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1 Motivation and the non-interacting model

This lecture is about a class of realistic models on the A-B stacked honeycomb bilayer with purely repulsive
interactions, which at half filling develop either a spin order, such as antiferromagnetism, or a charge order,
such as a nematic. When doped, we find Cooper pairing and the ground state is a superconductor. Upon
further doping, superconductivity disappears. These models are sufficiently tractable that the mechanism
of pairing can be clearly identified. Moreover, it provides an explicit example of the notion of intertwined
orders, mentioned by Steve Kivelson in his Boulder 2014 lectures.

If we consider hopping of electrons on the A-B stacked honeycomb bilayer, shown in the Figure (1), we
find four bands, because there are four atoms per unit cell. Two bands touch at K = 4π

3
√
3
ŷ and −K points

in the Brilloin zone shown here. If we take into account only the nearest neighbor hopping, in the graphene
field denoted by γ0 and γ1, we find that two of the four bands are split off by the interlayer tuneling γ1, and
the remaining two touch parabolicaly.

Explicitly, taking the lattice spacing a = 1,

H0 =
∑
r

3∑
j=1

γ0

(
c†A1,r

cB1,r+δj + c†A2,r
cB2,r−δj +H.c.

)
(1)

+
∑
r

(
γ1c

†
A1,r

cA2,r +H.c.
)
. (2)

=
∑
k

(
Dkc

†
A1

(k)cB1(k) +D∗
kc

†
A2

(k)cB2(k) + γ1c
†
A1

(k)cA2(k) +H.c.
)

(3)

=
∑
k

(
c†B1

(k), c†B2
(k), c†A1

(k), c†A2
(k)
)

0 0 D∗
k 0

0 0 0 Dk

Dk 0 0 γ1
0 D∗

k γ1 0




cB1
(k)

cB2(k)
cA1

(k)
cA2(k)

 (4)

where δ1 = x̂, δ2 = − x̂
2 +

√
3
2 ŷ, and δ2 = − x̂

2 −
√
3
2 ŷ.

Dk = γ0

(
eikx + 2e−

i
2kx cos

(√
3

2
ky

))
. (5)

Note that at ±K = ± 4π
3
√
3
ŷ, we have D±K = 0, and

D±K+k = γ0a
3i

2
(kx ± iky) +O(k2).

Clearly, at ±K, we have a doublet at zero energy, and two states which are split-off to ±γ1.
Now, formulate this problem as a coherent state Grassmann path-integral:

Z0 =

∫
D(ψ∗

A, ψA, ψ
∗
B, ψB)e

−S0 (6)

S0 =
∑
n

∑
k

(
ψ∗
A (−iωn1 + γ1σ1)ψA − iωnψ

∗
BψB + ψ∗

B

(
D∗

k 0
0 Dk

)
ψA + ψ∗

A

(
Dk 0
0 D∗

k

)
ψB

)
(7)

Now, integrate out the (high energy) ψA-modes. The resulting effective action for the ψB-modes is

Z0 = const.×
∫

D(ψ∗
B, ψB)e

−Seff (8)

S
(0)
eff =

∑
n

∑
k

[
−iωnψ∗

BψB − ψ∗
B

(
D∗

k 0
0 Dk

)
(−iωn1 + γ1σ1)

−1

(
Dk 0
0 D∗

k

)
ψB

]
(9)

Now, (
D∗

k 0
0 Dk

)
(−iωn1 + γ1σ1)

−1

(
Dk 0
0 D∗

k

)
=

1

ω2
n + γ21

(
iωnD

∗
kDk γ0D

∗
k
2

γ0Dk
2 iωnDkD

∗
k

)
. (10)
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Nearest neighbor tight-binding model on honeycomb bilayer 

Figure 1: Schematic of the A-B stacked honeycomb bilayer and the resulting dispersion.

We are interested in energies much smaller than γ0, the energy of the split-off bands. The terms on the
diagonal are ∼ ωnk

2 and the terms on the off-diagonal have one power of ωn less. Therefore, in the low
energy regime, we can ignore the diagonal term which we have generated, and focus only on the off-diagonal
term. Therefore, defining a four-component field by expanding near ±K:

ψn,k =


cB1(ωn,K+ k)
cB2(ωn,K+ k)
cB1(ωn,−K+ k)
cB2(ωn,−K+ k)

 . (11)

we find (adding the electron spin):

S
(0)
eff ≈

∑
n

∑
|k|<Λ

∑
σ=↑,↓

[
−iωnψ†

n,k,σψn,k,σ + ψ†
n,k,σ

(
k2x − k2y
2m∗ 1σ1 +

kxky
m∗ τ3σ2

)
ψn,k,σ

]

=

∫ β

0

dτ

∫
d2r

∑
σ=↑,↓

[
ψ†
σ(r, τ)

∂

∂τ
ψσ(r, τ) + ψ†

σ(r, τ)

(
p2x − p2y
2m∗ 1σ1 +

pxpy
m∗ τ3σ2

)
ψσ(r, τ)

]
(12)

where β = 1
kBT

. Note that at T = 0, S
(0)
eff is invariant upon the following scaling transformation

r = sr′ (13)

τ = s2τ ′ (14)

ψσ(sr
′, s2τ ′) =

1

s
ψ′
σ(r

′, τ ′). (15)



At finite T , we can make it invariant by including the rescaling of temperature T ′ = s2T .
Under the Wilsonian renormalization group procedure, we eliminate all modes ψn,k,σ within a thin shell

(1−dℓ)Λ < |k| < Λ, but for all n and σ. Upon rescaling (13), the cutoff is send back to Λ. Clearly, S
(0)
eff is left

unchanged under this procedure. We can therefore think of S
(0)
eff as a Gaussian fixed point with dynamical

critical exponent z = 2.

2 Electron-electron interactions and the RG flow equations

Electron-electron interactions are represented by quartic terms in ψ in the action. If we start with finite
range interactions at the microscopic lattice level, then we will generate local terms only. Note that upon
rescling (13), the only local quartic terms which do not decrease under the RG procedure are of the form

Sinteff =
1

2

∑
M,N

∫
dτ

∫
d2rGM,N

(
ψ†
σ(r, τ)Mψσ(r, τ)

) (
ψ†
σ′(r, τ)Nψσ′(r, τ)

)
, (16)

where M and N are some 4× 4 matrices. Quartic terms with derivatives or terms with more than 4 ψ terms
scale down under the RG transformation.

Because there are 16-independent 4×4 matrices, naively, there are 2×(16×15/2+16) = 272 terms which
we can write down for Sinteff , corresponding to a large number of independent couplings GM,N . However,
time reversal symmetry, spin SU(2) symmetry, and the space group symmetry and Fierz identities relating
spin singlet contact terms and spin triplet contact terms, reduce the total number of independent couplings
to 9 (see OV PRB 82, 205106 (2010)). They are:

Sinteff =
2π

m∗

9∑
j=1

gj

mj∑
m=1

∫
dτ

∫
d2r

(
ψ†
σ(r, τ)Γ

(m)
j ψσ(r, τ)

)(
ψ†
σ′(r, τ)Γ

(m)
j ψσ′(r, τ)

)
. (17)

where the factor involving m∗ was introduced to make g dimensionless, mj is the multiplicity of the repre-
sentation j, and where

A1g : Γ
(1)
1 = 14 (18)

A2g : Γ
(1)
2 = τ3σ3 (19)

Eg : Γ
(1)
3 = 1σ1,Γ

(2)
3 = τ3σ2 (20)

A1u : Γ
(1)
4 = τ31 (21)

A2u : Γ
(1)
5 = 1σ3 (22)

Eu : Γ
(1)
6 = τ3σ1,Γ

(2)
6 = −1σ2 (23)

AK : Γ
(1)
7 = τ1σ1,Γ

(2)
7 = τ2σ1 (24)

AK : Γ
(1)
8 = τ1σ2,Γ

(2)
8 = τ2σ2 (25)

EK : Γ
(1)
9 = τ11,Γ

(2)
9 = −τ2σ3,Γ(3)

9 = −τ21,Γ(4)
9 = −τ1σ3. (26)

2.1 Details of the RG derivation

For general coupling constants gST , expanding in powers of g, gives cumulant expansion

⟨e−
1
2 gST

∫
1
ψ†Sψψ†Tψ(1)⟩ ≈ e

− 1
2 gST

⟨∫
1
ψ†Sψψ†Tψ(1)

⟩
× exp

[
gST gUV

8

∫
1,2

(⟨(
ψ†Sψψ†Tψ(1)

) (
ψ†Uψψ†V ψ(2)

)⟩
−
⟨(
ψ†Sψψ†Tψ(1)

)⟩ ⟨(
ψ†Uψψ†V ψ(2)

)⟩)]
where the average ⟨. . .⟩ is with respect to the gaussian weighting factor. We have used a short-hand 1, 2 for
the modes at space-(imaginary)time τ1,2, r1,2 and each ψ = ψ> + ψ<. We integrate over the fast modes ψ>



Figure 2: Schematic representation of the RG procedure. (a) We eliminate all modes ψn,k,σ within a thin
shell (1 − dℓ)Λ < |k| < Λ, but for all n and σ. (b) Diagrams contributing to the flow of the couplings. (c)
Diagrams contributing to the determination of susceptibilities. From: J. Murray and OV, PRB 89, 205119
(2014)

whose wavenumbers Λ/s < |k| < Λ. The non-interacting Green’s function is

Gk(ω) = (−iω +Σ · dk)−1
=

iω +Σ · dk
ω2 +

(
k2

2m

)2 (27)

and dxk =
k2x−k

2
y

2m∗ , dyk =
2kxky
2m∗ , and Σx = 14σ1, Σ

y = 1τ3σ2.
Using the identity,∫ ∞

−∞

dω

2π

∫ Λ

(1−dℓ)Λ

dkk

2π

∫ 2π

0

dθ

2π
Gk(ω)⊗G∓k(∓ω) =

(
±18 ⊗ 18 +

1

2
Σx ⊗ Σx +

1

2
Σy ⊗ Σy

)
m∗

4π
dℓ,(28)

we can evaluate the needed diagrams. All possible contractions correspond to the diagrams in the Figure
(2b).

For the first diagram we find the following terms

∆S
(RPA)
eff =

1

2

∑
S

∑
U

gSgU

∫
1

∫
2

ψ†(1)Sψ(1)Tr [SG(1− 2)UG(2− 1)]ψ†(2)Uψ(2). (29)

Using the gradient expansion to determine the RG fate of the marginal couplings and find

∆S
(RPA)
eff =

1

2

∑
S

∑
U

gSgU

∫
1

ψ†(1)Sψ(1)Tr

[
−SU +

1

2
SΣxUΣx +

1

2
SΣyUΣy

]
ψ†(1)Uψ(1)

m

4π
dℓ.(30)

For the second and third (vertex) diagrams in the Figure (2b) we have the following terms

∆S
(V )
eff = −

∑
S

∑
U

gSgU

∫
1

∫
2

ψ†(1)SG(1− 2)UG(2− 1)Sψ(1)ψ†(2)Uψ(2). (31)



Performing the gradient expansion gives

∆S
(V )
eff = −

∑
S

∑
U

gSgU

∫
1

ψ†(1)S

(
−U +

1

2
ΣxUΣx +

1

2
ΣyUΣy

)
Sψ(1)ψ†(1)Uψ(1)

m

4π
dℓ. (32)

For the fourth and the fifth diagrams in the Figure (2b) we find the following terms

∆S
(L)
eff = −1

4

∑
S,U

gSgU

∫
1

((
ψ†(1) [S,U ]ψ(1)

)2
+

1

2

∑
a=x,y

(
ψ†(1) (SΣaU + UΣaS)ψ(1)

)2) m

4π
dℓ. (33)

2.2 RG equations

Adding the terms from ∆S
(RPA)
eff , ∆S

(V )
eff , and ∆S

(L)
eff , from the previous subsection, rescaling the fields

and the integration measure, and comparing to the starting action) we find the RG equations for the nine
coupling constants:

dgi
dℓ

= Aijkgjgk (34)

where Aijk are numbers. The each of the first order non-linear differential equations in (34) is left invariant
upon

gj → bgj (35)

ℓ→ ℓ/b. (36)

Therefore, any solution to Eq.(34) has the form

gi(ℓ, {gj(0)}) = g × Φi

(
gℓ,

{
gj(0)

g

})
, (37)

g =

√√√√ 9∑
j=1

g2j (0), (38)

where Φ′
is are functions which can be determined numerically. They typically diverge at some ℓ∗.

In the special case of initially having only forward scattering interaction gA1g , i.e. only
(
ψ†
σ1ψσ

)2
, the

flow equations simplify to

dgA1g

dℓ
= −4gA1ggEg, (39)

dgA2g

dℓ
= −12g2A2g + 4g2Eg + 4gA1ggA2g − 12gA2ggEg, (40)

dgEg
dℓ

= − (gA1g − gEg)
2 − (gA2g − gEg)

2 − 10g2Eg. (41)

Note that even if not present initially, gEg is generated first since it has a term proportional to g2A1g
, and

since its beta function is negative definite, it becomes more and more negative under RG. The gA2g coupling
is generated only after gEg has been generated.

The couplings typically run away along rays (see OV and Kun Yang, PRB 81, 04140(R) (2010)). We
can see that by following argument: consider the ratio of the first two flow equations and the third one

dgA1g

dgEg

= f1

(
gA1g

gEg

,
gA2g

gEg

)
(42)

dgA1g

dgEg

= f2

(
gA1g

gEg

,
gA2g

gEg

)
, (43)



Figure 3: (a) Flow of the interaction couplings when initially gA1g (0) > 0, while all other couplings vanish
initially. Under these conditions, only two other couplings get generated under RG: gA2g (0) and gEg (0). (b)
Same as in panel (a), but the quartic terms in ψ are rewritten via a Fierz transformation in terms of Cooper
pair-Cooper pair. The resulting couplings are labeled g̃. All nine g̃’s are generated, but their values are
independent of the g, u,K labels. Note that for small initial g, then the attractive interactions are generated
in the regime where the weak coupling RG is justified.(From OV, J. Murray and V. Cvetkovic PRL 112,
147002 (2014).)

where f1 and f2 are readily determined. These equations are invariant under simultaneous rescaling of all
couplings by a constant. Therefore,

gEg

d
gA1g

dgEg

gEg

= −
gA1g

gEg

+ f1

(
gA1g

gEg

,
gA2g

gEg

)
(44)

gEg

d
gA2g

dgEg

gEg

= −
gA2g

gEg

+ f2

(
gA1g

gEg

,
gA2g

gEg

)
. (45)

Note that the right hand side is a function of the coupling constant ratios only, and can be thought of as a
beta function for the ratios. Zeros of the right hand side determines the fixed rays along which the couplings
run away, moreover, linear stability analysis determines which of the rays are stable.

For the special problem with only gA1g , gA2g , and gEg , such analysis gives two stable rays:

gA1g

gEg

→ 0,
gA2g

gEg

→ −0.525

and gA1g

gEg

→ 0,
gA2g

gEg

→ 13.98.

For the initial conditions gA1g > 0, gA2g = gEg = 0, the first ray is approached.
An important insight into the problem can be gained by exactly recasting the interaction term in the

action as a pairing interaction (for details see OV, J. Murray and V. Cvetkovic PRL 112, 147002 (2014).)

Sinteff =

∫ β

0

dτ

∫
d2rLint

and

Lint =
1

2

10∑
j=1

g̃jS
†
j(r, τ)Sj(r, τ) +

1

2

16∑
j=11

g̃jT⃗
†
j(r, τ) · T⃗j(r, τ) (46)

where the spin singlet and the spin triplet Cooper pair terms are

Sj(r, τ) =
∑

α,β=↑,↓

ψTα (r, τ)Γ
(s)
j (iσ2)αβ ψβ(r, τ), (47)



T⃗j(r, τ) =
∑

α,β=↑,↓

(
ψTα (r, τ)Γ

(t)
j (iσ2σ⃗)αβ ψβ(r, τ)

)
. (48)

The 9 independent pair interactions, g̃j , can be written as a linear combination of gj ’s using Fierz identities

g̃Rp =
1

8

∑
R′=A1,A2,E

FRR′

∑
p′=g,u,K

Fpp′gR′
p′ (49)

where F =

 1 −1 2
1 −1 −2
1 1 0

. In other words,



g̃A1g

g̃A2g

g̃Eg

g̃A1u

g̃A2u

g̃Eu

g̃A1K

g̃A2K

g̃EK


=

1

8



1 −1 2 −1 1 −2 2 −2 4
1 −1 −2 −1 1 2 2 −2 −4
1 1 0 −1 −1 0 2 2 0
1 −1 2 −1 1 −2 −2 2 −4
1 −1 −2 −1 1 2 −2 2 4
1 1 0 −1 −1 0 −2 −2 0
1 −1 2 1 −1 2 0 0 0
1 −1 −2 1 −1 −2 0 0 0
1 1 0 1 1 0 0 0 0





gA1g

gA2g

gEg

gA1u

gA2u

gEu

gA1K

gA2K

gEK


. (50)

For generic repulsive interactions all g̃j ’s are initially repulsive and not obviously conducive to Cooper
pairing (see e.g. Fig.3b). Nevertheless, under RG attraction is generated: there is a scale ℓ1 where g̃i(ℓ1) = 0
for some i’s, and continues negative for ℓ1 < ℓ < ℓ∗. An example of this can be seen in the Fig.3b where
g ≡ gA1g (0) > 0 otherwise gj(0) = 0.

2.3 Nature of the instability: susceptibility analysis

Because of the scaling form discussed above, ℓ1 = C1/g, and similarly ℓ∗ = C∗/g, where C∗ > C1 > 0.
At ℓ1 the couplings therefore attain values gi(ℓ1) = gΦi (C1, {gj(0)/g}). Since Φi (C1, {gj(0)/g}) are finite
numbers, independent of g, we arrive at an important conclusion that if g is small then so is gi(ℓ1); attraction
is therefore generated in the regime when the flow equations (??) are valid.

However, such attractive pair interactions do not lead to superconductivity, unless, as we will see later,
finite chemical potential is introduced. As shown in the Fig.3, the growth of the attractive g̃’s is accompanied
by the growth of the repulsive g̃’s, disfavoring superconductivity and favoring an excitonic state. In order to
demonstrate this, we introduce infinitesimal symmetry breaking source terms into the starting Hamiltonian,

H → H +
∑
k

 16∑
j=1

δH
(j)
1 +

10∑
j=1

∆pp
j δH

(j)
2s +

16∑
j=11

∆⃗pp
j · δH(j)

2t

 ,

where
δH

(j)
1 = ψ†

k,α

(
∆ph
j Γjδαβ + ∆⃗ph

j · Γj σ⃗αβ
)
ψk,β ,

and

δH
(j)
2(s,t) =

1

2
ψTk,αΓ

(s,t)
j (iσ2 (1, σ⃗))αβ ψ−k,β +H.c.

Using our RG procedure we find

d ln∆ph
i

dℓ
= 2 +Bphij gj(ℓ), (51)

d ln∆pp
i

dℓ
= 2 +Bppij gj(ℓ). (52)



Figure 4: (a) Flow of the interaction couplings when initially gA1g (0) > 0, while all other couplings
vanish initially. Solid lines are for negligibly small chemical potential leading to nematic. Dashed

lines for finite chemical potential satisfying Λ2

2m∗ e
−2C∗/g ≪ µ ≪ Λ2

2m∗ e
−2C1/g leading to a superconduc-

tor. (b) Susceptibilities: solid line no chemical potential, dashed line finite chemical potential satisfying
Λ2

2m∗ e
−2C∗/g ≪ µ ≪ Λ2

2m∗ e
−2C1/g. The variable t is related to ℓ by t = 1

2 ln
(

Λ2/2m∗−µ
e−2ℓΛ2/2m∗−µ

)
. (From OV, J.

Murray and V. Cvetkovic PRL 112, 147002 (2014).)

The coefficients Bij are determined from the diagrams shown in Fig.2d. as well as the dependence of the
Helmholtz free energy, δf , on ∆j ’s and ℓ:

δf(∆; ℓ) = −m∗

16π

32∑
j=1

∫ ℓ

0

dℓ′e−4ℓ′
[
∆
ph/pp
j (ℓ′)

]2
α
ph/pp
j (53)

This is then used to compute the susceptibility,

χij(ℓ) = − ∂2δf

∂∆∗
i ∂∆j

,

associated with excitonic or superconducting ordering tendencies. These susceptibilities can be determined
analytically along the rays, and therefore also in the asymptotic regime where the rays are approached. (see
V. Cvetkovic, R. Throckmorton, and OV, 86, 075467 (2012)).

By analyzing the fixed rays along which the couplings diverge, we see that despite generating the
attractive interactions at ℓ1, the susceptibility in the excitonic channels grows above the superconducting
ones (solid lines in Fig.4b). With pure forward scattering, the dominant instability appears to be the charge
nematic corresponding to

αψ†
σ1σ1ψσ + βψ†

στ3σ2ψσ.

Were we to start with initial conditions gA1g = gA2u = 2gEk
> 0, corresponding to repulsive Hub-

bard model at the microscopic lattice level, all nine couplings get generated, and the susceptibility analysis
identifies the layer antiferromagnetic state

ψ†
α1σ3σ⃗αβψβ

as the leading instability. (OV PRB 82, 205106 (2010); V. Cvetkovic, R. Throckmorton, and OV, 86, 075467
(2012).)

Were we to start with initial conditions gA1g = gA2u = 2gEk
< 0, corresponding to attractive Hubbard

model at the microscopic lattice level, all nine couplings get generated as well. The susceptibility analysis
identifies the layer polarized state

ψ†
σ1σ3ψσ

and
ψ†
ατ11iσ

y
αβψ

∗
β +H.c.



as the leading instability. Such degeneracy is a consequence of SO(4) symmetry of the Hubbard model.
Further range interactions cause splitting of the degeneracy between the charge ordered state and the s-wave
superconductor (V. Cvetkovic, R. Throckmorton, and OV, 86, 075467 (2012)).

2.4 Finite chemical potential and superconductivity

Consider the non-interacting problem with a finite value of the chemical potential

µ
∑
n

∑
k

∑
σ=↑,↓

ψ†
n,k,σψn,k,σ.

If we choose to perform the RG procedure using the same prescription as before, then the chemical potential
µ grows under the rescaling:

µℓ = µe2ℓ.

Free energy calculated using our RG or by simply using the known results for the non-interacting case are
identical, as they should be.

When we turn on the interactions, we perform our RG procedure the same way. We would like to
think of the chemical potential, clearly a relevant perturbation, analogously to the mass parameter of the
bosonic n-vector field model (P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics
(Cambridge University Press, Cambridge, UK, 1995), p. 266.). There is a crucial difference, however, in
that Cooper instabilities are not suppressed by finite µ.

It is convenient to write the chemical potential as

(µ+ δµ)
∑
n

∑
k

∑
σ=↑,↓

ψ†
n,k,σψn,k,σ,

where δµ is the exact value of the chemical potential at half filling. Therefore, at half filing, µ = 0. We can
determine the value of δµ exactly using the particle-hole transformation on the Fermi operators (not the
Grassman fields) (J. Murray and OV, PRB 89, 205119 (2014)):

ψkσ = τ1σ3χ
∗
−kσ (54)

ψ∗
kσ = τ1σ3χ−kσ. (55)

The expectation values of the ψ- and χ- particle numbers are related by∑
k

⟨ψ∗
kσψkσ⟩ =

∑
k

(8− ⟨χ∗
kσχkσ⟩) . (56)

Therefore, if ∑
k

⟨ψ∗
kσψkσ⟩ =

∑
k

⟨χ∗
kσχkσ⟩,

then the system is at half filling: only half of the eight modes per k are occupied. In order for the expectation
values to be equal, they must be described by the same Hamiltonians, with the same chemical potentials.
Working out the anti-commutators in the normal ordered Hamiltonian in terms of χ’s, we find that the
condition to be at half-filling is achieved if

δµ

Λ2/2m∗ =
9∑
j=1

cjgj = 8gA1g −
(
gA1g + gA2g + 2gEg + gA1u + gA2u + 2gEu + 2gA1K

+ 2gA2K
+ 4gEK

)
(57)

µ = 0. (58)

The expression (57) remains valid when the coupling flow, i.e. δµ → δµℓ and gj → gj(ℓ). The contribution
to the renormalization of the chemical potential comes from the diagram in Fig.2c. Defining dimensionless
chemical potential

µ̃ =
µ

Λ2/2m∗ =
µ

ΩΛ
,



at T = 0 it is

d (µ̃+ δµ̃)

dℓ
= 2(µ̃+ δµ̃)− 2

9∑
j=1

cjgj(ℓ) + . . . (59)

where . . . represent terms which are second and higher order in g. We note that 2δµ̃−2
∑9
j=1 cjgj(ℓ) = 0 and

because dδµ̃/dℓ ∼ dg/dℓ ∼ g2 the flow of the chemical potential remains valid to the order we are working if

dµ̃

dℓ
= 2µ̃+ . . . ⇒ µ̃ℓ =

µ

Λ2/2m∗ e
2ℓ. (60)

The flow equations for the couplings changes due to the presence of the chemical potential term.
Schematically,

dgj
dℓ

= Aijk(µ̃ℓ + δµ̃ℓ)gjgk + . . . = Aijk(µ̃ℓ)gjgk + . . . (61)

The Fourier transform of the imaginary time Greens function is

Gk(iω) =

(
(−iω + µ) 14 +

k2x − k2y
2m∗ 1σ1 +

kxky
m∗ τ3σ2

)−1

=
(iω − µ) 14 +

k2x−k
2
y

2m∗ 1σ1 +
kxky
m∗ τ3σ2

(ω + iµ)
2
+
(

k2

2m∗

)2 (62)

where ωn = (2n+1)πT is the Matsubara frequency. The following pair of identities is useful in deriving the
flow equations ∫ Λ

Λ(1−dℓ)

dkk

2π

∫ 2π

0

dθk
2π

∫ ∞

−∞

dω

2π
Gk(iω)⊗Gk(iω) =

m∗

4π
dℓF0

(
µ

Λ2/2m∗

)(
−14 ⊗ 14 +

1

2
(1σ1 ⊗ 1σ1 + τ3σ2 ⊗ τ3σ2)

)
(63)∫ Λ

Λ(1−dℓ)

dkk

2π

∫ 2π

0

dθk
2π

∫ ∞

−∞

dω

2π
Gk(iω)⊗G−k(−iω) =

m∗

4π
dℓ

(
F1

(
µ

Λ2/2m∗

)
14 ⊗ 14 +

1

2
F2

(
µ

Λ2/2m∗

)
(1σ1 ⊗ 1σ1 + τ3σ2 ⊗ τ3σ2)

)
(64)

where for x > 0

F0(x) =
1

2
sign (1 + x) +

1

2
sign (1− x) , (65)

F1(x) =
1

2x

(
1 + 2x

1 + x
− 1− 2x

|1− x|

)
, (66)

F2(x) = − 1

2x

(
1

1 + x
− 1

|1− x|

)
. (67)

Note that F1(x) = F2(x) for 0 ≤ x ≤ 1.
The above results lead to the following equations (N = 4)

dgA1g

dℓ
=

((
g2A1g + g2A2g + 2g2Eg

)
(F0 − F1)− 2gA1ggEg(F0 + F2) + 2gA2ggEg(F2 − F0)

)
, (68)

dgA2g

dℓ
=

(
2gA1ggA2g (3F0 − F1) + 2gA1ggEg (F2 − F0)− 4(N − 1)g2A2gF0

−2gA2ggEg(5F0 + F2) + 2g2Eg(F0 + F1)
)
, (69)

dgEg
dℓ

=
1

2

(
−g2A1g(F0 + F2) + 2gA1ggA2g(F2 − F0) + 4gA1ggEg(2F0 − F1)− g2A2g(F0 + F2)

+4gA2ggEgF1 − 4g2Eg[(N + 1)F0 + F2]
)
, (70)



Figure 5: (From OV, J. Murray and V. Cvetkovic PRL 112, 147002 (2014).)

where we omitted the argument of each Fi, which is µ̃ℓ =
µ

Λ2/2m∗ e
2ℓ. At µ = 0 these equations reduce to

those found in Eq.(34). Assuming that only gA1g (0) ̸= 0, the value of C1 can be found rather precisely using
series expansion techniques to be C1 = 0.248498. Similarly, the value of C∗ = 0.3553. The above equations
can be rewritten in terms of g̃j ’s using Eq.(50). We find

dg̃A1

dℓ
= −8g̃2A1(F1 + F2)

− 8 [−g̃A1 ((g̃A2 − g̃E)N + g̃A2 + 3g̃E) + g̃E((g̃A2 − g̃E)N + g̃A2 + 3g̃E)]F0 (71)

dg̃A2

dℓ
= −8g̃2A2g(F1 − F2)

+ 4
[
g̃2A1(N − 1) + g̃2A2(N + 3) + 2g̃E (g̃E − g̃A1 − g̃A2) (N − 1)

]
F0 (72)

dg̃E
dℓ

= −8g̃2EF1

− 2
[
N(g̃A1 + g̃A2 − 2g̃E)

2 − 3g̃2A1 + 2g̃A1g̃A2 + 12g̃A1g̃E + g̃2A2 − 4g̃A2g̃E − 12g̃2E
]
F0.

(73)

where, again, we omitted the argument of each Fi, which is µ̃ℓ = µ
Λ2/2m∗ e

2ℓ, as well as the specification

of the g, u or K label on g̃, since in this case the result is independent of it. The information contained
in Eqs.(68-70) and in Eqs.(71-73) is identical. This can be seen by performing the susceptibility analysis.

However, the latter form is more transparent in the regime Λ2

2m∗ e
−2C∗/g ≪ µ ≪ Λ2

2m∗ e
−2C1/g due to the

manifest decoupling of the equations in the vicinity of the Fermi surface, i.e. when ℓ ≈
√

Λ2/2m∗

µ .

Finite chemical potential introduces a scale ℓFS at which, were it not for interactions, the chemical
potential would reach the cutoff. In other words µ̃ℓFS

= 1. If, in the presence of finite µ, we can guarantee
that attraction is generated after ℓ1 < ℓFS , but we reach the vicinity of the Fermi surface before the
divergence at ℓ∗ occurs, i.e. ℓFS < ℓ∗ then we find superconductivity as the leading instability as is seen in
the dashed lines of Fig.(4). Note that the Cooper logarithm appears via the prefactor 1/(1− µℓ) of g̃

2.
In other words, if we wish to guarantee attraction at ℓ1, we should demand the chemical potential to

be negligible at ℓ1:
µ̃ℓ1 ≪ 1.

On the other hand, in order to get superconductivity, we wish to reach the Fermi level much before the
divergence due to half-filled phase competition occurs at ℓ∗. Therefore, we require

µ̃ℓ∗ ≫ 1.

If both inequalities are to be satisfied, we must have Λ2

2m∗ e
−2C∗/g ≪ µ≪ Λ2

2m∗ e
−2C1/g. But, bcause C∗ > C1,



we can always reduce g such that the above holds. This guarantees a finite range of chemical potential at
which superconductivity emerges.

The scale for the ordering temperature of the superconductor is ∼ e−a/g, which is manifestly not of
the Kohn-Luttinger type which would be ∼ e−a

′/g2 (see lectures by Steve Kivelson). The resulting phase
diagram is shown in Fig.(5)
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