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What is active matter?

“Active matter is matter composed of large numbers of active "agents"”, each of which

consumes enerqy in order to move or to exert mechanical forces. Such systems are intrinsically out

of thermal equilibrium. Unlike thermal systems relaxing towards equilibrium and systems with boundary
conditions imposing steady currents, active matter systems break time reversal symmetry because
energy is being continually dissipated by the individual constituents. Most examples of active matter are
biological in origin and span all the scales of the living, from bacteria and self-organising bio-

polymers such as microtubules and actin (both of which are part of the cytoskeleton of living cells), to
schools of fish and flocks of birds. However, a great deal of current experimental work is devoted to
synthetic systems such as artificial self-propelled particles. Active matter is a relatively new material
classification in soft matter: the most extensively studied model, the Vicsek model, dates from 1995.

Research in active matter combines analytical techniques, numerical simulations and experiments.
Notable analytical approaches include hydrodynamics, kinetic theory, and non-equilibrium statistical

physics. ..... ”

--- Wikipedia


https://en.wikipedia.org/wiki/Energy
https://en.wikipedia.org/wiki/Thermodynamic_equilibrium
https://en.wikipedia.org/wiki/T-symmetry
https://en.wikipedia.org/wiki/Biopolymer
https://en.wikipedia.org/wiki/Microtubule
https://en.wikipedia.org/wiki/Actin
https://en.wikipedia.org/wiki/Cytoskeleton
https://en.wikipedia.org/wiki/Self-propelled_particles
https://en.wikipedia.org/wiki/Soft_matter_physics
https://en.wikipedia.org/wiki/Vicsek_model
https://en.wikipedia.org/wiki/Fluid_dynamics
https://en.wikipedia.org/wiki/Kinetic_theory_of_gases
https://en.wikipedia.org/wiki/Statistical_physics
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The hydrodynamic approach: The Toner-Tu (TT) equation
Symmetry and spontaneous symmetry-breaking

Linear analysis: The Mermin-Wagner (MW) theorem

Lecture 2: Nonlinear analysis of the hydrodynamic model (TT equation)

The breakdown of linear hydrodynamics in d < 4
The idea of scaling and renormalization group (RG) theory

The RG analysis for the TT equation
Long-range order in 2D flocking: The break-down of the MW theorem

The hydrodynamic modes of fluctuations in flocking

Lecture 3: The energetics of flocking

Nonequilibrium system and the breakdown of detailed balance
The cost of maintaining a nonequilibrium steady state (NESS)
The energy cost of flocking in AIM

The energy-performance tradeoff in flocking



Lecture 1: Introduction to active matter

Motivation: collective motion of agents are ubiquitous in nature

Flocking behaviors at the macroscopic scales

Fish School Bird Flock Grazing Wildebeests

You can easily find movies on youtube, e.g., https://www.youtube.com/watch?v=V4f 1 r80RY



https://www.youtube.com/watch?v=V4f_1_r80RY

Flocking behaviors at the microscopic scales

Collective motion and density fluctuations
in bacterial colonies

H. P. Zhang', Avraham Be’er, E.-L. Florin, and Harry L. Swinney'

(PNAS, 107 (31), 2010)
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Other examples of swimming bacterial cells

1) E. coli strongly confined in 2D
exhibit dry Vicsek-rods behavior

Nishiguchi et al, PRE, 95,
020601(R), 2017

2) 2D wet active nematics at the edge
of growing Serratia colony

Li et al, PNAS, 116(3), 777-785, 2019

3) Weak synchronization in quasi-
2D swarming E. coli

Chen et al, Nature, 542, 210-214,
2017




Another class of microscopic active matter:
High-density motility assays

Motility assays: motor proteins, grafted on a substrate, consume ATP to
displace track filaments such as microtubules (MT)

For example: dynein motors and microtubules

“ with high density of motors (1000/um?), smooth, constant-speed
motion of single MT

“ Alignment upon collision

plus end

Large-scale vortex lattice emerging from collectively
moving microtubules (Nature, 483, 2012)

Yutaka Sumino'*, Ken H. Nagai**, Yuji Shitaka®, Dan Tanaka®$, Kenichi Yoshikawa®, Hugues Chaté® & Kazuhiro Oiwa®’

50. Oun

Quasi-2D active flow (thin layer)



High-density motility assays
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Near-perfect nematic alignment via collisions
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The active microtubule (MT)--kinesin (or dynein) flow
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Spontaneous motion in hierarchically assembled
active matter

Tim Sanchez'*, Daniel T. N. Chen'*, Stephen J. DeCamp'*, Michael Heymann'? & Zvonimir Dogic'

(Nature,491,2012)

(3D active flow)




The three key properties of individual boids in flocking systems

* The “flockers” (boids) always move.
The directed motion is driven internally by “activity” of the agent, which consumes
energy.
Boids are often called “self-propelled particles”.
* The boids align their directions of motion.

The alignment interactions are purely local in space

* The boids make mistakes: the alignment is not perfect, there are noise in the system.



What is the hydrodynamic theory of flocking? where does it come from?

It started from a visit by Tamas Vicsek to IBM T. J. Watson Research Center at YKT
in late 1994 (~28 years ago).

The Vicsek model: the minimal model for flocking

N
i \/1 > Motion: X;(t + 1) = % (1) + 7i(DAt
N
/ - ~ / R// ~ Local Alignment: 0;(t+ 1) = <0f(t)>d,-,-<R + 50
~ A /\ [ ~ Noise: 60 € [—g,g]
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~ —~
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The flocking transition in the Vicsek model

Increasing noise n
(or by decreasing density)
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The Active Ising Model (AIM): a lattice flocking model

e N particles (Ising spins), LxXLy lattice, no volume exclusion, continuous-time Markov process.

* State variables: local occupation number (nf;,n;;),i = 1,2, ..., Ly,j = 1,2, ..., Ly,

* Local density and magnetization: p; ; = n{’; + n;;,

U
ml’,j = ni,j ni,j'

* Dynamics (reactions): local alignment + active transport

Flipping
m; m; My —sBEgAr
we’Eori <g> we PEos; Ks—y(—s) = Wexp <—8ﬁEo—) = we PPN,
—|_— r
1
oo ko) —@+1y) = D(1 + se)
opping . (g
D(l—¢) D(14e) D(l+e) %6) K(zy) (@14 = D(1 — se) Key control parameters: - ,Eg, €
Y O\ \® v \
& 0 o 9 K(zy)—(zy+1) = D . _ .
1 2 3 4 - L timescale  coupling  bias
k@y)»@y-1) = D, energy scale

A. P. Solon and J. Tailleur, PRL 2013; PRE 2015



Phase diagram in parameter space (E, €)
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The three phases in AIM: Simulation results:
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But wait, there is a big problem!

The Mermin-Wagner theorem

In quantum field theory and statistical mechanics, the Mermin—-Wagner theorem states

that continuous symmetries cannot be spontaneously broken at finite temperature in
systems with sufficiently short-range interactions in dimensions d < 2.

Spontaneous symmetry breaking The Goldstone modes
fégf?i%ff‘* Excited state with low energy « k?
T fg’:}i;g for long wavelength mode
R P
= ~x\\\\1[////22=

wavelength A = 2rwr/k

&
Variance due to the Goldstone modes: ((6v)%)~T | % ~Tln(%) — oo in 2D

The ordered state is unstable with finite T > No Long-range order (LRO) possible ®

The Vicsek model manuscript ran into trouble in PRL because of the M-W theorem !


https://en.wikipedia.org/wiki/Quantum_field_theory
https://en.wikipedia.org/wiki/Statistical_mechanics
https://en.wikipedia.org/wiki/Spontaneously_broken

The Toner-Tu theory/equation comes to the rescue

John and | were at Tamas’s seminar (probably in room 20-043), and intrigued...

We went to work immediately! and by the next day, we have written down the
hydrodynamic equation for flocking, now known as the Toner-Tu equation

98 4L N (T- V)T + - = i — B|F)2T+ DV2T + - - + 17
.

motion (advection term) alignment

By mid-1995, we were able to show:

* The critical dimensionis d, = 4

* The nonlinear convective term becomes relevantin d < 4

« Using renormalization group theory, we find E;,~k?*~¢ with
{(>0ford<A4.

((6v)?) ~ [ %f = finite in d=2

LRO is stable in 2D at low noise.
Mermin-Wagner theorem is broken in nonequilibrium systems.




A happy ending — flocking theory
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and new beginnings.....



What is hydrodynamic theory (hydrodynamics)?

Hydrodynamics is an effective (coarse-grained) continuum theory that describes the long-time, long-
distance (small frequency and wave-number) dynamics of most interacting many-body systems.

L
[ > R, d0(= _l) t > R/vy,dy/v
Nd

How do you construct a hydrodynamic theory?

Write down all relevant terms allowed by the symmetries and conservation laws of the problem.

E.g., in the case of hydrodynamics for fluids, the relevant hydrodynamics variables are the velocity
field ¥(x) and the density field p(x).

Symmetries: rotational invariance, space and time translation invariance, and Galilean invariance
Conservation laws: Conservation of particle number, momentum and energy.



How do we know which are relevant terms?

In hydrodynamics limit, keep only the lowest order derivatives
for both space and time.

E.g., for hydrodynamics of fluid, keep fl—f term but not % term;

keep V29 term but not V49 term

kY,
— +(3-V)B = DV2%3 + VP

V-v=0

Incompressible
Navier-Stokes equation ot



The hydrodynamic theory of flocking: the Toner-Tu equation

In the case of flocking systems, the relevant hydrodynamics variables are again the velocity field
v(x) and the density field p(x).

Symmetries: rotational invariance, space and time translation invariance, and-Galilean-inrvarianee
Conservation laws: Conservation of particle number, moementurm-and-energy.

The Toner-Tu equation IV. Pressure in the system

-

v

+ BV + - = av — B|V|?*V — v%%; + o+ 7

= \ \

. They move and transport Il. They align with their neighbors lll. There is noise in the system
(advection)




The flocks are compressible: density can fluctuate

Conservation of the total number of active particles (boids)

ap
— V)p=0

Pressure depends on the local boid-density

P(p) = 2 on(p — po)"

n=0

Po =< p > ---- mean density



Mean Field Theory: Looking for spatially homogeneous solutions

v _ U (V) 0 > 0)

v

== -

———

—

—

Ordered state: [< ¥ >| = \/% Disordered state: |<v >| =0



Spontaneous Symmetry Breaking and Goldtston Mode
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Spontaneous Symmetry Breaking: Among all
the solutions, the system selects one of
them, which breaks the O(2) symmetry.

Goldston mode: Perturbation around the
selected solution along the symmetry
direction (6v)) is called the Goldstone mode,
which decays slowly — also called the soft-
mode



Dynamics near the symmetry-broken solution: the fast mode

- - —> A A - - —> A — a
v=v0+ 6UJ_+ 877”3” e||= v()/ |170| 677J_‘ e” =0 |‘UO| = E=1
oV,
1) Fast mode v, Yo
ov|e,
v N
6_t” = [”(2) — (|v¢|2 + (vo + v”)z)](v0+ vy)

~ =2 (v+ [V,]%/2)

v,
2

|2

(higher order)

Decay time: 7, =% (fast); v =-—

oV

| 6V, =“Goldstone mode”




Dynamics near the symmetry-broken solution: the slow mode

— - —_ A A - - — ~ — a
UV =7Vot+ 6vl+ 617”3” €= v()/ |v0| 6UJ_' e = 0 |vo| = E=1
2) The slow Goldston mode 7, oV,
In the co-moving frame 1_30
ov e

aﬁj_ - - 2= 25 >
—=+ MWy -V )v, ==V, P+D,Viv, + D\Viv, + 1

dop S .
s + Apo(Vy - v ) + 44V, - (0, 6p) =0

P = 0'16,0 + 0'25p2

Fast mode

Second order (nonlinear) terms v,

| OV, =“Goldstone mode”




The linear analysis

aﬁl - - _ 2 > 2= -
F‘Fﬂ.l U 'VJ_)UL ——VJ_P+DJ_VJ_UJ_+D"V"UJ_+77J_

dop 9
¥ + hpo(Vy-v)) + WP) =0
P = g,6p +/02,5/

The linearized equation can be solved easily in Fourier space (w, E)

White-noise

<NLi(x ) N (X, 1) >=A6;;6(x — x")8(t - t')



The Velocity Fluctuations and the Mermin-Wagner theorem

- (7 Ti (E’ (1)) I ! / /
b(lw) = -5 <nLx ) 1L, ) >=A8;8(x — x)8(t — 1)
i(w - l) + DK

o o dwdk A dik A L
(v ,(x,t) - v,(x,t)z=A 5 = — ~ —In(3)
c2 2 .4 D J |k| D R
w—— + DK L-1<|k|<R1

<|1_y’ 1 (x,t) —v 1 (x,0) |2) ~ A In(t) Both spatial and temporal velocity fluctuations diverge in the
D hydrodynamic limit for any finite noise strength (A + 0)

The (symmetry-broken) ordered state is unstable against noise in 2D

Mermin-Wagner theorem



The Mermin-Wagner theorem and a possible way out

W, (X t) v (X )z =

D R
L—1<|E|<R—1D|k|
2
Energy cost: D |k \\ \ \ \ ‘ / / / s
Entropy gain: Ad%k F ___________________________________________________________________ ,|
O
2k

For d < 2, Entropy wins!
The system becomes disordered Long wavelength (small k) fluctuation - the slow Goldston mode

If the effective diffusive term is D|k|  with an exponent z < 2

Then the velocity variance decays as L? %> > 0as L —»
Long range order (LRO) will survive!

D|E>|2-- diffusive term

Next: Nonlinear effects, Renormalization group theory, and scaling



