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1 Basic lengthscales

Estimate of the coherence length:

ξ ≈ ~vF
∆

≈
(
1.5eV × Å

)
40meV

∼ 35Å (1)

(Vishik et.al. PRL 104, 207002 (2010); PNAS vol. 109 no. 45 18332 (2012)) Recall, this is the
lengthscale over which the (single component) Ginzburg-Landau order parameter recovers near a
defect. It sets the scale of the core size.

Penetration depth:

λ ≈ 1500Å. (2)

(see e.g. Blatter et.al. RMP 1994, p1162).
Abrikosov parameter:

κ =
λ

ξ
≈ 45. (3)

This places HTS in the extreme type-II limit.
Magnetic length (typical separation between vortices)

ℓv =
1√
2
ℓ =

√
hc

2eB
= 454Å

1√
B[T ]

(4)

(material independent, involves only fundamental constants)
We are interested in the limit

ξ ≪ ℓ≪ λ (5)

(Equivalent to Hc1 ≪ H ≪ Hc2.)

YBCO123 

Bi2212 (8Tesla) 

Fischer RMP 2007 

Small Angle Neutron Scattering: YBa2Cu3O7 

J.S. White et.al. PRB 78, 174513 2008 

Figure 1: (Left) STM images of vortex lattices in HTS. (Right) Vortex lattice geometries from the
small angle neutron scattering in YBCO



2 Volovik’s semiclassical effect and the spectrum of a d-wave su-
perconductor in the presence of a uniform supercurrent

2.1 qp spectrum for an s-wave superconductor with a uniform supercurrent

As a warmup, consider the model of an s-wave superconducting pairing term at finite momentum
(coresponding a finite supercurrent) ∆(r)c†r↑c

†
r↓ + h.c. = e2iq·r∆c†r↑c

†
r↓ + e−2iq·r∆cr↓cr↑. We will

assume a normal state dispersion (with the chemical potential shift included) ϵk = ξk − µ. (The
distinction between being in real and reciprocal space is in using the subscript r rather than k,
respectively).

You can find the solution to this in Tinkham’s book (Chapter 10, special topics).
The Heisenberg equations of motion i~∂c

∂t = [c,H] give

i~
∂

∂t
cr↑ =

∑
r′

ϵr−r′cr′↑ + e2iq·r∆c†r↓ (6)

i~
∂

∂t
c†r↓ = −

∑
r′

ϵr−r′c
†
r′↓ + e−2iq·r∆cr↑. (7)

Let,

cr↑ =
1√
N

∑
k

ei(k+q)·rψk↑

c†r↓ =
1√
N

∑
k

ei(−q+k)·rψk↓ (8)

1√
N

∑
k

ei(k+q)·ri~
∂

∂t
ψk↑ =

1√
N

∑
k

(∑
r′

ϵr−r′e
i(k+q)·r′ψk↑ + e2iq·r∆ei(−q+k)·rψk↓

)
(9)

1√
N

∑
k

ei(−q+k)·ri~
∂

∂t
ψk↓ =

1√
N

∑
k

(
−
∑
r′

ϵr−r′e
i(−q+k)·r′ψk↓ + e−2iq·r∆ei(k+q)·rψk↑

)
(10)

Defining the Fourier transform ϵk =
∑

r ϵre
−ik·r, we have

∑
r′ ϵr−r′e

i(k+q)·r′ =
∑

r′ ϵ−r′e
i(k+q)·(r′+r) =

ei(k+q)·rϵk+q. Also,
∑

r′ ϵr−r′e
i(−q+k)·r′ =

∑
r′ ϵ−r′e

i(−q+k)·(r′+r) = ϵq−ke
i(−q+k)·r. Therefore,

1√
N

∑
k

ei(k+q)·ri~
∂

∂t
ψk↑ =

1√
N

∑
k

(
ϵk+qe

i(k+q)·rψk↑ +∆ei(q+k)·rψk↓

)
(11)

1√
N

∑
k

ei(−q+k)·ri~
∂

∂t
ψk↓ =

1√
N

∑
k

(
−ϵq−ke

i(−q+k)·rψk↓ +∆ei(k−q)·rψk↑

)
(12)

Multiply the first equation from the left by N−1/2e−i(p+q)·r and the second by N−1/2e−i(p−q)·r.
Then sum over r which give Nδkp. We therefore find:

i~
∂

∂t

(
ψk↑
ψk↓

)
=

(
ϵk+q ∆
∆ −ϵq−k

)(
ψk↑
ψk↓

)
(13)

This is solved by diagonalizing the above 2 × 2 Bogolyubov-de Gennes (BdG) matrix Hamil-
tonian which we write as (using TRS ϵk = ϵ−k)(

ϵk+q ∆
∆ −ϵq−k

)
=
ϵk+q − ϵk−q

2
12 +

ϵk+q + ϵk−q

2
σ3 +∆σ1 (14)



Now, we can readily read off the qp energies

E(k) =
ϵk+q − ϵk−q

2
±

√(
ϵk+q + ϵk−q

2

)2

+∆2 (15)

At small q

E(k) ≈ q · ∇ϵk ±
√
ϵ2k +∆2 ≈ q · vF (k̂)±

√
ϵ2k +∆2. (16)

The first term shifts the overall energy of qp’s by a k-dependent amount; if q is parallel with
vF , then the energy is shifted up, if it is anti-parallel, then the energy is shifted down. If it is
perpendicular, then it is unaffected to leading order in q.

Obviously we are dealing with a Doppler shift.

2.2 qp spectrum for a nodal d-wave superconductor with a uniform supercur-
rent

Consider now the model of a nodal d-wave superconducting pairing term at finite momentum. If
we think of ∆(r, r′) as being a function of the center of mass position r+r′

2 and a relative position
r − r′, then having an overall supercurrent means that the center of the mass component of the
Cooper pair carries 2q. So, the pairing term is∑

r

(
eiq·(2r+x̂)∆

(
c†r↑c

†
r+x̂↓ − c†r↓c

†
r+x̂↑

)
− eiq·(2r+ŷ)∆

(
c†r↑c

†
r+ŷ↓ − c†r↓c

†
r+ŷ↑

)
+ h.c.

)
(17)

The Heisenberg equations of motion

i~
∂

∂t
cr↑ =

∑
r′

ϵr−r′cr′↑ +
∑
δ=x̂,ŷ

(
eiq·(2r+δ)∆δc

†
r+δ↓ + eiq·(2r−δ)∆δc

†
r−δ↓

)
(18)

i~
∂

∂t
c†r↓ = −

∑
r′

ϵr−r′c
†
r′↓ +

∑
δ=x̂,ŷ

(
e−iq·(2r+δ)∆δcr+δ↑ + e−iq·(2r−δ)∆δcr−δ↑

)
(19)

Using the substitution in Eq.(8) we find

i~
∂

∂t

(
ψk↑
ψk↓

)
=

(
ϵk+q ∆k

∆k −ϵq−k

)(
ψk↑
ψk↓

)
⇒ E(k)

(
ψk↑
ψk↓

)
=

(
ϵk+q ∆k

∆k −ϵq−k

)(
ψk↑
ψk↓

)
(20)

where ∆k = 2∆(cos kx − cos ky).
Just as before:

E(k) =
ϵk+q − ϵk−q

2
±

√(
ϵk+q + ϵk−q

2

)2

+∆2
k (21)

and at small q

E(k) ≈ q · ∇ϵk ±
√
ϵ2k +∆2

k ≈ q · vF

∣∣
node

±
√
v2Fk

2
⊥ + v2∆k

2
∥. (22)



2.3 Volovik’s semiclassical approximation

Volovik’s semiclassical approximation amounts to replacing q/m with a position dependent super-
fluid velocity v(r). Then,

E(k) → E(k, r) ≈ v(r) · pF

∣∣
node

±
√
v2Fk

2
⊥ + v2∆k

2
∥. (23)

The thermodynamic density of states per area in this approximation is

N(ω) =
1

Area

∑
r

∑
k

δ (ω − E(k, r)) . (24)

In the absence of the superflow (i.e. for v(r) = 0), the low-energy qp density of states is

N(ω)
∣∣
v(r)=0

= 4

∫
d2k

(2π)2
δ
(
|ω| −

√
v2Fk

2
⊥ + v2∆k

2
∥

)
=

2

π

|ω|
vF v∆

. (25)

Since in the absence of the superflow the density of states at ω = 0 is at its minimum, the
presence of superflow, which in some regions shifts the qp energy by a positive or negative amount,
leading to finite density of states.

N(ω) =

4∑
j=1

1

2π

⟨|ω − v(r) · pF

∣∣
nodej

|⟩
vF v∆

. (26)

where the ⟨. . .⟩ represent the spatial average. Since the energy without the superflow is linear in mo-
mentum, and since the only lengthscale (appart from the core size ξ → 0) associated with the phase
twist is the inverse magnetic length, 1/ℓ, the zero energy density of states in this approximation at
low energy is

N(ω = 0) ∼ 1

v∆ℓ
∼

√
H

v∆
. (27)

This is the famous Volovik’s result (G.E. Volovik JETP Lett. 58, 469-473 (1993)). (E.g., see also
Ioffe and Millis, Journal of Physics and Chemistry of Solids 63, 2259 (2002)).

3 Quantum mechanics of d-wave qps in the vortex state

Is there any physics beyond the semiclassical approximation? What can we learn from the full
quantum solution that is absent in the semiclassical approximation?

The semiclassical approximation relies on our ability to construct wavepackets, since it is only
if we have well localized wavepackets that we can think of a local superflow Doppler shift. On the
other hand, the massless Dirac fermion in the vicinity of the nodes are described by a scale-free
equation, therefore the size of the wavepacket is set by the thermal length times a function of the
Dirac cone anisotropy αD = vF /v∆. For isotropic system, the size is basically the thermal length
~vF /(kBT ). This lengthscale diverges as T → 0, which means that there is a temerature/energy
scale below which the size of the wavepacket is longer than the intervortex separation. The superflow
is therefore not uniform and we expect quantum interference to play a role at the lowest energies.

When we deal with an ideal, perfectly periodic, vortex lattice, as we will see, we can chose to
work in the basis when vortex crystalline momentum k is a good quantum number. The eigenvalues
En(k) can be labeled by a discrete (magnetic) band index and the continuous k which lies in the



(magnetic) Brillouin zone. Ignoring the Zeeman effect, for a moment, which corresponds to an
overall shift in each qp energy, we can show that for a space-inversion symmetric vortex lattice,
given an eigenstate at k, with energy Ek, there is an orthogonal state at energy −Ek and the same
k. This means that the qp spectrum must have a mirror symmetry about E = 0. Therefore, if there
are states at zero energy, as would be required if the semiclassical result was correct, they have to
appear as degenerate doublets corresponding to band crossings. However, we are dealing with a
2D problem which break time reversal symmetry. Any accidental band crossing requires tuning of
at least 3-parameters according to the Wigner-von Neumann argument. Holding everything else
fixed, we only have two parameters to vary kx and ky. Therefore, the bands should avoid, and
there should be a gap at zero energy. Gapless points can appear only if an additional parameter,
such as the Fermi energy, is fine-tuned.

3.1 Choice of the pairing term in the mixed state

∑
r

(
eiθr,r+x̂∆

(
c†r↑c

†
r+x̂↓ − c†r↓c

†
r+x̂↑

)
− eiθr,r+ŷ∆

(
c†r↑c

†
r+ŷ↓ − c†r↓c

†
r+ŷ↑

)
+ h.c.

)
(28)

We would like to have vortex lattice in the center-of-the-mass coordinate of the phase field. So, our
ansatz for the pairing term is

eiθr,r+δ ≈ e
iθ

r+1
2 δ ≈ eiθre

i
2

∫ r+δ
r dl·∇θ

where the line integral in the last expression is to be performed along the straight line joining the

sites r and r + δ. Schematically, eiθr,r+δ → ei(θr+θr+δ)/2 ≈ eiθr+eiθr+δ

|eiθr+eiθr+δ |
i.e. the above choice for the

bond phase variable is to average the neighboring site phase variables.
In order to describe the magnetic field (∇ × A) induced vortex lattice, we choose the phase

field to be the solution of the London’s equations for the gauge invariant superfluid velocity:

∇ ·
(
1

2
∇θ − e

~c
A

)
= 0, (29)

∇×
(
1

2
∇θ − e

~c
A

)
= ẑπ

∑
j

δ(r− rj)− ẑ
e

~c
B, (30)

subject to an additional constraint that 1
2∇θ −

e
~cA is periodic and vanishes on average. Vortex

positions are denoted by rj . The explicit solution to these equations is presented in the Appendix.

3.2 Tight binding formulation: BCS-Hoffstadter hamiltonian

H =
∑
r

∑
δ=x̂,ŷ

tr,r+δc
†
r,σcr+δ,σ +H.c.

− (µ+ hZ)c
†
r,↑cr,↑ − (µ− hZ)c

†
r,↓cr,↓


+

∑
r

∆
(
eiθre

i
2

∫ r+x̂
r dl·∇θ

(
c†r↑c

†
r+x̂↓ − c†r↓c

†
r+x̂↑

)
− eiθre

i
2

∫ r+ŷ
r dl·∇θ

(
c†r,↑c

†
r+ŷ,↓ − c†r,↓c

†
r+ŷ,↑

)
+H.c.

)
.

(31)



This model has been discussed extensively in OV et.al. PRB 63, 134509 (2001), OV et.al. PRB
64, 224508 (2001), OV and A. Melikyan PRL 96, 167005 (2006), A. Melikyan and Z. Tesanovic,
PRB 74, 144501 (2006). The hopping term is the standard Hoffstadter hamiltonian for an electron
hopping on a square tight-binding lattice

tr,r+δ = −te−iAr,r+δ = −te−i e
~c

∫ r+δ
r dl·A,

where again, the line integral in the last expression is to be performed along the straight line joining
the sites r and r + δ. In the symmetric gauge A = B

2 (−y, x) and so the magnetic flux Φ through
an elementary plaquette enters the Peierls factors as

Ar,r+x̂ = −πyΦ/ϕ0 (32)

Ar,r+ŷ = πxΦ/ϕ0. (33)

where ϕ0 = hc/e.
The chemical potential is µ and the Zeeman coupling enters via hZ .
The Heisenberg equations of motion are

i~
∂

∂t
cr↑ =

 ∑
δ=±x̂,±ŷ

tr,r+δcr+δ↑

− (µ+ hZ)cr↑ +

 ∑
δ=±x̂,±ŷ

∆δe
iθre

i
2

∫ r+δ
r dl·∇θc†r+δ↓

 (34)

i~
∂

∂t
c†r↓ = −

 ∑
δ=±x̂,±ŷ

t∗r,r+δcr+δ↑

+ (µ− hZ)c
†
r↓ +

 ∑
δ=±x̂,±ŷ

∆δe
−iθre−

i
2

∫ r+δ
r dl·∇θcr+δ↑

(35)
where ∆x̂ = −∆ŷ = ∆.

3.3 Translational symmetry and Franz-Tesanovic singular gauge transformation

Even though the vortices form a periodic array, the above BdG Hamiltonian is not invariant under
discrete translations. Instead the pure translations must be followed by a gauge transformation.
Such transformations are called magnetic translations.

In order to better display the periodicity of the Hamiltonian, and in order to remove the phase
variable from the off-diagonal pairing term, Franz and Tesanovic (M. Franz and Z. Tesanovic,
PRL 84, 554 (2000)) devised a singular gauge transformation. Their original formulation was in
continuum. Here we work on the lattice, and perform the symmetric version of the transformation,
which instead of ending up with a U(1) vector-fields, has Z2 fields.

To this end, define site variables

e
i
2
θr ≡

√
eiθr (36)

to be either one of the two solutions to
(
e

i
2
θr
)2

= eiθr . We will fix which one of the two it is shortly.

Now, let

cr↑ = e
i
2
θrψr↑ (37)

c†r↓ = e−
i
2
θrψr↓. (38)



The resulting Heisenberg equations of motions for ψ’s are

i~
∂

∂t
ψr↑ =

∑
δ=±x̂,±ŷ

e
i
2
θr+δe−

i
2
θrtr,r+δψr+δ↑ − (µ+ hZ)ψr↑ +

∑
δ=±x̂,±ŷ

∆δe
− i

2
θr+δe

i
2
θre

i
2

∫ r+δ
r dl·∇θψr+δ↓

i~
∂

∂t
ψr↓ = −

∑
δ=±x̂,±ŷ

e−
i
2
θr+δe

i
2
θrt∗r,r+δψr+δ↓ + (µ− hZ)ψr↓ +

∑
δ=±x̂,±ŷ

∆δe
i
2
θr+δe−

i
2
θre−

i
2

∫ r+δ
r dl·∇θψr+δ↑

(39)

Consider first the off-diagonal term e−
i
2
θr+δe

i
2
θre

i
2

∫ r+δ
r dl·∇θ. Its lattice curl is

e
i
2

∮
dl·∇θ = (−1)nv (40)

where nv is the number of vortices encircled. Note, that the site variables do not contribute to the
lattice curl. Moreover, on each bond, the product of the site variables

e
i
2
θr+δe−

i
2
θr

equals

e
i
2

∫ r+δ
r dl·∇θ

up to an overall sign. Therefore, we can choose the minus signs in the square roots such that

e−
i
2
θr+δe

i
2
θre

i
2

∫ r+δ
r dl·∇θ = z

(2)
r,r+δ (41)

where z
(2)
r,r+δ = −1 on all bonds cut by the branch-cuts and +1 otherwise. We can choose the

branch-cuts to connect the vortices pairwise.
Therefore:

Eψr↑ = −t
∑

δ=±x̂,±ŷ

z
(2)
r,r+δe

i
∫ r+δ
r dl·( 1

2
∇θ− e

~cA)ψr+δ↑ − (µ+ hZ)ψr↑ +
∑

δ=±x̂,±ŷ

∆δz
(2)
r,r+δψr+δ↓

Eψr↓ = +t
∑

δ=±x̂,±ŷ

z
(2)
r,r+δe

−i
∫ r+δ
r dl·( 1

2
∇θ− e

~cA)ψr+δ↓ + (µ− hZ)ψr↓ +
∑

δ=±x̂,±ŷ

∆δz
(2)
r,r+δψr+δ↑

⇒ E

(
ψr↑
ψr↓

)
= ĤBdG

(
ψr↑
ψr↓

)
(42)

To make it more transparent, consider the continuum limit of this Hamiltonian, where the
branch-cuts are accounted for via boundary conditions on the wavefunctions. (We will not use this
Hamiltonian in explicit calculations)

Ĥcont.
BdG =

(
1
2m

(
p+ ~

2∇θ −
e
cA
)2 − µ− hz ∆(p)

∆(p) − 1
2m

(
p− ~

2∇θ +
e
cA
)2

+ µ− hz

)
(43)

= σ3
1

2m
(p+ σ3mv(r))2 − σ3µ− 12hz + σ1∆(p) (44)

where ∆(p) = ∆(p2x − p2y)/p
2
F the superfluid velocity is

mv(r) =
~
2
∇θ − e

c
A (45)



Note that the Zeeman term, hZ , amounts to a simple overall constant shift of all qp energies.
It is clear from this formulation, that there is no minimal coupling of ψ’s to the external elec-

tromagnetic vector potential. Therefore, the qps do not experience the Lorentz force. Nevertheless,
the time reversal symmetry is broken. Expanding near each of the nodes gives

Ĥcont.
BdG

∣∣
node

= 12
(
v(r) · pF

∣∣
node

− hz
)
+ σ3vF p⊥ + σ1v∆p∥ (46)

With a periodic choice of the branch-cuts, the Hamiltonian ĤBdG in Eq.(42), is periodic.
However, the unit cell contains at least two vortices, i.e. is pierced by a multiple of the electronic
flux quantum hc/e. We can therefore use the Bloch theorem, and write the wavefunctions in
terms of the plane-wave part and the periodic part. The resulting Hamiltonian acting on periodic
functions is

ĤBdG(k) = e−ik·rĤBdGe
ik·r (47)

where k resides in the magnetic Brillouin zone.
Now, without loss of generality, set hZ = 0. Then,

σ2Ĥ
∗
BdG(k)σ2 = −ĤBdG(−k). (48)

Therefore, for each eigenstate with energy E at k, there is an orthogonal eigenstate at −k with
energy −E. If the vortex lattice has an inversion symmetry, then

IĤBdG(k)I = H̃BdG(−k). (49)

Now, H̃BdG(−k) ̸= ĤBdG(−k), because the branch-cuts may not necessarily be chosen in inversion
symmetric fashion. Nevertheless, there is always a suitable Z2 gauge transformation, γr, which will
bring the branch-cut back to its original place:

γrIĤBdG(k)Iγr = ĤBdG(−k). (50)

Therefore, for each eigenstate with energy E at k, there is an eigenstate at −k with energy E.
Combining the two transformations gives

γrIσ2Ĥ∗
BdG(k)σ2Iγr = −ĤBdG(k). (51)

This guarantees that for each eigenstate with energy E at k, there is an orthogonal eigenstate
at k with energy −E. According to the previous argument, which I repeat for convenience, the
spectrum is gapped: This means that the qp spectrum must have a mirror symmetry about E = 0.
Therefore, if there are states at zero energy, as would be required if the semiclassicla result was
correct, they have to appear as degenerate doublets corresponding to band crossings. However, we
are dealing with a 2D problem which break time reversal symmetry. Any accidental band crossing
requires tuning of at least 3-parameters according to the Wigner-von Neumann argument. Holding
everything else fixed, we only have two parameters to vary kx and ky. Therefore, the bands should
avoid, and there should be a gap at zero energy. Gapless points can appear only if an additional
parameter, such as the Fermi energy, is fine-tuned.

From the numerical studies, the typical size of the minigaps is E1 ≈ 3.5~vF /(ℓα2
D). The width

of the lowest magnetic subband is E2 ≈ 1.5~vF /(ℓαD). At temperatures T & E2, semiclassical
description applies.



Figure 2: Top left: Schematic of the magnetic unit cell with the branch-cuts shown. Top right:
schematic of the Fermi surface and the nodal points. Bottom: Scaled density of states for (a)
vF /v∆ = 1 and (b) vF /v∆ = 7. From: A. Melikyan and O.Vafek PRB 78, 020502(R) 2008.

3.4 Effects of the branch-cuts via the index theorem

Please see O. Vafek and A. Melikyan Phys. Rev. Lett. 96, 167005 (2006), where we show that the
number of Dirac nodes can double from 4 to 8 as a consequence of the branch-cuts. At µ = hZ = 0,

(−1)x+yγrIĤBdG(k)Iγr(−1)x+y = −H̃BdG(−k). (52)

Therefore, at k = 0 and other points on the Brillouin zone edge, the Hamiltonian anti-commutes
with the combine inversion and particle-hole transformation{

(−1)x+yγrI, ĤBdG(k)
}
= 0. (53)

Moreover, ((−1)x+yγrI)2 = 1 and therefore

Tr
[
(−1)x+yγrI

]
= n+ − n−,

where n± is the number of zero energy states with (−1)x+yγrI eigenvalue equal to ±1.



3.5 Scaling functions from the tight-binding solutions

Based on the analysis of the linearized equations, Simon and Lee (S.H. Simon and P.A. Lee PRL
78, 1548 (1997)) argued that the qp eigenenergies follow the scaling form

En(k) =
~vF
ℓ

Fn

(
kℓ,

vF
v∆

)
. (54)

This implies that the density of states per area should follow

N(ω) =
1

Area

∑
n

∑
k

δ (ω −En(k)) (55)

NSL(ω) =
∑
n

∫
mBZ

d2k

(2π)2
δ

(
ω − ~vF

ℓ
Fn

(
kℓ,

vF
v∆

))
=

1

~vF ℓ
Φ

(
ωℓ

~vF
,
vF
v∆

)
(56)

=
1

~v∆ℓ
Φ̃

(
ωℓ

~vF
,
vF
v∆

)
. (57)

The integrated density of states, which is smoother than the density of states, shows, that
apart from small deviations, it indeed follows the proposed scaling form for αD = vF /v∆ & 3. The
resulting scaling function is thus determined numerically. For the density of states per layer, per
spin, per area, we have

N(0) = b
1

~v∆

√
eB

hc
; b ≈ 0.92. (58)

The qp contribution to specific heat is

lim
T→0

C = 2kBnlayers

∫ ∞

0
dEN(0)

E2

4T 2 cosh2 E
2T

(59)

= kBTnlayers
π2

3
N(0). (60)

For YBCO, nlayers = 2 so

γ(H) = lim
T→0

C

T
≈ 0.1

√
H[T ]

~v∆[eV Å]

mJ

molK2
. (61)

We can use this formula to extract the value of v∆ from the prefactor of
√
H in γ(H).

4 Appendix: solution to the London’s equations

Vortex positions rj enter through θr which is chosen to be the solution of the (continuum) London’s
equations

∇×∇θ(r) = 2πẑ
∑
j

δ(r− rj),

∇ · ∇θ(r) = 0.

Vortices are arranged within a unit cell as shown in Fig. 1b. We study a variety of vortex lattices
(VL): when Lx = Ly the vortices form a square lattice, for Lx/Ly ≈

√
3 the lattice is triangular,

the intermediate ratio Lx/Ly ≈ 1.4 yields oblique VL.



In order to solve the London equations for the phase we start by noting that 1
2∇θ − e

~cA
is proportional to the physical superfluid velocity, which is periodic and vanishes upon spatial
averaging.

Let,

θ(r) = θ0(r) +
∑
j

tan−1 y − yj
x− xj

(62)

then(
∂

∂y
+ i

∂

∂x

)
θ(r) =

(
∂

∂y
+ i

∂

∂x

)
θ0(r) +

nV∑
j=1

∑
τ

1

z − Zj − τ

=

(
∂

∂y
+ i

∂

∂x

)
θ0(r) + C0 + C1z +

nV∑
j=1

 1

z − Zj
+
∑
τ ̸=0

(
1

z − Zj − τ
+

1

τ
+
z − Zj

τ2

)
The Weierstrass zeta function is defined as

ζ(z;ω1, ω2) =
1

z
+
∑
τ ̸=0

(
1

z − τ
+

1

τ
+

z

τ2

)
where τ forms a lattice with periods ω1 and ω2. Therefore:(

∂

∂y
+ i

∂

∂x

)
θ(r) =

(
∂

∂y
+ i

∂

∂x

)
θ0(r) +

nV∑
j=1

∑
τ

1

z − Zj − τ

=

(
∂

∂y
+ i

∂

∂x

)
θ0(r) + C0 + C1z +

nV∑
j=1

ζ(z − Zj ;ω1, ω2)

In the symmetric gauge Ay + iAx = 1
2B(x− iy) = 1

2Bz̄. Therefore,

1

2

(
∂

∂y
+ i

∂

∂x

)
θ(r) +

e

~c
(Ay + iAx) =

1

2

( ∂

∂y
+ i

∂

∂x

)
θ0(r) + C0 + C1z +

nV∑
j=1

ζ(z − Zj ;ω1, ω2)


− eB

2~c
z̄ (63)

We demand that

∇ ·
(
1

2
∇θ − e

~c
A

)
= 0

and that

∇×
(
1

2
∇θ − e

~c
A

)
= ẑπ

∑
j

δ(r− rj)− ẑ
e

~c
B.

Note that the first can be written as

∇ · v = Re

(
2

i

∂

∂z̄
(vy + ivx)

)
and the second as

ẑ

(
∂

∂x
vy −

∂

∂y
vx

)
= ∇× v = Re

(
2
∂

∂z̄
(vy + ivx)

)
.



We know that the Weierstrass ζ−function is odd ζ(−z) = −ζ(z). Therefore, we can guarantee that
the above expression vanishes upon spatial averaging if we choose the unknown coefficients as:

1

2

(
∂

∂y
+ i

∂

∂x

)
θ(r) +

e

~c
(Ay + iAx) =

1

2

nV∑
j=1

ζ(z − Zj ;ω1, ω2)−
eB

2~c
1

nV

nV∑
j=1

(
z̄ − Z̄j

)
+

C

nV

nV∑
j=1

(z − Zj) + f(z)

where f(z) is everywhere analytic (i.e. no poles) and vanishes upon spatial average.
Next, we demand this to be periodic:

1

2

nV∑
j=1

ζ(z − Zj ;ω1, ω2)−
eB

2~c
1

nV

nV∑
j=1

(
z̄ − Z̄j

)
+

C

nV

nV∑
j=1

(z − Zj) + f(z)

=
1

2

nV∑
j=1

ζ(z + ω1 − Zj ;ω1, ω2)−
eB

2~c
1

nV

nV∑
j=1

(
z̄ + ω̄1 − Z̄j

)
+

C

nV

nV∑
j=1

(z + ω1 − Zj) + f(z + ω1)

=
1

2

nV∑
j=1

ζ(z + ω2 − Zj ;ω1, ω2)−
eB

2~c
1

nV

nV∑
j=1

(
z̄ + ω̄2 − Z̄j

)
+

C

nV

nV∑
j=1

(z + ω2 − Zj) + f(z + ω2)

Now,

ζ(z + ω1;ω1, ω2) = ζ(z;ω1, ω2) + 2η1 (64)

ζ(z + ω2;ω1, ω2) = ζ(z;ω1, ω2) + 2η2 (65)

where
η1,2 = ζ

(ω1,2

2
;ω1, ω2

)
.

So, we need

nV η1 −
eB

2~c
ω̄1 + Cω1 + f(z + ω1)− f(z) = 0 (66)

nV η2 −
eB

2~c
ω̄2 + Cω2 + f(z + ω2)− f(z) = 0. (67)

Since this must hold for every z, f(z) must be periodic. But since it is everywhere finite and
analytic, it must be a constant. Moreover, since it vanishes on average f(z) = 0.

Therefore

nV η1 −
eB

2~c
ω̄1 + Cω1 = 0 (68)

nV η2 −
eB

2~c
ω̄2 + Cω2 = 0. (69)

Multiplying both sides of the first equation by ω2 and of the second equation by ω1, subtracting,
and using the Legendre theorem

η1ω2 − η2ω1 = iπ, (70)

we see that both equations are satisfied if we solve either one of them for C. So,

C = −nV
η1
ω1

+ π
eB

hc

ω̄1

ω1
, (71)



and

1

2

(
∂

∂y
+ i

∂

∂x

)
θ(r) +

e

~c
(Ay + iAx) =

1

2

nV∑
j=1

ζ(z − Zj ;ω1, ω2)−
eB

2~c
1

nV

nV∑
j=1

(
z̄ − Z̄j

)
+

(
− η1
ω1

+
π

nV

eB

hc

ω̄1

ω1

) nV∑
j=1

(z − Zj)

Finally, (
∂

∂y
+ i

∂

∂x

)
θ(r) =

nV∑
j=1

ζ(z − Zj ;ω1, ω2) +
eB

~c
1

nV

nV∑
j=1

(
Z̄j

)
+

(
−2

η1
ω1

+
2π

nV

eB

hc

ω̄1

ω1

) nV∑
j=1

(z − Zj)

We can obtain the phase field by integrating ∇θ:

Im

∫ z

z0

dz′
(
∂

∂y′
+ i

∂

∂x′

)
θ(r′) =

nV∑
j=1

Im

∫ z

z0

dz′ζ(z′ − Zj ;ω1, ω2) +
eB

~c
1

nV

nV∑
j=1

Im

∫ z

z0

dz′
(
Z̄j

)

+ Im

(−2
η1
ω1

+
2π

nV

eB

hc

ω̄1

ω1

)∫ z

z0

dz′
nV∑
j=1

(
z′ − Zj

) .
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