slow loss of energy [147]. Recently, Lundh and Ao [125] studied the
radiation of sound from a moving vortex in an infinite, uniform system. A homogeneous
two-dimensional superfluid described by a nonlinear Schrödinger equation is equivalent to
(2 + 1)-dimensional electrodynamics, with vortices playing the role of charges and sound
corresponding to electromagnetic radiation [148, 149]. Thus, a vortex moving on a circular
trajectory in an infinite superfluid radiates sound waves, which are analogous to the cyclotron
radiation of an electrical charge moving along a circular orbit. The power radiated by a vortex
with unit length executing circular motion with frequency ω at a radius r0 is given by the
following Poynting vector [125]:

P = πQ2ω3r2
0

4c2
s

(145)

where Q = −h̄
√

2πn/M is the ‘vortex charge’, n is the uniform superfluid density, and
cs = √

µ/M is the velocity of sound.
In a nonuniform system, such as a two-dimensional or a disk-shaped axisymmetric trapped

condensate, an off-centre vortex performs a circular motion around the symmetry axis. If such
motion excites sound waves (radiates energy), the vortex will move outward toward regions
of lower potential energy, until it eventually escapes from the cloud. In a trapped condensate,
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however, the excitations all remain confined within the condensate, and no phonon radiation is
expected. In particular, the wavelength λ of sound that would be emitted exceeds the size R of
the condensate. Indeed, λ ∼ 2πcs/ω and the precession frequency of the straight vortex is of
the order ofω ∼ h̄ ln(R/ξ)/MR2; as a result, λ/R ∼ (R/ξ) ln(R/ξ) � 1, and the ‘cyclotron’
radiation is prohibited.

Finally, let us discuss how vortex generation affects the dissipation in superfluids.
One classic manifestation of superfluidity is that objects travelling below a critical velocity
propagate through a superfluid without dissipation. According to the Landau criterion [107],
which relies on the use of Galilean invariance, the critical velocity is vL = min[E(p)/p],
where E(p) is the energy of an elementary excitation with momentum p. For a homogeneous
Bose condensate, the Bogoliubov spectrum implies a Landau critical velocity equal to the
speed of sound vL = cs . The Landau critical velocity can usually be observed only by
moving microscopic particles through the superfluid. Such motion of microscopic impurities
through a trapped gaseous Bose condensate was studied recently in [150]. As the impurities
traverse the condensate, they dissipate energy by colliding with the stationary condensate
and radiating phonons. When the impurity velocity was reduced below the speed of sound,
however, the collision probability decreased dramatically, providing evidence for superfluidity
in the condensate.

If a macroscopic object moves through the condensate, dissipation can occur due to
turbulence and vortex formation in the superfluid, even if the object’s velocity is much lower
than the Landau critical velocity. Recently, dissipation in a Bose–Einstein condensed gas
was studied by moving a blue-detuned laser beam through the condensate [151, 152]. The
laser beam repels atoms from its focus and creates a moving macroscopic ‘hole’ in the
condensate. The observed heating of the system agrees with the prediction of dissipation
when the flow field becomes locally supersonic. Numerical simulations of the nonlinear
Schrödinger equation were used to study the flow field around an object moving through a
homogeneous condensate [28, 124, 153–155]. When the object moves faster than a critical
velocity vc, these studies show that the superfluid flow becomes unstable against the formation
of quantized vortex lines, which gives rise to a new dissipative regime. Pairs of vortices with
opposite circulation are generated at opposite sides of the object. The rate of the energy transfer
to the condensate by the moving object increases significantly above this critical velocity for
vortex formation. The heating rate can be expressed as dE/dt = Epairfs , where Epair is the
energy of a vortex pair and fs is the shedding frequency. The rate of vortex-pair shedding fs
is proportional to v − vc and thus larger when the speed of sound is lower.

Other simulations of the GP equation have demonstrated that vortex–antivortex pairs or
vortex half-rings can be generated by superflow around a stationary obstacle [28,154,156,157]
or through a small aperture [158]. One might expect similar excitations in a rotating condensate.
In addition, vortex half-rings can be nucleated at the condensate surface when the local
tangential velocity exceeds a critical value.

7. Vortex states in mixtures and spinor condensates

The advent of multicomponent BECs [159–161] has provided many new possibilities for
quantum-mechanical state engineering. Since there is no intrinsic difficulty in loading and
cooling more than one alkali element in the same trap, interpenetrating superfluids can now
be realized experimentally. Binary mixtures of condensates can consist of different alkalis, or
different isotopes, or different hyperfine states of the same alkali atom. Such binary mixtures
of Bose condensates have a great variety of ground states and vortex structures that are
experimentally accessible by varying the relative particle numbers of different alkalis [6].
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In particular, one can move continuously from regimes of interpenetrating superfluids to those
with separated phases. Many alkali binary mixtures contain a coexistence region, which is the
analogue of 3He–4He interpenetrating superfluids in ultralow-temperature physics [162].

7.1. Basic phenomena

Most experiments on Bose–Einstein condensation of atomic gases of 87Rb [1], 7Li [2], and
23Na [3] have used magnetic traps to condense atoms with a hyperfine spin F = 2 (or F = 1).
Such a condensate of spin-F bosons constitutes a spinor field

〈ψ̂m(r, t)〉 = ζm(r, t)�(r, t) (146)

where ψ̂m is the field operator, m labels Fz (where −F � m � F ), � is a scalar, and ζm is a
normalized spinor. In magnetic traps, the spins of the alkali atoms are frozen and maximally
aligned with the local magnetic field B [6]. As a result, ζ is given by the eigenvalue equation
B̂ · F ζ = Fζ , where F is the hyperfine spin operator and B̂ is a unit vector along B. The
dynamics of 〈ψ̂m〉 is therefore completely specified by the scalar field �, as in 4He. Thus,
even though the alkali atoms carry a spin, they behave in magnetic traps like scalar particles.
In contrast to the scalar field, however, the spinor field in equation (146) possesses a local
spin-gauge symmetry: a local gauge change exp[iχ(r, t)] of 〈ψ̂m〉 can be undone by a local
spin rotation exp[−i(χ/F )B̂(r, t) · F ]. Because of this symmetry, the effective Hamiltonian
of the scalar field� is not that of 4He, but that of a neutral superfluid in a velocity field us . The
velocity (or gauge field) us is a direct reflection of the spin-gauge symmetry and it is given by

us = − ih̄

M
ζ † ∇ζ. (147)

The velocity us can be calculated from the vorticity Ωs of us , which satisfies the Mermin–Ho
relation [163, 164],

Ωs = 1

2
∇ × us =

(
h̄

2M

)
εαβγ B̂α ∇B̂β × ∇B̂γ . (148)

Equation (148) shows that the spatial variations of B necessary to produce the trapping potential
will inevitably generate a nonvanishing superfluid velocity [6]

us = (2h̄/M)(1 − Bz/B)∇[arctan(By/Bx)].

If B0 = B0ẑ is the magnetic field at the centre of an axisymmetric harmonic trap and ω0 is the
maximum trap frequency, then the spin-gauge effect generates the following constant effective
‘rotation’ 3s around the ẑ-axis [6]:

Ωs

ω0
∼ −ẑ

h̄ω0

µBB0
(149)

where µB is the Bohr magneton. The superfluid velocity us splits the degeneracy of the
harmonic energy levels, breaks the inversion symmetry of the vortex-nucleation angular
velocity 3c, and can produce vortex ground states in the absence of external rotation if
3s > 3c [6]. In current experiments, the spin-gauge effect is small; for example, ifω0 = 10 Hz
and B0 = 1 G, we obtain 3s/ω0 ∼ 10−5. In oblate traps with ωz � ω⊥, however, the spin-
gauge effect can be significant (3s could be comparable withω⊥ for large enough values ofωz).

Recently, the MIT group has succeeded in trapping a 23Na Bose condensate by purely
optical means [160, 161]. In contrast to those in a magnetic trap, the spins of the alkali atoms
in such an optical trap are essentially free, so the spinor nature of the alkali Bose condensate
can be fully realized. Specifically, 23Na atoms possess a hyperfine spin, with F = 1 in the
lower multiplet. All three possible projections of the hyperfine spin can be optically trapped
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simultaneously. Thus the condensate is described by a spin-1 spinor. The internal vortex
structure of a trapped spin-1 BEC was investigated in reference [165]. Such vortices and their
stability were also discussed in [20,166]. In an optical trap, the ground state of spin-1 bosons
such as 23Na, 39K, and 87Rb can be either ferromagnetic or ‘polar’, depending on the scattering
lengths in different angular momentum channels [20]. The ferromagnetic state also has coreless
(or skyrmion) vortices, like textures found in superfluid 3He-A. Because of the wide range of
hyperfine spins of different alkalis, the optical trap has provided great opportunities to study
different spin textures in dilute quantum gases of atoms with large spins. This should be a
fruitful subject for future experiments.

Although most of the theoretical effort has concentrated on single-condensate systems,
the first experimental realization of BEC vortices was achieved with a two-species 87Rb
condensate [33], following the proposal of reference [167]. Several other proposals have been
made for the dynamical production of a vortex using the internal structure of atoms [168–171].
The spin-exchange scattering rate is suppressed for 87Rb, which makes possible the study of
magnetically trapped multicomponent condensates of these atoms. The two species correspond
to two different hyperfine energy levels of 87Rb, denoted as |1〉 and |2〉; they are separated
by the ground-state hyperfine splitting. Since the scattering lengths are different, the two
states are not equivalent. Typically, the |1〉 ≡ |F = 1,m = −1〉 state is trapped and cooled
to the condensation point. Once the atoms in |1〉 have formed the condensate ground state,
a two-photon microwave field is applied, inducing transitions between the |1〉 state and the
|2〉 ≡ |F = 2,m = 1〉 state [33]. As a result, the atoms cycle coherently between the two
hyperfine levels with an effective Rabi frequency 3eff [172]. Two parameters characterize the
coupling: the detuning and the power. The detuning δ denotes the mismatch of the frequency
of the coupling electromagnetic field to the frequency difference between the two internal
atomic states. The power is characterized by the Rabi frequency 3; it is the rate at which
the population would oscillate between the two states if δ were zero. When δ is larger than
3, the population oscillations occur at the effective Rabi frequency 3eff =

√
32 + δ2, which

obviously exceeds 3.
In principle, both states could be cooled simultaneously, with the result that the condensate

would form in a mixture of states. In practice, however, the typical lifetime of atoms in the
|2〉 state is about 1 s due to inelastic spin-exchange collisions, which makes it very difficult to
achieve runaway evaporation for this state. In contrast, atoms in the |1〉 state have a much longer
lifetime of about 75 s [33]. The advantage of using the |F = 1,m = −1〉 and |F = 2,m = 1〉
states is that their magnetic moments are nearly the same, so they can be simultaneously
confined in identical and fully overlapping magnetic trap potentials. Unlike the more familiar
single-component superfluids (see the discussion after equation (153)), where the topological
constraints make it difficult to implant a vortex within an existing condensate in a controlled
manner, the coupled two-component condensate has a different order parameter and hence
different topological constraints. Indeed, the coupled two-component system allows the direct
creation of a |2〉 (or |1〉) state wave function having a wide variety of shapes out of a |1〉 (or
|2〉) ground-state wave function [167].

For example, to form a vortex in the two-component system, one should impose a
perturbation Ĥ1 that couples the ground state of the system to the vortex state (i.e. the matrix
element of the perturbation operator connecting these two states must be nonzero). The time-
dependent GP equation describing the driven, two-component condensate is [167]

ih̄
∂

∂t

(
�1

�2

)
=

(
Ĥ0 + VH1 + Ĥ1 + h̄δ/2 h̄3/2

h̄3/2 Ĥ0 + VH2 − Ĥ1 − h̄δ/2

) (
�1

�2

)
(150)
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where

VH1 = U11|�1|2 + U12|�2|2 and VH2 = U21|�1|2 + U22|�2|2
and where Ĥ0 = −(h̄2∇2/2M) + 1

2Mω2
0(r

2
⊥ + z2) for a spherical trap, M is the atomic mass,

ω0 is the trap frequency, Uij = 4πh̄2aij /M , with aij the s-wave scattering lengths for binary
collisions between constituents i and j . Williams and Holland considered the perturbation Ĥ1

in the following form [167]:

Ĥ1 = κ[f (r) cos(ωt) + g(r) sin(ωt)] (151)

where κ is a coupling coefficient and f (r) and g(r) are prefactors that depend on r. The
explicit form of Ĥ1 determines the symmetry of the quantum state being prepared, so general
f and g can serve to prepare a macroscopic quantum state of arbitrary symmetry. To create
a vortex state with one unit of angular momentum, one can take κ = Mω2

0ρ0, f (r) = x,
and g(r) = y in cartesian coordinates. This form of perturbation effectively confines the two
hyperfine states in separate axially symmetric harmonic oscillator potentials with the same
trap frequency ω0. The trap centres are spatially offset in the xy-plane by a distance ρ0 (from
the centre) and rotate about the symmetry axis at an angular velocity ω. To achieve this
configuration experimentally, in reference [33] a laser beam was shone into the trap along
the ẑ-axis, so the cloud sits in the middle of the Gaussian beam waist where the gradient of
the beam intensity is approximately linear (see figure 14(a)). This arrangement produces a
constant force on the atoms. If the frequency of the laser beam is tuned between the two
hyperfine states, the optical dipole force acts in opposite directions for each state, displacing
the trap centres for each state. When the beam rotates around the condensate at the angular
velocity ω, we obtain the desired result.

To create a vortex, the angular velocity ω should be close to the value at which a resonant
transfer of population from the nonrotating condensate into the vortex state takes place.
Consider the frame co-rotating with the trap centres at an angular frequency ω. In this frame,
the energy of the vortex with one unit of angular momentum is shifted by h̄ω relative to its value
in the laboratory frame. When this energy shift compensates for both the energy mismatch h̄δ
of the internal coupling field and the small chemical potential difference between the vortex
and the nonrotating condensate, resonant transfer of population takes place (see figure 14(b)).
It is obvious that if we change the sign of the detuning δ while keeping the trap rotation fixed, a

BEC

Laser
profile

Laser rotation, ω

(a) (b)�1>

�2> l =1

ω
l =0

Two-photon
microwave

Figure 14. (a) A basic schematic illustration of the technique used to create a vortex. An off-
resonant laser provides a rotating force on the atoms across the condensate as a microwave drive
of detuning δ is applied. (b) A level diagram showing the microwave transition to very near the
|2〉 state, and the modulation due to the laser rotation frequency that couples only to the angular
momentum l = 1 state when ω ≈ δ. (Taken from reference [33].)
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vortex will be created with opposite circulation. Vortices with opposite circulations experience
opposite energy shifts in transforming to the rotating frame and therefore require opposite signs
of detuning in order to achieve the resonant coupling.

In practice, ω � ω0 and δ � 3. The first inequality allows the vortex to be generated
rapidly. The main problem with a slow drive (when ω ≈ ω0) is that the timescale for coupling
to the vortex state is very long, of the order of seconds in a trap with ω0 = 10 Hz. The
weak-coupling limit, given by the second inequality, allows the resonance condition ω ≈ δ to
select energetically the desired state with high fidelity.

Figure 15 shows the results of a numerical integration of equation (150) in two dimensions
(ωz = 0), with the condensate initially in the nonrotating ground state and in the internal state
|1〉 [167]. The coupling drive is turned on at time t = 0, and is turned off at time t = ts by
setting both 3 and ρ0 to zero. The top and the bottom graphs show the fractional population
and the angular momentum per atom of the |2〉 state as a function of time.

The small-amplitude rapid oscillations in the top graph correspond to the cycling between
internal levels at the effective Rabi frequency3eff . The gradual rise of this line reflects coupling
from the ground state to the vortex mode caused by the drive Ĥ1 in equation (150). Once during
each Rabi cycle, the angular momentum approaches unity (bottom graph), and, at that time,
the |2〉 state wave function approaches a pure vortex mode. By turning off the coupling at a
precise time t = ts in a given Rabi cycle, the |2〉 state can be prepared to have unit angular
momentum. The maximum possible population transfer to the vortex state using this scheme
obeys a Lorentzian response curve as ω is varied near 3eff , exhibiting a narrow resonance.

Figure 15. Dynamical evolution that can create a vortex. The top graph shows the fractional
population of atoms in the |2〉 internal state. The bottom graph shows the angular momentum of
the |2〉 state, in units of Planck’s constant h̄. The inset shows the amplitude of population transfer
to the vortex as a function of the trap rotation frequency ω, with 7 = 3eff − ω. The various
parameters used in the calculation are: ω0 = 10 Hz, δ = 200 Hz, ω = 205.4 Hz, N = 8 × 105

atoms; M is the mass of the 87Rb atom; for simulations, the values of scattering lengths are taken
to be a11 = a22 = a12 = 5.5 nm, and for t < ts , 3 = 50 Hz and ρ0 = 1.7 µm. Reprinted by
permission from Nature 1999 401 568 ©1999 Macmillan Magazines Ltd.
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This situation is shown in the inset of figure 15, where 7 = 3eff − ω.
In an experiment, it is possible put the initial condensate into either the |1〉 or |2〉 state,

and then make a vortex in the |2〉 or |1〉 state, respectively. The evolution of the vortex can be
watched over timescales from milliseconds to seconds. In reference [33], the vortex was found
to be stable in only one of the two possible configurations corresponding to the vortex in the
|1〉 state, which is the one with the larger scattering length (with the |2〉 state in the core). The
other possibility (the vortex in the |2〉 state, which is the one with the lowest self-interaction
coefficient) produces an instability.

7.2. Stability theory

We use the following notation for the states: (1, 0) for the state with the vortex in |1〉 and (0, 1)
for the state with the vortex in |2〉. In the JILA experiment [33], the number of particles is
the same for each component (N1 = N2 = N ) but, in general, one could consider any ratio
between the populations of the different levels. The scattering lengths for binary collisions
depend on the internal hyperfine level of the atom. For 87Rb the values of scattering lengths
are nearly degenerate and in the proportion a11:a12:a22 = 1.00:0.97:0.94 [173]. Because of
the relation U11 > U12 > U22, the experiment is performed in a regime in which the first
component separates from the second one. Consequently, a favoured configuration has the
first component spread over the largest part of the space. Numerical simulations show that in
the equal-population case, N1 = N2 = N , and for arbitrary nonlinearities, the stationary state
(1, 0) is stable while the other state (0, 1) is unstable.

The origin of the instability of the state (0, 1) is purely dynamical [174] and can be
understood within the framework of mean-field theories for the double-condensate system
without dissipation. Actually, the instability mechanism does not lead to expulsion of the
vortex from the condensate, but to periodic transfer of the phase singularity from one species
to the other. To study the vortex stability, one can start from a pair of coupled Gross–Pitaevskii
equations for the condensate wave functions of each species:

ih̄
∂

∂t
�1 =

[
− h̄2∇2

2M
+ V1 + U11|�1|2 + U12|�2|2

]
�1 (152)

ih̄
∂

∂t
�2 =

[
− h̄2∇2

2M
+ V2 + U21|�1|2 + U22|�2|2

]
�2 (153)

where V1 and V2 are trap potentials for the condensate components. These equations are a
particular case of equation (150) when the drive is turned off (Ĥ1, 3, δ = 0). Equations (152)
and (153) conserve the number of particles in each hyperfine level. However, the angular
momentum of each component is no longer a conserved quantity, and the topological charge
of each species can change through the time evolution. Instead, what is conserved is the total
angular momentum of the system

Lz = ih̄
∫

d3r �∗
1 ∂φ�1 + ih̄

∫
d3r �∗

2 ∂φ�2. (154)

As in the JILA experiments, we assume that both potentials are spherically symmetric and
have the form

V1(r) = V2(r) = 1

2
Mω2

0(r
2
⊥ + z2).

For stationary configurations in which each component has a well-defined value of the angular
momentum, the time and angular dependence are factored out:

�i(r⊥, z, φ) = e−iµi t/h̄eiqiφψi(r⊥, z) (155)
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with i = 1, 2. We focus on three particular configurations, which are the lowest energy states
with vorticity (q1, q2) = (0, 0), (1, 0), (0, 1). They correspond to the ground state of the
double condensate, and to the single-vortex states for the |1〉 and |2〉 species, respectively.

Linear stability analysis of the three states gives the following results [174]. For the (0, 0)
state, the frequencies of all normal modes are positive, as expected for the ground state of the
system. Among the normal modes of the (1, 0) family, there is a negative eigenvalue, which
means that there is a path in the configuration space along which the energy decreases (this is
just the analogue of the anomalous mode in the one-component system with a vortex). This
path belongs to a perturbation that takes the vortex out of the condensate. As in the case
of a single-component condensate, however, the lifetime of the vortex state is only limited
by the presence of dissipation (without dissipation, the configuration is dynamically stable).
Finally, in the (0, 1) family, there are normal modes with complex frequencies. The shape of
the unstable modes is similar to that of the energy-decreasing modes of the (1, 0) family—
that is, they are perturbations that push the vortex out of both clouds. The imaginary part
of the eigenvalues implies that vortices with unit charge in |2〉 are unstable under a generic
perturbation of the initial data, whereas those in |1〉 can be long-lived. This conclusion is
consistent with the JILA experiments, where a vortex in the |2〉 species was found to be
unstable [33].

Numerical simulations of the vortex behaviour for large perturbations show that the linearly
stable state (1, 0) is robust and survives under a wide range of perturbations, suffering at most
a precession of the vortex core plus changes of the shapes of both components [174]. This
behaviour arises in both two- and three-dimensional simulations. In contrast, the unstable
configuration (0, 1) develops a recurrent dynamics. In the first stage, the first component and
the vortex oscillate synchronously (the hole in |2〉 pins the peak of |1〉). These oscillations
grow in amplitude, and the vortex spirals out. Finally the first component develops a tail and
later a hole which traps the second component. The hole is a vortex that has been transferred
from |2〉 to |1〉. Though not completely periodic, this mechanism exhibits some recurrence,
and the vortex eventually returns to |2〉. The preceding behaviour persists even for strong
perturbations in a two-dimensional condensate. However, for large perturbations of a three-
dimensional condensate, the dynamics may lead to a turbulent behaviour [174].

In figure 16, it is shown how a small initial perturbation makes the phase singularity in
|2〉 spiral out of the system while a phase singularity appears in |1〉 and occupies the centre of
the atomic cloud. This dynamics is recurrent.

The preceding results are valid for the equal-population case, N1 = N2. For any ratio of
the populationsN1/N2 and any values of the nonlinear coefficientsUij , the stability conditions
are the following [175]:

• The configuration (1, 0) is stable if(√
N1

N2
− 1

)2

> 1 − a11

a12
. (156)

For 87Rb, the inequality (156) is always satisfied, which proves that the configuration
with a vortex in |1〉 is always linearly stable, as found in [33]. Note that the stability
properties do not depend on the total number of particles but only on the ratio between
the populations.

• The stability condition of the configuration (0, 1) is(√
N2

N1
− 1

)2

> 1 − a22

a21
. (157)
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Figure 16. Evolution of the position of the phase singularity in the xy-plane. Lengths are given
in units of the trap characteristic length d = √

h̄/Mω0. (a) Phase singularity in |1〉, (b) phase
singularity in |2〉. (Taken from reference [175].)

This inequality fails for a certain range of N1/N2. For the case of 87Rb the unstable range
is N1/N2 ∈ [0.73, 1.49], which means that certain choices of the population imbalance
allow stabilization of the vortex in |2〉. These results predict the possibility of stable vortex
states for various multiple-condensate systems [175].

Energetic considerations show that the extra degree of freedom associated with the second
component allows a more intricate structure for the free-energy surface. As a result, in a two-
component system, it is possible to achieve a local minimum in the free energy at the centre of
the trap [126]. The presence of such a minimum implies the existence of a region of energetic
stability where the vortex cannot escape and might generate a persistent current.

8. Conclusions and outlook

In this paper, we have provided an introductory description of vortices in trapped Bose-
condensed gases. The main conclusion of our analysis is that the vortex dynamics in such
systems is well described by the time-dependent Gross–Pitaevskii equation (at least for low
temperatures). The nonuniform nature of the condensate results in the appearance of anomalous
vortex mode(s) with negative frequency and positive norm. Trap rotation shifts the normal-
mode frequencies and can stabilize the vortex state. To date, experimental measurements of
vortex dynamics and other properties of vortex states are in a good quantitative agreement
with theoretical predictions based on solutions of the GP equation. Deviations from the mean-
field predictions could arise when the gas parameter n̄|a|3 is not very small (semiclassical
corrections to the mean-field approximation were calculated in [176]) or from ‘mesoscopic’
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effects associated with the finite systems. However, there is no experimental evidence for these
effects so far.

We have been able to cover only part of the existing literature on vortices in trapped
condensates. Among important issues that we have not discussed are: different methods of
vortex generation and detection, kinetics of vortex nucleation and decay, vortices in BECs with
attractive interactions and in Fermi condensates, other defects in BECs (solitons, instantons,
vortex solitons, skyrmions, and wave-function and spin monopoles).

In the case of superfluid helium, vortex nucleation is associated with pinning of vortex lines
at the walls of the container. Trapped condensates have no rough surfaces, and the nucleation
process of quantized vorticity has a different origin [118, 177, 178]. An important question
in vortex nucleation is that of the role of the thermal component and transverse anisotropy of
magnetic traps [179, 180].

The literature of the past few years contains many different proposals for the creation
of vortices in trapped BECs, although we considered only a few of them in this review. To
illustrate the diversity of different methods, let us cite some other schemes. An experimental
set-up for vortex creation by Berry’s-phase-induced Bose–Einstein condensation is proposed
by Olshanii and Naraschewski [181]. A related vortex-production scheme employing the
Aharonov–Casher effect is discussed by Petrosyan and You [182]. Other proposals suggest
the creation of the vortex state by opto-mechanical stirring [169]; by a rotating force [183]; by
an adiabatic population transfer of a condensate from the ground to the excited Bose-condensed
state via a Raman transition induced by laser light [167,168,170]; by the accidental generation
of vortices in a quench [184, 185] or in self-interference measurements [171].

A possible way to create rotating states from a trapped ground-state BEC by using light-
induced forces is proposed by Marzlin and Zhang [186]. They show that the dipole potential
induced by four travelling-wave laser beams with an appropriate configuration in space, phase,
and frequency can be used to realize such a system. Vortex states can be trapped in an
evaporative cooling process if the evaporation length is less than the size of the thermally
excited state [185, 187]. In order to nucleate vortices, the trapped gas can be rotated at
temperatures above the BEC transition. Recently, it has been suggested that vorticity could
be imprinted by imaging a BEC through an absorption plate [188]. The method consists
of passing a far-off-resonant laser pulse through an absorption plate with an azimuthally
dependent absorption coefficient, imaging the laser beam onto a BEC, and thus creating
the corresponding nondissipative Stark-shift potential and condensate phase shift. A vortex
ring may be formed by translating one condensate through another one [189] (this process is
analogous to ring nucleation by moving ions in superfluid 4He [190]), or by three-dimensional
soliton decay [191,192]. Recently the JILA group generated vortex rings by the decay of dark
solitons through the snake instability [193].

Many different proposals for the detection of vortices in BECs have been mentioned
in the literature. Some of them are used in current experiments. The spatial size of the
vortex core in the TF regime is too small to be observed; for visualizing the vortex state,
switching off the trap and letting the cloud expand ballistically was suggested [84]. After
expansion, the size of the vortex core is magnified by approximately the same factor as the
size of the expanding condensate [72, 194], so the core becomes observable. Also the vortex
state can be detected by the splitting of the collective condensate modes in axisymmetric
traps [64,113,117] or by looking at the phase slip in the interference fringes produced by two
expanding condensates [72,169]. Dobrek et al [188] proposed an interference method to detect
vortices by coherently pushing part of the condensate with optically induced Bragg scattering.
A detection scheme that reveals the existence of vortex states in a cylindrically symmetric trap
is discussed by Goldstein et al [195]. This scheme relies on the measurement of the second-
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order correlation function of the Schrödinger field and yields directly the topological charge
of the vortex state.

Also one can detect the vortex state by observing the off-resonance absorption image of
the rotational cloud [168]. For a vortex state one should expect a bright ‘hole’ in the image
which accounts for the vortex core in the density distribution. Another possibility is to observe
the Doppler frequency shift due to the quantized circular motion of the atoms [168], or by
scattering fast atoms in a pure momentum state off a trapped atomic cloud [196].

Another question that has recently attracted significant theoretical and experimental
interest is that of the dynamics and stability of dark solitons and vortex solitons in trapped
condensates. Solitary waves (kinks) have been studied in many physical contexts [197] and
exist in different physical, chemical, and biological systems [198]. Recent theoretical studies
discuss the dynamics and stability of dark solitons [199–203] (the range of parameters where
the solitons are dynamically stable has been determined in [101, 103], while the theory of
dissipative dynamics of a kink in finite-temperature condensates has been developed in [204]),
as well as suggestions for their creation [170, 188, 205]. Recently, dark solitons inside a
condensate were generated by a phase-imprinting method [206, 207]. Unlike vortices, dark
solitons are not topologically stable. At finite temperature, they exhibit thermodynamic and
dynamic (small-amplitude) instabilities. The interaction of the soliton with the thermal cloud
causes dissipation that accelerates the soliton. There is an interesting analogy between solitons
and relativistic particles, in which the soliton velocity and speed of sound correspond to the
particle velocity and speed of light in vacuum [204]. However, the kinematic mass of the
soliton decreases when its velocity increases. This behaviour is opposite to the case of a
relativistic particle, where the kinematic mass increases with velocity, and an infinite force
is required to accelerate the particle beyond the velocity of light. In contrast to the particle,
the soliton can reach the velocity of sound. An interesting problem is that of how to create
a soliton and a vortex simultaneously (this object is known as a vortex soliton). The vortex
soliton has a topological charge and therefore could be stable.

Another challenging goal for future experiments is the creation of vortex-like states in
optically confined BECs. By relaxing the condition of spin polarization imposed by magnetic
trapping, this new method of confinement permits the study of diverse textures that can be
formed by the spinor order parameter, like those in superfluid 3He-A [20]. Also optical traps
allow strong variation of the scattering length via Feshbach resonances, which provides new
possibilities for manipulating the condensate states.

Among other challenging problems, one should mention that of how to make measure-
ments of vortex normal modes at higher temperatures, which could establish the connection
between the Bogoliubov approximation and self-consistent mean-field theories. Also, it would
be interesting to observe vortex dissipation and damping of vortex normal modes.
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[175] Pérez-Garcı́a V M and Garcı́a-Ripoll J J 2000 Phys. Rev. A 62 033601
[176] Andersen J and Braaten E 1999 Phys. Rev. A 60 2330
[177] Martikainen J P, Suominen K A and Sanpera A 2000 Preprint cond-mat/0005136
[178] Dalfovo F and Stringari S 2001 Phys. Rev. A 63 011601
[179] Recati A, Zambelli F and Stringari S 2001 Phys. Rev. Lett. 86 377
[180] Madison K W, Chevy F, Bretin V and Dalibard J 2001 Preprint cond-mat/0101051
[181] Olshanii M and Naraschewski M 1998 Preprint cond-mat/9811314
[182] Petrosyan K G and You L 1999 Phys. Rev. A 59 639
[183] Marzlin K-P and Zhang W 1998 Phys. Rev. A 57 4761
[184] Anglin J R and Zurek W H 1999 Phys. Rev. Lett. 83 1707
[185] Drummond P D and Corney J F 1999 Phys. Rev. A 60 R2661
[186] Marzlin K-P and Zhang W 1998 Phys. Rev. A 57 3801
[187] Marshall R J, New G H C, Burnett K and Choi S 1999 Phys. Rev. A 59 2085
[188] Dobrek L, Gajda M, Lewenstein M, Sengstock K, Birkl G and Ertmer W 1999 Phys. Rev. A 60 R3381
[189] Jackson B, McCann J F and Adams C S 1999 Phys. Rev. A 60 4882
[190] Rayfield G W and Reif F 1964 Phys. Rev. 136 1194
[191] Jones C A, Putterman S J and Roberts P H 1986 J. Phys. A: Math. Gen. 19 2991
[192] Josserand C and Pomeau Y 1995 Europhys. Lett. 30 43
[193] Anderson B P, Haljan P C, Regal C A, Feder D L, Collins L A, Clark C W and Cornell E A 2000 Preprint

cond-mat/0012444
[194] Dalfovo F and Modugno M 2000 Phys. Rev. A 61 023605



R194 A L Fetter and A A Svidzinsky

[195] Goldstein E V, Wright E M and Meystre P 1998 Phys. Rev. A 58 576
[196] Kuklov A B and Svistunov B V 1999 Phys. Rev. A 60 R769
[197] Rajaraman R 1987 Solitons and Instantons (Amsterdam: North-Holland)
[198] Kerner B S and Osipov V V 1989 Usp. Fiz. Nauk 157 201 (Engl. Transl. 1989 Sov. Phys.–Usp. 32 101)
[199] Zhang W, Walls D F and Sanders B C 1994 Phys. Rev. Lett. 72 60
[200] Reinhardt W P and Clark C W 1997 J. Phys. B: At. Mol. Phys. 30 L785
[201] Morgan S A, Ballagh R J and Burnett K 1997 Phys. Rev. A 55 4338
[202] Jackson A D, Kavoulakis G M and Pethick C J 1998 Phys. Rev. A 58 2417
[203] Margetis D 1999 J. Math. Phys. 40 5522
[204] Fedichev P O, Muryshev A E and Shlyapnikov G V 1999 Phys. Rev. A 60 3220
[205] Scott T F, Ballagh R J and Burnett K 1998 J. Phys. B: At. Mol. Phys. 31 L329
[206] Burger S, Bongs K, Dettmer S, Ertmer W, Sengstock K, Sanpera A, Shlyapnikov G V and Lewenstein M 1999

Phys. Rev. Lett. 83 5198
[207] Denschlag J, Simsarian J E, Feder D L, Clark C W, Collins L A, Cubizolles J, Deng L, Hagley E W, Helmerson K,

Reinhardt W P, Rolston S L, Schneider B I and Phillips W D 2000 Science 287 97


